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ABSTRACT: In this paper, we describe laboratory and classroom
exercises designed to obtain the fundamental equation of a rubber
band by combining experiments and theory. The procedure shows
students how classical thermodynamics formalism can help to
obtain empirical equations of state by constraining and guiding in
the construction of the physical models for the system under
investigation. It also serves as an “experimental” link to statistical
thermodynamics models for a rubber band, which is taught to
students in more advanced courses. The rubber band system also
serves as an example of a “non-ideal” thermodynamics system to
introduce a van der Waals-like equation in a context different from
gases.

KEYWORDS: Upper-Division Undergraduate, Physical Chemistry, Hands-On Learning/Manipulatives, Thermodynamics,
Inquiry-Based/Discovery Learning, Laboratory Instruction

■ INTRODUCTION

When introducing students to thermodynamics in first courses,
we emphasize that the subject is of general applicability: the
laws of thermodynamics apply to all physical systems. However,
the number of simple, interesting, affordable experiments for
students is small.1 Here, we propose an experiment designed to
obtain the equations of state of a rubber band and, from them,
the fundamental relation of the system using classical
(macroscopic) thermodynamics formalism. Although there
are many different versions of demonstrative practices of
rubber elasticity,1−10 they use old experimental setups or deal
just with the fact that the force (or tension) on a rubber band
increases with temperature, a behavior which is opposite to
most materials. The generality of these experimental practices is
focused on experimental validation of equations of state derived
from statistical thermodynamics theory,2,6 which cannot be
explained rigorously in introductory courses of classical
thermodynamics. Additionally, most of the literature about
rubber bands in the context of undergraduate classroom and
laboratory deals with “ideal” rubber bands, meaning that the
internal energy does not depend on the extension, which is
usually not the case.
Both the experiment and the analysis procedure that we

propose here was devised the other way around; they were
designed to obtain from experiments the equations of state and
to demand from students a good laboratory practice and a
rigorous knowledge of the underlying classical thermodynamics
principles and relations. Instead of giving students the

equations to be contrasted with the experiments, we ask
them to find out the equations of state from their experimental
results. This work is a consequence of an effort to coordinate
the contents of two courses, Thermodynamics and Statistical
Thermodynamics, and was used in our department to evaluate
students’ experimental skills and knowledge of classical
thermodynamics formalism as a final examination. This
guided-inquiry experiment could be used in an advanced
physical chemistry or thermodynamics laboratory.

■ THEORETICAL BACKGROUND

Fundamental Relation of a Thermodynamics System

Historically, Clausius defined the change in entropy for an
infinitesimal process as dS = (dQquasi/T), with dQquasi being the
heat exchanged in a quasistatic path from the initial to the final
state and T the absolute temperature. By combining this
definition with the first thermodynamic principle for a closed
system, also stated mathematically for the first time by Clausius,
dU = dQ + dW (with U being the internal energy), and
assuming by now than only pressure−volume (PV) work
(quasistatic) can be done, dW = −PdV, it follows

= −U T S P Vd d d (1)
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Written in this way, U can be viewed as some function of the
extensive independent variables S and V, U(S,V); then, its
differential will be

= ∂
∂

+ ∂
∂

U
U
S

S
U
V

Vd d d
V S (2)

By comparing eqs 1 and 2, we can define T as the partial
derivative of U(S,V) with respect to the entropy: T = (∂U/∂S)|V
and, in the same way, −P = (∂U/∂V)|S. Because the partial
derivatives of any function are also functions of the same
variables, then T(S,V) and P(S,V) give the relations between T
and P with the independent variables S and V.
It is neither common nor convenient to have S as

independent variable. Let us then rewrite eq 1 as

= +S
T

U
P
T

Vd
1

d d
(3)

Now, we can say that S, in eq 3, is a function of the
independent variables U and V, S(U,V).
When the differential form is written as in eq 1, we say that it

is in the energy representation, meaning that U is the dependent
variable; when written as eq 3, we say that it is in the entropic
representation, meaning that S is now the dependent variable.
We can identify in eq 3 the partial derivatives as (∂S/∂U)|V =

(1/T) and (∂S/∂V)|U = (P/T); again, this partial derivatives are
also functions of the same independent variables as S: U and V,

and we express that by writing U V( , )
T
1 and U V( , )P

T
. We

write these functions in that way (and not as T(U,V) and
P(T,U,V)) to emphasize that the fundamental relation is in
entropic representation.
Because the second principle of thermodynamics is expressed

in terms of the maximum of the entropy,11 then we assume
(postulate) that for any thermodynamics system there is a
fundamental relation S(U,Xi), the entropy, which is a function of
all extensive parameters Xi relevant to describe it correctly. That
is, we postulate the existence of the integral of eq 3 for each
thermodynamic system, and then we generalize the treatment
to all systems by including in S(U,Xi) all the relevant extensive
parameters needed to describe those systems. The second
principle states that this function S(U,Xi) should be a maximum
at equilibrium (dS = 0, d2S < 0).

Differential Form of the Fundamental Relation for Rubber
Bands

For a rubber band, the relevant extensive parameters are U, V,
N, and L, N being the mole number (the number of polymer
molecules within the rubber band divided by the Avogadro’s
number) and L the length of the rubber band. Then, the
fundamental relation S(U,Xi), in the absence of any external
field, can be expressed as a function S = S(U,V,N,L).
The differential of S(U,Xi) for the rubber band system is then

= ∂
∂

+ ∂
∂
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All the partial derivatives on the previous equation are also
functions of the same extensive parameters. If we explicitly
know the function S(U,Xi), we can obtain all the partial
derivatives as functions of the extensive parameter; we will call
those relations equations of states (ref 11, ch. 2). All the terms
on the right-hand side of eq 4 have units of entropy (energy/
temperature); the partial derivative in the last term has the

units of force divided by temperature, and we indentify that
term with the force.11 The equations of state so defined are
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Here, μ is the chemical potential and τ is the tensile force. If
the whole set of equations of state is known, the fundamental
relation can be obtained by means of the Euler relation,11 or by
integration of the differential form, eq 4.
Differential Form for a Rubber Band at Constant V and N

Let us now consider a piece of rubber band of a relaxed length
L0 (τ = 0). For this system, the number of moles is constant
(no polymer molecule enters or leaves the rubber band). The
volume V can be considered, in a first approximation, also
constant, even if the band is stretched. This means that, within
limits, the band changes the length and the cross section in
such a way that the total volume is constant (for a discussion
about the assumption of constant V see ref 6). Then, we can
eliminate the two terms involving changes on N and V on eq 4,
and the fundamental relation for our rubber band becomes a
function of only two extensive parameters: U and L

τ= −S
T

U L U
T

U L L

N V

d
1

( , )d ( , )d

at constant and (9)

So, if we want the fundamental relation S(U,L), we need to
work out the two equations of state U L( , )

T
1 and τ U L( , )

T
;

from them, the fundamental relation can be recovered by
integration of eq 9.

■ EXPERIMENTAL PROCEDURE
This laboratory exercise was used as a final examination for
second year students of physics, but is appropriate for upper-
level students in physical chemistry or thermodynamics. The
instructors present the main problem: experimentally obtain the
equations of state of a rubber band. The students, in groups of
two or three, conduct a literature search and propose an
experiment to obtain a solution to the given problem. After a
review with the instructor, students build the setup and perform
the experiment.
A scheme of one of the experimental setups designed by

students is shown in Figure 1. The details are included in the
Supporting Information. For this particular experiment,
students used an ordinary rubber band attached from both
ends; one of them, to a force transducer which can be moved to
the left, allowing changes in the length of the rubber band, and
the other, to a fixed position. With an electric resistor wrapped
around a quartz tube, students were able to heat the rubber
band, which passed through the center of the tube. With a ruler,
a force transducer, and a thermometer (or a thermocouple), the
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length, the force, and the temperature were measured
simultaneously.
Once they have obtained their experimental results, they

have to work out the equations of state, in an inquiry-guided
process, and from them the “fundamental relation” using the
formalism they have learned (see next section).
Finally, they write up their results and discussion following

the format of a research paper. They also present the work in a
seminar using PowerPoint (or similar) and answer questions
from the instructor and other students. The students need six
to eight 3-h laboratory periods to design the experimental
setup, carry out the experiment, and obtain the equations
working at the lab, at the library, or on computers at home or at
the University.

■ HAZARDS
Be careful with the heating setup. Students used here a resistor,
which is potentially dangerous. Other experimental setups
avoiding the use of a resistor are proposed in the Supporting
Information and in references.

■ RESULTS AND DISCUSSION

Phenomenological Equation of State from Experiments

Typical results obtained with the setup of Figure 1 are shown in
Figures 2 and 3.
From Figure 2, students found that τ is a nonlinear function

of L, Hooke’s law is not fulfilled and, then, it is not a perfect
elastic body. The rubber band used in this particular experiment

had a length of L0 = 13.2 ± 0.2 cm at 300 K in the absence of
any applied force and was forced to the rupture point, which
happened at about L ∼ 78 cm.
In the classroom, we had shown students the similarities

between “ideal” rubber bands and ideal gases,12,13 and it was
clear to them that the behavior observed in this rubber sample
was not ideal, in the sense that U depends also on L (for an
ideal rubber band, U is only a function of T, as for ideal gases,
see Figure 3 and eq 16 below). Because the form of the τ vs L
curve (Figure 2), which resembles those of P vs V isotherms for
van der Waals gases, they proposed a van der Waals-like
equation for the their rubber band

τ =
−

+BT
L L

D
LM

2 (10)

where D and B are empirical constants, and LM is the maximum
length attainable for the rubber band before the rupture point.
This is the equivalent, for the rubber band, to the constant “b”,
the excluded volume in the van der Waals equation for gases.
How to interpret this constant was a matter of discussion with
students. The constant D is a global interaction parameter
(attractive) among the polymer chains within the rubber band
(like the constant “a” in gases); however, the L−2 dependence
in eq 10 is not so easily justified heuristically as it is the v−2

dependence in the van der Waals equation for gases. Then, we
make clear to students that this equation is simply
phenomenological. In fact, a van der Waals-like equation was
applied to rubber bands,14,15 but L in eq 10 should be replaced
by λ = (L/L0) + (L0/L)

2, and the justification for this equation
comes from statistical thermodynamics. A comparison between
the equation of state of an “ideal” rubber band and the van der
Waals equation is also presented in ref 1 in the context of
undergraduate laboratory practices.
Even though eq 10 is a phenomenological equation not

rigorously justified from theory, it is perfect for our purposes
because it allows the use of the thermodynamics formalism to
find out a consistent relation, from the thermodynamics point of
view, for the other equation of state, as it will be shown in the
next section.
The experimental points in Figure 2 were fitted with eq 10

given, D = (−0.131 ± 0.002) J·m; LM= (0.77 ± 0.01) m, and B
= (8.8 ± 0.3) 10−3 J·K−1. The result of fitting the experimental

Figure 1. Scheme of the experimental setup.

Figure 2. Force as a function of L at constant T = 300 K (L0 = 13.2
cm). The line corresponds to the fitting with eq 12. The errors are
smaller than the size of the points. The dashed line correspond to
Hooke’s law (linear elastic).

Figure 3. Force as a function of T at constant L = 0.3 m. The error
bars are smaller than the size of the points.
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points with eq 10 is shown as a line in Figure 2. Now students
have the first of the equations of state, see eq 9, in the entropic
representation with all the numerical constants

τ =
−

+
T

B
L L

D
L T

1

M
2

(11)

Second Equation of State from Thermodynamics
Formalism

From the thermodynamics formalism, the cross derivatives of
the fundamental relation in entropic representation, have to be
equal
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and, from eq 11 and 12 and considering that 1/T (entropic
representation) is a function of U and L
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then, the function 1/T must depend on the variables (D/L)

and U in such a way that the two derivatives, ∂
∂ ( )D L T( / )

1 and

∂
∂ ( )U T

1 are equal. Students could propose any function of those

variables that obey eq 13. Maybe, the simplest way to
accomplish this is by making the function to depend on the
sum (D/L + U) (we had mentioned this to students in the
classroom in relation to van der Waals fluids), and
remembering the “thermal” equation of state for an ideal gas
in entropic representation, 1/T = (cNR)/U, commonly written
U = cNRT, and again by analogy, they arrived to the following
expression for the second equation of state of their rubber band

=
+T

U L
cNR

U D L
1

( , )
/ (14)

In order to be rigorous with the thermodynamics formalism,
eq 11 should be a function of U and L only (see eq 9); then, we
introduced eq 14 into 11 to obtain

τ =
−

+
+T

U L
B

L L
D
L

cNR
U D L

( , )
( / )M

2
(15)

Equations 14 and 15 are all students need to integrate eq 9
and recover the fundamental relation in entropic representation
S(U,L), for their rubber band (see Supporting Information).
Experimental Validation of Eq 14

Before integrating eq 9 to recover the fundamental relation,
students had to evaluate experimentally the second equation of
state, eq 14, which was obtained by combining thermodynamics
formalism, an empirical equation of state and the use of the
similarities with gases. Again, they needed to work with the
formalism; because the volume was supposed to be constant, it
was more convenient to use the Helmholtz representation, A,
where the fundamental relation is expressed as a function of T,
V and L: A(T,V,L) and is given by (see Supporting
Information)

τ τ

= −
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∂

= ∂
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− ∂
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= + ∂
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A U TS
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S
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D
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T

T T T

L
2

(16)

where eq 14 and the Maxwell relation, (∂S/∂L)|T = (∂τ/∂T)|L
were used (see Supporting Information).
Figure 3 shows the experimental results for the force

measured as a function of T at constant L (L = 30 cm). The
force varies linearly with the absolute temperature, as in eq 16.
The intercept is not zero, meaning that the derivative (∂U/
∂L)|T ≠ 0; then, U is function of L (a nonideal rubber band).
The experimental value of the intercept (Figure 3) ∼1.2 N is
quite close to the value of D/L2 (∼1.4 N), obtained by fitting
the experimental points in Figure 2 using eq 10.
Fundamental Relation for the Rubber Band

Now we return to the fundamental equation for the rubber
band, which is obtained by integration of expression 9 using eq
14 and 15 to yield (see Supporting Information)

= + + −S S NR U D L L Lln[( / ) ( )]c
0 M (17)

where S0 is the entropy in the absence of stress and we used, for
convenience, B = NR (see Supporting Information).
Force Is Zero When L = L0
At this stage, we pointed out to students that, in eq 9, the force
τ should be zero when L equals L0 because they had not
realized that fact; then

= −
−

D
BTL

L L
0
2

M 0 (18)

which, when introduced in eq 10 gives
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Replacing the measured values of both L0 = 0.13 m
(measured at 300 K) and LM = 0.78 m (rupture point) in eq
19, and using B = (8.8 ± 0.3) 10−3 J·K−1, the experimental
points are very well reproduced being the curve indistinguish-
able from the line shown in Figure 2.
Of course, eq 19 could be introduced at an early stage in

place of eq 10.
Constant c in Eq 14 and Other Thermodynamics
Information from the Fundamental Relation

At this point, we asked students to identify the unknown
constant c in eq 14 and to propose a way to estimate its value. If
they were aware (and they had to be) of the formal definition
of the heat capacity, at constant L

= ∂
∂

=⎜ ⎟⎛
⎝

⎞
⎠C

T
N

S
T

cR
L

L
(20)

CL could then be measured or estimated by calorimetric
experiments (see the Supporting Information).
Finally, because eq 17 contains in principle all the

thermodynamics information for our system, students could
explore its consequences; for example, they could calculate the

linear expansion coefficient, α = ∂
∂( )L

L
TL

1 and search for a way

to measure it in the laboratory, or they could compute the
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change in temperature produced by stretching the rubber16 in a
reversible process and then compare it with the value measured
in a rapid stretching of the same rubber;17 this will lead to the
discussion of irreversible processes.
This fundamental relation empirically obtained can also be

used to analyze a heat engine that makes use of rubber
bands18,19 as a working agent. It can also be used to discuss the
stability conditions derived from d2S < 0 and phase
transitions.20

It should be noted that the fundamental equation obtained
does not fulfill the third principle (for eq 17, S ≠ 0 when T →
0), and therefore, it is not a “real” fundamental relation. This
happens also for the fundamental equation of an ideal gas11

obtained from the equations of state (see Supporting
Information). This fact can be used to illustrate the limits
that theories often have, and the importance of being aware of
them when applying the theory on systems beyond the limits
imposed on the development of those theories (in our case, L0
< L < LM, limited T range and constant volume).

■ SUMMARY

We present an experimental and analytical procedure to obtain
the fundamental equation of a rubber band. Contrary to the
common practice of giving students the equations of state to be
contrasted with the experiments, we asked them to work out
those equations. By combining experiments and the thermody-
namics formalism, students were able, in an inquiry-guided
process, to work out an empirical fundamental relation for their
rubber bands. The consequences of this equation, that in
principle contains all the imaginable thermodynamics informa-
tion for that system (under restrictions stated above), can be
explored in the classroom and it can help to develop the theory
in introductory thermodynamics courses. In our case, the
present work is a consequence of an effort to integrate and
coordinate the contents of two courses: Thermodynamics and
Statistical Thermodynamics. The fundamental relation obtained
from the experiment and classical thermodynamics formalism
can be used in the subsequent Statistical Thermodynamics
course as a starting point to introduce the Gaussian model.6,21

One interesting consequence of this work with rubber bands
was an emergent discussion about the meaning of the constant
D on eq 12 and the foundations of the van der Waals equation
of state.22
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