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In this work, analytical and numerical solutions of the condition for discontinuous bifurcation of thermo-
dynamically consistent gradient-based poroplastic materials are obtained and evaluated. The main aim is
the analysis of the potentials for localized failure modes in the form of discontinuous bifurcation in par-
tially saturated gradient-based poroplastic materials as well as the dependence of these potentials on the
current hydraulic and stress conditions. Also the main differences with the localization conditions of the
related local theory for poroplastic materials are evaluated to perfectly understand the regularization
capabilities of the non-local gradient-based one. Firstly, the condition for discontinuous bifurcation is for-
mulated from wave propagation analyses in poroplastic media. The material formulation employed in
this work for the spectral properties evaluation of the discontinuous bifurcation condition is the thermo-
dynamically consistent, gradient-based modified Cam Clay model for partially saturated porous media
previously proposed by the authors. The main and novel feature of this constitutive theory is the inclu-
sion of a gradient internal length of the porous phase which, together with the characteristic length of the
solid skeleton, comprehensively defined the non-local characteristics of the represented porous material.
After presenting the fundamental equations of the thermodynamically consistent gradient based poro-
plastic constitutive model, the analytical expressions of the critical hardening/softening modulus for dis-
continuous bifurcation under both drained and undrained conditions are obtained. As a particular case,
the related local constitutive model is also evaluated from the discontinuous bifurcation condition stand
point. Then, the localization analysis of the thermodynamically consistent non-local and local poroplastic
Cam Clay theories is performed. The results demonstrate, on the one hand and related to the local poro-
plastic material, the decisive role of the pore pressure and of the volumetric non-associativity degree on
the location of the transition point between ductile and brittle failure regimes in the stress space. On the
other hand, the results demonstrate as well the regularization capabilities of the non-local gradient-
based poroplastic theory, with exception of a particular stress condition which is also evaluated in this
work. Finally, it is also shown that, due to dependence of the characteristic lengths for the pore and skel-
eton phases on the hydraulic and stress conditions, the non-local theory is able to reproduce the strong
reduction of failure diffusion that takes place under both, low confinement and low pore pressure of par-
tially saturated porous materials, without loosing, however, the ellipticity of the related differential
equations.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Quasi-brittle materials like soils and concrete have very com-
plex mechanical behaviors when subjected to load histories involv-
ing large accumulated inelastic deformations. In these cases, and
from the analytical stand point, the evaluation and prediction of
the involved failure mode and the location of the transition point
between brittle and ductile failure regimes becomes very complex.
This is mostly due to the diversity of governing parameters and the
variability of their roles in the mechanical degradation processes of
these complex materials.

Regarding non-porous continua-based material theories, many
authors performed studies to evaluate the post peak behavior
and, moreover, the discontinuous bifurcation potentials through
the analytical determination of the related critical hardening
modulus (see a.o. Zhang et al., 2005; Ottosen and Runesson, 1991;
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Runesson et al., 1991, 1996; Perić and Rasheed, 2007). The evalua-
tions covered not only classical local material theories but also
anisotropic material formulations (Zhang et al., 2005), as well as
constitutive theories related to fiber reinforced materials (Etse
et al., 2012; Perić and Rasheed, 2007) and, moreover, to enhanced
non-local, gradient-based, materials (Vrech and Etse, 2012).

In case of quasi-brittle porous materials, and due to the diver-
sity and complexity of the involved variables during inelastic deg-
radation process, the discontinuous bifurcation condition was
analyzed, so far, by means of different approaches and taking into
account the influence of the Lode angle (Zhen et al., 2010), water
content or fluid pressure (Liu and Scarpas, 2005), porosity (Zhang
et al., 2002), permeability (Zhang and Schrefler, 2001), temperature
(Sulem, 2010), etc. Actually, most of the published localization
analysis in porous materials (see a.o. Sabatini and Finno, 1996;
Benallal and Comi, 2002; Borja, 2004; Ehlers et al., 2004;
Kristensson and Ahadi, 2005; Schiava and Etse, 2006), are based
on the restrictive consideration that discontinuous bifurcations
may only occur in the solid phase. Therefore, and despite the
numerous proposals, there is still a need of accurate evaluations
of the potentials for discontinuous bifurcation in partially satu-
rated porous materials under more general or arbitrary conditions.
This is particularly the case when it comes to assessing the influ-
ence of hydraulic and mechanical states of the porous and solid
phases, respectively, in the failure modes of partially saturated
porous materials, whether brittle or ductile.

Recently, Mroginski et al. (2011), proposed a thermodynami-
cally consistent gradient-based constitutive theory for partially
saturated quasi-brittle porous material. It follows the thermody-
namic gradient-based formulations for continuous (non-porous)
materials by Svedberg and Runesson (1997) and Vrech and Etse
(2009), whereby the state variables are the only ones of non-local
characters.

The proposal by Mroginski et al. (2011), introduces a novel as-
pect to more effectively capture the strong influence in failure
behaviors of partially saturated porous materials of both the
hydraulic and mechanical states of their microstructure. It consid-
ers two independent characteristic lengths, for the porous and so-
lid phases, respectively, which are defined in terms of the
governed water content and confining pressure. This is in line
with the philosophy by Schrefler et al. (2006), in the sense that
multiple internal lengths shall be considered to realistically
reproduce the strong variation of failure modes of porous mate-
rial. The capabilities of the thermodynamically consistent gradi-
ent-based constitutive theory to predict the variation from
localized (brittle) to distributed (ductile) failure modes of quasi-
brittle porous materials like soils under different conditions of
the water content and confining pressure are demonstrated in
Mroginski and Etse (2013).

In this work the discontinuous bifurcation conditions for par-
tially saturated porous materials like soils under both, drained
and undrained hydraulic conditions, are numerically and analyti-
cally evaluated. The modified Cam Clay model is considered in
the framework of the thermodynamically consistent gradient-
based formulation by Mroginski et al. (2011).

The numerical study of discontinuous bifurcation condition is
based on the identification of the stress domain (under drained
and undrained conditions) where the singularity of the localization
tensor is fulfilled. On the other hand, the analytical procedure re-
quires the explicit formulation of the critical (minimum) hardening
modulus corresponding to the first condition for discontinuous
bifurcation in the deformation history of partially saturated porous
materials. This is done by means of an extension to the cases of lo-
cal and gradient-based porous continua of the analytical solutions
for discontinuous bifurcation by Ottosen and Runesson (1991),
Runesson et al. (1991) and Perić and Rasheed (2007).
After summarizing the most relevant equations of the constitu-
tive theory by Mroginski et al. (2011), this work focuses on formu-
lating its localization tensor and, further, the explicit solutions of
the critical hardening modulus for discontinuous bifurcation under
both, drained and undrained conditions. The particular cases of
plane stress and plain strain are considered.

Then, the potentials for discontinuous bifurcation by means of
both the numerical and analytical methods are evaluated for all
possible stress states along the first yield surface and the critical
state line of both the local and gradient-based Cam-clay constitu-
tive theories for partially saturated poroplastic materials. Drained
and undrained hydraulic conditions under both plane strain and
plane stress are considered in the analyses.

Regarding the local Cam-clay model for partially saturated por-
ous material the results demonstrates that the position of the tran-
sition point for brittle–ductile failure modes in the stress space,
and the overall failure mode, do strongly depend on the particular
hydraulic and confinement conditions. In this sense, drained
hydraulic conditions are more critical for discontinuous bifurca-
tions as well as plane stress conditions.

In case of the gradient-based poroplastic model, the results
indicate that its regularization capabilities are able to suppress
the discontinuous bifurcation conditions of the local model for all
possible stress state, with exception of some particular cases that
are evaluated in this work. Nevertheless, and due to the particular
form of the gradient characteristic lengths, the non-local model
reproduces the increasing degradation of the localization tensor
spectral properties as the stress state goes into the small confine-
ment regime and, also, as the pore pressure reduces. In these re-
gimes the non-local model leads to strong reductions of the
failure diffusion or quasi-brittle failure modes (minimum eigen-
value of the localization tensor very close to zero). This spectral
properties degradation is more critical under drained conditions.
Theses results confirm the capabilities of the non-local formulation
in this work to reproduce the influence of the stress and hydraulic
conditions in the failure modes, in accordance with the experimen-
tal evidence on porous media (Vardoulakis, 1996; Sawicki and
Świdziński, 2010; Cetin and Gökoĝlu, 2013) and theoretical
developments (Runesson et al., 1996; Zhang and Schrefler, 2001;
Al Hattamleh et al., 2004).
2. Thermodynamically consistent gradient-based constitutive
theory for non-saturated porous media

Porous media are multiphase systems with interstitial voids in
the grain matrix filled with water (liquid phase), water vapor and
dry air (gas phase) at microscopic level. The mechanical behavior
of partially saturated porous media is usually described by the
effective stress tensor r0ij, as follows

r0ij ¼ rij � dijpw ¼ rn
ij þ sij ð1Þ

being rij the total stress and sij ¼ dij pa � pwð Þ and rn
ij ¼ rij � dijpa the

net and suction stress tensors, respectively, while dij is the
Kronecker delta. Thereby are pa and pw the gas and water pore pres-
sures, respectively. In several geotechnical problems the gas pore
pressure can be considered as a constant term that equals the atmo-
spheric pressure. In these cases the suction tensor is counterpart to
the water pore pressure, p.

Plastic behavior of quasi-brittle porous materials is related to
permanent skeleton strains, but also to permanent variations in
fluid mass content, m, due to related porosity variations. To fully
characterize current stages of poroplastic media and to describe
their inelastic evolutions, the plastic porosity or plastic fluid mass
content mp must be considered in addition to the plastic strain ep

ij,



Fig. 1. Modified Cam Clay plasticity model and plastic potential.
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and to the irreversible entropy density sp in case of non-isothermal
conditions.

Therefore, the poroplastic flow rule is based on additive decom-
positions of the rates of the dissipative fields into elastic and plastic
components

_eij ¼ _ee
ij þ _ep

ij; _m ¼ _me þ _mp ð2Þ

Based on previous works (Svedberg and Runesson, 1997; Vrech
and Etse, 2009; Mroginski et al., 2011), the following additive
expression of the free energy corresponding to non-local gradient
poroplastic materials is adopted

W ee
ij;m

e; qa; qa;i

� �
¼ We ee

ij;m
e

� �
þWp;loc qað Þ þWp;nloc qa;i

� �
ð3Þ

where Wp;loc and Wp;nloc are the local and non-local gradient contri-
butions due to dissipative hardening/softening behaviors, which
are expressed in terms of the internal variables qa and their gradi-
ents qa;i, respectively, while We is the elastic energy of the porous
media defined by Coussy (1995) as

We ¼ r0
ije

e
ij þ p0 �me þ 1

2
ee

ijC
0
ijkle

e
kl þ

1
2

M Bijee
ij � �me

� �2
ð4Þ

Thereby are M the Biot’s module, Bij ¼ bdij with b the Biot coeffi-
cient, �me ¼ me=qfl

0 and Cijkl ¼ C0
ijkl þMBijBkl, with C0

ijkl the fourth-or-
der elastic tensor which linearly relates stress and strain.

The flow rule for general non-associative poroplasticity involves
three equations

_ep
ij ¼ _kgs

ij; _mp ¼ _kgp; _qa ¼ _kgQ
a ð5Þ

being U rij;p;Qa
� �

the convex yield function and U� rij;p;Qa
� �

the
dissipative plastic potential, with Qa the dissipative stress. More-
over, it is defined f s

ij ¼ @U=@rij, gs
ij ¼ @U

�=@rij, f p ¼ @U=@p,
gp ¼ @U�=@p, f Q

a ¼ @U=@Qa and gQ
a ¼ @U

�=@Qa. Once the Coleman’s
relations are deduced from the global form of Clausius–Duhem
inequality (CDI), while neglecting initial stress and pore pressures,
the following rate expressions of the stress tensor _rij and pore pres-
sure _p for drained condition can be obtained

_rij ¼ C0
ijkl

_ekl � Bij _p� C0
ijklg

s
kl

_k ð6Þ

_p ¼ �MBij _eij þMBij
_kgs

ij þM _�m�M _kgp ð7Þ

or, alternatively, for undrained condition

_rij ¼ Cijkl _ekl � Cijkl
_kgs

kl �MBij
_�mþMBij

_kgp ð8Þ

From the CDI in case of gradient plasticity like the present one
follows that the dissipative stress Qa can be decomposed into its
local and non-local components

Qa ¼ Q loc
a þ Q nloc

a ð9Þ

with

Q loc
a ¼ �q@qaW ð10Þ

Q nloc
a ¼ � q@qa;i W

� �
;i

ð11Þ

A more convenient form of the constitutive equations can be
obtained when the plastic multiplier in Eq. (6) and Eq. (8) is re-
placed by the expression that results from the Kuhn–Tucker
conditions,

_k P 0; U rij;p;Qa
� �

6 0; _kU rij;p;Qa
� �

¼ 0 ð12Þ

and the plastic consistency condition

_U ¼ f s
ij

_rij þ f p _pþ f Q
a

_Qa ¼ 0 ð13Þ
Eqs. (12) and (13) leads to the following differential expression,
from which _k, can be explicitly obtained

� _Unloc þ �h _k ¼ _Ue � _U ð14Þ

For more details see Appendix A.
Then, the constitutive expressions of Eqs. (6) and (8) for drained

and undrained porous media, respectively, take the form

_rij ¼ Eep;sd
ijkl

_ekl þ Eep;pd
ij

_p� Eg;spd
ij

_f g ð15Þ

_rij ¼ Eep;su
ijkl

_ekl þ Eep;pu
ij

_m=qfl
0 � Eg;spu

ij
_f g ð16Þ

being Eep;s and Eep;p the elastoplastic operators of the solid skeleton
and porous phase, respectively, and Eg;sp the continuum gradient-
elastoplastic tensor of both constituents. The superscript d or u indi-
cates the considered hydraulic condition, drained or undrained,
respectively. See Appendix B for more details.

3. Thermodynamically consistent gradient-based modified Cam
Clay material model

Originally proposed by Roscoe and Burland (1968) for normally
consolidated clays, the modified Cam Clay plasticity model has
been extended to a wide range of soils including unsaturated ones
(see Alonso et al., 1990; Bolzon et al., 1996), and also to the case of
cyclic external actions (see Pedroso and Farias, 2011).

The yield function is defined by

U r0; s;Qað Þ ¼ r0 þ s2

m2r0

� �
� Qa ð17Þ

where r0 ¼ I1=3� p is the effective hydrostatic stress, s ¼
ffiffiffiffiffiffiffi
3J2

p
the

shear stress, m the Critical State Line (CSL) slope and Qa the thermo-
dynamically consistent dissipative stress equivalent to the precon-
solidation pressure pco. Further, I1 and J2 are the first and second
invariants of the stress tensor and the deviator tensor, respectively.

Thereby, the following plastic potential is proposed

U� r0; s;Qað Þ ¼ g r02 � r0Qa
� �

þ s
m

� �2
ð18Þ

gis a coefficient that limits the influence of the volumetric pressure
during softening regime which is introduced to avoid overestima-
tion of the volumetric compressibility coefficient K0 in the conven-
tional critical state (see Fig. 1).

The thermodynamic consistency is achieved by assuming the
following expression for the dissipative component of the free en-
ergy in Eq. (3)

qWp ep; ep
;i

� �
¼ qWp;loc epð Þ þ qWp;nloc ep

;i

� �
¼ � 1

vp0
co exp vepð Þ � 1

2
l2aHnloc

a ep
;i

� �
;i

ð19Þ
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being v ¼ � 1þ e0ð Þ= c� jð Þ; e0 the initial void ratio, c a hardening
parameter and j the swelling index (obtained from the Oedometer
test). The volumetric plastic strain of the porous media, ep, is ex-
pressed as a function of the state variables and takes into account
the plastic evolutions of the porous and solid phases, in terms of
the plastic porosity /p and the volumetric plastic strain of soil grain
ep

s (Coussy, 1995)

ep ¼ /p þ 1� /0ð Þep
s ð20Þ

From Eqs. (10) and (11) the local and non-local dissipative
stresses are obtained as follows

Q loc
a epð Þ ¼ �q@epW ¼ p0

co exp v /p þ 1� /0ð Þep
s

� �� �
ð21Þ

Q nloc
a ep

;i

� �
¼ �q @ep

;i
W

� �
;i
¼ l2

s Hnloc
s r2ep

s þ l2
pHnloc

p r2/p ð22Þ

where ls and lp are the internal characteristic lengths for solid skel-
eton and porous phases, respectively. The numerical implementa-
tion of Cam Clay plasticity model in the framework of
thermodynamically consistent gradient-based poroplasticity is de-
tailed in Mroginski and Etse (2013).

4. Instability analysis in the form of discontinuous bifurcation

In this section the discontinuous bifurcation analysis for local
and non-local thermodynamically consistent porous media is
presented.

4.1. Discontinuous bifurcation condition in local porous media

The localization condition in porous media means that either
the jump of the velocity gradients

s _eijt ¼ 1=2 ginj þ nigj

� �
ð23Þ

and/or the jump of the rate of fluid mass content

s _mt ¼ �sMi;it ¼ �nigM
i ð24Þ

is/are different to zero
Applying Hadamard relation (Hadamard, 1903; Coussy, 1995)

to the tensors of zero and second orders, p and rij, respectively,
the following balance equations are obtained

csp;itþ s _ptni ¼ 0 ð25Þ

csrij;jtþ s _rijtnj ¼ 0 ð26Þ

being c the discontinuity propagation velocity.

4.1.1. Drained condition
When drained state is considered the instability analysis is re-

stricted to the solid skeleton and the fluid flow in deformable por-
ous media is governed by the Darcy’s law.

The fluid subjected to strong pressure gradients may exhibit
spontaneous diffusion due to the fluid mass transport. Thereby,
the relative flow vector of fluid mass Mi should remain continuous.
Thus, form the Darcy’s law follows

sMit ¼ �qflkijsp;jt ¼ 0 ð27Þ

being kij the permeability tensor. The last expression implies that
the spatial gradients must remain continuous sp;it ¼ 0. Thus, from
Eq. (25) follows that the rate of pore pressure must remain contin-
uous as well, i.e. s _pt ¼ 0.

Considering the momentum balance equation for quasi-static
problems, applying the jump operator to the incremental constitu-
tive equation, Eq. (15), and substituting the resulting expression
into Eq. (26), we obtain
s _rijtnj ¼ Eep;sd
ijkl s _ekltnj ¼ 0 ð28Þ

being Eep;sd
ijkl the solid skeleton elastoplastic tensor, as described in

Section 3. Introducing Eq. (23) in Eq. (28) results

s _rijtnj ¼ Ad;loc
ij gj ¼ 0 ð29Þ

where the elastoplastic acoustic tensor for local poroplasticity un-
der drained condition can be decomposed in its elastic, Ad;e;s

ij , and
elastoplastic parts, Ad;ep;s

ij , as

Ad;loc
ij ¼ Eep;sd

ijkl nlnk ¼ Ad;e;s
ij � Ad;ep;s

ij ð30Þ

being

Ad;e;s
ij ¼ C0

ijklnlnk

Ad;ep;s
ij ¼

C0
ijmngs

mnf s
pqC0

pqkl

�h
nlnk

ð31Þ

and �h the generalized plastic modulus defined in Appendix A.
Non-trivial solutions of Eq. (29) can be obtained from the spectral
analysis of the local poroplastic acoustic tensor Ad;loc

ij . Then, the
localization condition of drained porous media is achieved as

det Ad;loc
ij

� �
¼ 0 ð32Þ

Consequently, the localization tensor in fully drained condition
takes the same form as in classical elastoplastic continua. It should
be noted that, since the localization condition in Eq. (32) involves
only the drained poroelastic properties, the influence of the fluid
pressure in the localization condition is taken into account through
its influence on the loading function U and the generalized plastic
modulus h.

4.1.2. Undrained state
In undrained conditions the variation of fluid mass content in

the solid skeleton vanishes, _m ¼ 0. The pore pressure can be ob-
tained from the solid skeleton kinematics, gi � gM

i . Then, from
the constitutive expression of Eq. (16) and the jump of the velocity
gradients Eq. (23), follows

s _rijtnj ¼ Au;loc
ij gj ¼ 0 ð33Þ

where, similarly to the previous section, the elastoplastic acoustic
tensor for local poroplasticity under undrained condition can be
decomposed in the elastic and plastic components of both the solid
and porous phases, as well as the coupled elastoplastic acoustic ten-
sor for solid and porous phases, Au;ep;sp

ij , as

Au;loc
ij ¼ Eep;su

ijkl nlnk ¼ Au;e;s
ij þ Au;e;p

ij � Au;ep;s
ij � Au;ep;p

ij þ Au;ep;sp
ij ð34Þ

being

Au;e;s
ij ¼ C0

ijklnlnk

Au;e;p
ij ¼MBijBklnlnk

Au;ep;s
ij ¼

Cijmngs
mnf s

pqCpqkl

�h
nlnk

Au;ep;p
ij ¼ M2 gpBijBklf p

�h
nlnk

Au;ep;sp
ij ¼M

Cijmngs
mnBklf p

�h
þ gpBijCklmnf s

mn
�h

� �
nlnk

ð35Þ

The localization condition follows from the spectral analysis of
the acoustic tensor

det Au;loc
ij

� �
¼ 0 ð36Þ

From the comparison between Eq. (32) and Eq. (36) and, more-
over, of Eq. (30) and Eq. (34), it can be concluded that the hydraulic
conditions strongly affect the localization indicator performance.
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4.2. Bifurcation analysis in gradient-based poroplastic media

In previous section the discontinuous bifurcation problem of lo-
cal porous medium has been studied.

In the following the occurrence of localized failure modes in the
form of discontinuous bifurcation is analyzed in case of gradient
elastoplastic porous media. Homogeneous fields of stress and
strain rates just before the onset of localization are assumed. Con-
trarily to the case of local poroplasticity, the plastic consistency,
see Eq. (14), is now a function of both the plastic multiplier _k
and its second order gradient _k;ij.

The loss of ellipticity of constitutive equations is commonly
investigated by means of a wave propagation analysis (Abellan
and de Borst, 2006; Tsagrakis et al., 2003; Benallal and Comi,
2002; Liebe et al., 2001; Svedberg and Runesson, 1997). Thus, the
following harmonic perturbations to the incremental field vari-
ables, i.e. displacements, mass content and plastic multiplier are
applied, representing the propagation of stationary planar waves

_u x; tð Þ
_c x; tð Þ
_k x; tð Þ

2
64

3
75 ¼

_U tð Þ
_M tð Þ
_L tð Þ

2
64

3
75 exp

i2p
d

n � x
� �

ð37Þ

being _c the mass content, x the position vector (in Cartesian coordi-
nates), n the wave normal direction and d the wave length. More-
over _U; _M and _L are the wave solutions, when they are
homogeneously distributed in the space.

Applying the equilibrium condition on the discontinuity surface
and replacing Eqs. (37) in the plastic consistency condition for gra-
dient plasticity Eq. (14), while considering Eq. (6) or Eq. (8) results

2p
d

� �2

C0
ijkl �

C0
ijmngs

mnf s
pqC0

pqkl

�hþ �hnloc

( )
nlnk

_U ¼ 0 ð38Þ

for drained conditions, and

2p
d

� �2

C0
ijkl þMBijBkl �

Cijmngs
mnf s

pqCpqkl

�hþ �hnloc
�M2 gpBijBklf p

�hþ �hnloc

	

þM
Cijmngs

mnBklf p

�hþ �hnloc
þ gpBijCmnklf s

mn
�hþ �hnloc

� �

nlnk

_U ¼ 0 ð39Þ

for undrained conditions, being �hnloc the generalized gradient
modulus

�hnloc ¼ l2a f Q
a gQ

a Hnloc
a ij

� �
njni

2p
d

� �2

ð40Þ

The expressions between brackets in Eqs. (38) and (39) are the
acoustic tensors for non-local gradient plasticity under drained and
undrained conditions, respectively. Following the nomenclature of
Eqs. (30) and (34), these tensors can be decomposed as follows

Ad;nloc
ij ¼ Ad;e;s

ij � Ad;gr;s
ij ð41Þ

Au;nloc
ij ¼ Au;e;s

ij þ Au;e;p
ij � Au;gr;s

ij � Au;gr;p
ij þ Au;gr;sp

ij ð42Þ

From the comparison between the localization tensors of local
porous media, Eqs. (31) and (35), and those to non-local gradient
continua, Eqs. (38) and (39), follows that the difference lies only
in the generalized gradient modulus �hnloc. The effects of �hnloc are,
at the constitutive level, the well posedness of the involved differ-
ential equations and, at the FE level, the regularization of the post-
peak behavior.

5. Spectral analysis for discontinuous bifurcation

Since the existence of discontinuous bifurcation requires the
singularity of the acoustic tensor deduced above, its eigenvalue
problem plays a very important role. In this work analytical solu-
tions of the acoustic tensor’s eigenvalue problem are obtained by
extending the procedure proposed by Ottosen and Runesson
(1991) and Perić (1990) for the cases of local and gradient-based
partially saturated porous materials. This analytical method leads
to explicit solutions of the critical hardening modulus (local and
non-local), Hcrit , for the onset of localization.

The eigenvalue analysis is firstly performed for the undrained
acoustic tensor of the gradient poroplastic material. Then, the
explicit solution of the critical hardening modulus for discontinu-
ous bifurcation of the local poroplastic material under undrained
condition is obtained as a particular case.

It should be noted that in the non-local material, when the Biot
modulus M tends to zero the tensor Au;nloc

ij approaches Ad;nloc
ij , while

the critical hardening modulus for drained gradient-poroplasticity
takes a very similar form to those deduced for gradient non-porous
media (Vrech and Etse, 2012). That it is why the drained condition
will not be considered in this section.

The classical eigenvalue problem may be written as

Q ij � dijk
ðiÞ

� �
yðiÞ ¼ 0 ð43Þ

being kðiÞ and yðiÞ the eigenvalues and eigenvectors, respectively, and
Qij:

Qij¼dij�
1

�hþ �hnloc
Pe

ikbs
kas

j þM2Pe
ikbp

kap
j �MPe

ik bs
kap

j þ bp
kas

j

� �� �
ð44Þ

with

bs
j ¼ niCijklgs

kl

as
k ¼ f s

ijCijklnl

bp
j ¼ niBijgp

ap
j ¼ f pBklnl

Pe
ik ¼ Au;e;s

ij þ Au;e;p
ij

� ��1

ð45Þ

It should be noted that the tensor Pe
ik is the inverse of the

elastic acoustic tensor for gradient porous media. The matrix
Pe

ikbkaj can be written as piaj, where pi ¼ Pe
ikbk. Therefore, the actual

rank of Q ij is one. Then, kð1Þ ¼ kð2Þ ¼ 1, and the remaining eigenvalue
can be obtained from the condition Q jj ¼ kð1Þ þ kð2Þ þ kð3Þ ¼ 2þ kð3Þ,
as

kð3Þ¼1� 1
�hþ �hnloc

Pe
ikbs

kas
j þM2Pe

ikbp
kap

j �MPe
ik bs

kap
j þ bp

kas
j

� �� �
ð46Þ

Non trivial solutions of Eq. (43) are obtained when the mini-
mum eigenvalue kð3Þ ¼ 0. From Eqs. (45) and (46) follows the hard-
ening modulus

�Hcrit ¼ �H þ �hnloc ¼ Pe
ikbs

kas
j þM2Pe

ikbp
kap

j �MPe
ik bs

kap
j þ bp

kas
j

� �
� f s

ijCijklgs
kl þM f s

ijBijgp þ f pBijgs
ij � f pgp

� �
ð47Þ

Assuming elastic isotropy of the solid phase C0
ijkl, and consider-

ing Cijkl ¼ C0
ijkl þMBijBkl, then the elastic stiffness tensor for poro-

elastic media results

Cijkl ¼ G dikdjl þ dildjk

� �
þxdijdkl ð48Þ

where G is the shear modulus, m the Poisson ratio and
x ¼ 2Gm= ð1� 2mÞ þMb2. The elastic acoustic tensor for gradient
poroplasticity Au;e

ij ¼ Au;e;s
ij þ Au;e;p

ij in Eq. (42) and its inverse Pe
ij become

Au;e
ij ¼ G cninj þ dij

� �
; Pe

ij ¼
1
G
�/ninj þ dij
� �

ð49Þ

being / ¼ GþMb2 1� 2mð Þ
h i

2G 1� mð Þ þMb2 1� 2mð Þ
h i�1

and

c ¼ 1=ð1� 2mÞ þMb2
=G. With these expressions the hardening

modulus given by Eq. (47) takes the form
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�Hcrit ¼ 4G/nif s
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� �
þ 4Gnif s

ijg
s
jknk � 2Gf s

ijg
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A more convenient expression could be obtained considering
the decomposition of f s

ij and gs
ij into their deviatoric and volumetric

parts

�f s
ij ¼ f s

ij �
1
3

dijf s; �gs
ij ¼ gs

ij �
1
3

dijgs ð51Þ

where �f s
ij and f s denote the deviatoric and volumetric parts of f s

ij ,
while �gs

ij and gs those of gs
ij, respectively.

With this notation Eq. (50) can be rewritten as

�Hcrit

4G
¼ �1

2
�f s

ij
�gs

ij � a0ni
�f s

ijnjnk�gs
klnl þ a1f sgs

þ ni a2gs�f s
ij þ a2f s�gs

ij þ �gs
ij
�f s

ij

� �
nj þ a3ni gp�f s

ij þ f p�gs
ij

� �
nj

þ a4 f pgs þ gpf sð Þ þ a5f pgp ð52Þ

being

a0 ¼ /

a1 ¼
x 1� /ð Þ

G
1
3
þ x

4G

� �
� x

4G
þ /

9
þ 1

18

� �

a2 ¼
1� /

3
þx 1� /ð Þ

2G

a3 ¼
Mb 1� /ð Þ

2G

a4 ¼
Mb
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�Mb 1� /ð Þ

6G

a5 ¼ 1� /ð Þ Mb
2G
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The particular case of identical principal directions for f s
ij and gs

ij

is considered

�f s
ij ¼

�f s
1 0 0

0 �f s
2 0

0 0 �f s
3

2
64

3
75; �gs

ij ¼
�gs

1 0 0
0 �gs

2 0
0 0 �gs

3

2
64

3
75 ð54Þ

being �f s
1 P �f s

2 P �f s
3 and �gs

1 P �gs
2 P �gs

3 their principal values.
Moreover, in cohesive-frictional material like soils, a volumetric

non-associative flow rule can be considered, i.e. �f s
i ¼ �gs

i and f s – gs.
With these assumptions Eq. (52) becomes

�Hcrit

4G
¼ �a0

�f s
i n

2
i

� �2 þ r�f s
i þ �f s

i

� �2
� �

n2
i þ a4 f pgs þ gpf sð Þ þ k ð55Þ

being r ¼ a2 f s þ gsð Þ � a3 f p þ gpð Þ and k ¼ � 1
2

�f s
i

� �2 þ a1f sgsþ a5f pgp.
Using the Lagrange multiplier method the maximum condition

or critical value �Hcrit can be evaluated

L ¼
�Hcrit

4G
� ‘ n2

1 þ n2
2 þ n2

3 � 1
� �

ð56Þ

where ‘ is the Lagrangian multiplier. It appears that the critical
hardening modulus and its critical direction are highly dependent
on two coefficients, r and c13 or c31.

c13 ¼ �f s
1 þ 1� 2a0ð Þ�f s

3 þ r; c31 ¼ �f s
3 þ 1� 2a0ð Þ�f s

1 þ r ð57Þ
Then, the critical hardening modulus can be obtained by

r 6 0
�Hcrit ¼ G

a0

�f s
1 þ �f s

3 þ r
� �2 � �f s

1
�f s

3 þ c; for c13 P 0
�Hcrit ¼ 4G 1� a0ð Þ�f s2

3 þ r�f s
3 þ c; for c13 6 0

(
ð58Þ

r P 0
�Hcrit ¼ G

a0

�f s
1 þ �f s

3 þ r
� �2 � �f s

1
�f s

3 þ c; for c31 6 0
�Hcrit ¼ 4G 1� a0ð Þ�f s2

1 þ r�f s
1 þ c; for c31 P 0

(
ð59Þ

with c ¼ a4 f pgs þ f sgpð Þ þ k.
The critical directions for localization are summarized in Table 1.

Two cases were considered: r P 0 and r 6 0, being q ¼ 2a0
�f s

1 � �f s
3

� �
.

Finally, the special case �f s
1 ¼ �f s

2 ¼ �f s
3 ¼ 0 is considered. In this

trivial situation the critical hardening modulus remains constant

�Hcrit ¼ 4Gc ð60Þ
5.1. Limiting cases of gradient plasticity regularization capabilities

In this section, the limitations signalized in Vrech and Etse
(2006, 2012) of gradient plasticity regularization capabilities are
evaluated. Two particular cases are considered as follow:

Case 1: The wave length d!1, then �hnloc ! 0 (from Eq. (40))
and �Hcrit ! �H, i.e. the local poroplasticity case is recovered.

Case 2: The local hardening modulus satisfies the condition
�H < �Hcrit and, therefore, the critical non-local modulus results
�hnloc

crit ¼ �Hcrit � �H. Thus, if the adopted non-local hardening modulus
is smaller than the critical one, i.e. �hnloc < �hnloc

crit , then the regulariza-
tion capabilities of the non-local gradient-based poroplastic theory
by Mroginski et al. (2011) are suppressed. With other words, in this
case 2, localized failure mode in the form of discontinuous bifurca-
tion takes place despite the gradient-based constitutive
formulation.

6. Localization analysis of modified Cam Clay poroplastic
material

In this section the spectral properties of the acoustic tensors for
local and gradient modified Cam Clay poroplastic materials under
plane strain and plane stress conditions are analyzed. Several
numerical examples are taken into account to evaluate the failure
modes of the considered local and non-local porous materials in
drained and undrained conditions.

The material properties used in the following analysis are sum-
marized in Table 2.

Following the procedure in Section 5 the critical hardening
modulus of the local and non-local modified Cam Clay poroplastic
model is evaluated considering undrained conditions. Three differ-
ent equilibrium stress states on the initial yield surface are consid-
ered, see Fig. 2.

The variation of the hardening modulus with the inclination an-
gle of the normal direction to the potential discontinuity surface,
for each one of the three considered stress states are plotted in
Fig. 3, both for the local and non-local materials. Also the critical
hardening modulus for each stress state as predicted following
the analytical approach in Section 5 is depicted with a circle on
each curve in Fig. 3. It can be observed that the local model leads
to null value of the critical hardening modulus in case of the stress
state associated with the lowest confining pressure. In the other
two stress states with larger confinement, the critical hardening
modulus is negative, indicating that the discontinuous bifurcation
takes place in the post-peak regime. The non-local model leads to
negative values of the critical hardening modulus in all three stress
states, indicating that the critical condition for localization, even in
case of the smallest confinement, does not take place in pre-peak



Table 1
Critical directions for �Hcrit .

r 6 0 r P 0

c13 P 0 c13 < 0 c31 6 0 c31 > 0

�f s
1 >

�f s
2 >

�f s
3 n2

1 ¼ c13=q n2
1 ¼ 0 n2

1 ¼ c31=q n2
1 ¼ 1

n2
2 ¼ 0 n2

2 ¼ 0 n2
2 ¼ 0 n2

2 ¼ 0

n2
3 ¼ �c31=q n2

3 ¼ 1 n2
3 ¼ �c31=q n2

3 ¼ 0

�f s
1 ¼ �f s

2 >
�f s

3 n2
1 þ n2

2 ¼ c13=q n2
1 ¼ n2

2 ¼ 0 n2
1 þ n2

2 ¼ c13=q n2
1 þ n2

2 ¼ 1

n2
3 ¼ �c31=q n2

3 ¼ 1 n2
3 ¼ �c31=q n2

3 ¼ 0

�f s
1 >

�f s
2 ¼ �f s

3 n2
1 ¼ c13=q n2

1 ¼ 0 n2
1 ¼ c13=q n2

1 ¼ 1

n2
2 þ n2

3 ¼ �c31=q n2
2 þ n2

3 ¼ 1 n2
2 þ n2

3 ¼ �c31=q n2
2 ¼ n2

3 ¼ 0

Table 2
Soil material parameters.

Material parameters Value

CSL slope, m 0:856
Preconsolidation pressure, pco 100.00 Mpa
Initial pore pressure, p �10.00 Mpa
Initial porosity, /0 0:4
Bulk compressibility coefficient, K0 1000:00
Solid compressibility coefficient, Ks 1500:00
Fluid compressibility coefficient, Kfl 1000:00
Biot coefficient, b ¼ 1� K0=Ks 0:33

Biot module inverse, M1 ¼ M�1 ¼ ðb� /0Þ=Ks þ /0=Kf 3:56 � 10�4

Young module, E 20000.0 Mpa
Poisson ratio, m 0:2
Non-associativity coefficient g (from Eq. (18)) 0:15
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regime. Moreover, in all three stress states the critical hardening
module is smaller than that corresponding to the local model, indi-
cating that the gradient-based formulation delays the occurrence
of discontinuous bifurcations in comparison to the local model.
Finally, it can be observed that the negativity of the critical harden-
ing modulus of the non-local model strongly decreases with the
reduction of the confining pressure. In case of the stress state with
the lowest confinement, the critical hardening modulus of the non-
local model turns very close to zero, while still negative. This dem-
onstrates that the gradient-based formulation considered in this
work is able to reproduce quasi-brittle failure forms in case of
stress states in the low confinement regime while suppressing
the occurrence of discontinuous bifurcation condition in the pre-
peak regime.

Following, the evaluation of the critical hardening modulus of
the local model is performed along the entire failure surface in
the principal stress space, r1 and r2. The particular case of plane
strain whereby r3 ¼ m r1 þ r2ð Þ is considered in the evaluations
Fig. 2. Considered stress states.
shown in Fig. 4. On the other hand, in Fig. 5 the same analysis is
carried out considering plane stress condition, i.e. r3 ¼ 0.

The results in Figs. 4 and 5 demonstrate that the local modified
Cam Clay model signalizes discontinuous bifurcation in the pre-
peak regimes of stress paths in the low confinement region both
in drained and undrained conditions. It can be concluded that
the drained condition is more critical for localization than the un-
drained one, while the combination between plane stress state and
drained condition, is the most critical one.

Next, the spectral properties of the acoustic localization tensor
for non-local gradient poroplastic Cam Clay model are further eval-
uated. The material properties presented in Table 2 are considered.
The performance of the acoustic tensor determinant for drained
conditions in both classical and gradients plasticity for plane strain
conditions are presented in Fig. 6. Positive values of the determi-
nant of the acoustic tensor are plotted with outside normal vectors.
This representation allows a clear identification of the initial yield
surface region where discontinuous bifurcation takes place and of
the location of the transition point (TP) between brittle and ductile
failure (indicated with a circle in Fig. 6). The Cam Clay gradient-
plasticity formulation suppresses the localized failure modes with
exception of a very limited zone of the initial yield surface under
drained condition and for very low confinement. In this zone the
localization indicator approaches zero but remains positive. The re-
sults in Fig. 6 demonstrate that the non-local material model, due
to the particular form the gradient characteristic length is defined,
is able to reproduce the reduction of the failure diffusion (and fail-
ure ductility) that occurs in porous materials, when the stress
states moves along the initial yield surface under decreasing con-
finement. Nevertheless, the well-posedness of the differential
equations and, therefore, the objectivity of the associated FE solu-
tion are achieved along the entire yield surface. Contrarily, the lo-
cal model is much more critical for localized failure modes and
discontinuous bifurcations. Moreover, the TP in the drained case
takes place at higher confinement than in the undrained one.

The discontinuous bifurcation evaluation along the first yield
surface corresponding to the most critical case for localized failure,
i.e. the drained condition under plane stress state, is presented in
Fig. 7. As can be observed, when it comes to the local model, the
localized failure regime covers a very important sector of the initial
yield surface, while it strongly reduces in case of the gradient-
based model. In the last case, however, the localization tensor re-
mains positive defined.

In the next, the influences of the pore water pressure and of the
non-associativity degree on the localized failure indicator are eval-
uated in the spaces (r0, det(A), p) and (r0, det(A), g), respectively.

Firstly, Figs. 8 and 9 show, for drained and undrained condi-
tions, respectively, the performance of the localization indicator
along the initial yield surface of the local model under plane strain
conditions. Similarly, Figs. 10 and 11 illustrate the influence of the
pore pressure on the localization indicator for local poroplasticity



Fig. 3. Critical hardening modulus prediction of the stress states pointed out in Fig. 2 considering undrained condition for: (a) local poroplasticity; (b) non-local gradient
poroplasticity.

Fig. 4. Critical hardening modulus along initial yield surface in principal stress space and assuming plain strain state, for: (a) drained condition; (b) undrained condition.

Fig. 5. Critical hardening modulus along initial yield surface in principal stress space and assuming plain stress state, for: (a) drained condition; (b) undrained condition.

J.L. Mroginski, G. Etse / International Journal of Solids and Structures 51 (2014) 1834–1846 1841



Fig. 6. Localization condition on the initial yield surface for: (a) drained condition; (b) undrained condition, assuming plain strain state.

Fig. 7. Localization condition for drained hydraulic condition on the initial yield
surface, assuming plain stress state.
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under plane stress conditions, and for the drained and undrained
cases, respectively.

It can be clearly recognized the strong influence of the pore
pressure p and of the hydraulic condition in the failure mode of
the local modified Cam Clay model. Under drained condition, local-
ized failure modes occur in a large portion of the stress-pore pres-
sure space. Contrarily, the undrained case is associated with more
stable failure behaviors. From Figs. 12 and 13, it can be observed
that the non-local modified Cam Clay model leads to diffuse failure
modes (positive values of the localization indicator) for the entire
considered stress-pore pressure space of the initial yield surface
Fig. 8. Discontinuous bifurcation condition in (r0 , det(A), p) space for
when both drained and undrained conditions as well as plain strain
and plain stress states are considered. Nevertheless, and as said be-
fore, due to the form the characteristic length is defined, this mate-
rial model is able to reproduce the increasing reduction of the
failure diffusion (reduction of the localization tensor positiveness)
that takes place under decreasing confinement and pore pressure.
This is in agreement with failure behaviors experimentally ob-
served in partially saturated porous materials like soils.

Finally, the influence of the non-associativity of the local and
non-local Cam Clay materials in the discontinuous bifurcation con-
dition is analyzed. Fig. 14 shows the results corresponding to the
local and non-local models, under both drained and undrained
conditions, in case of plain strain. Fig. 15 shows same results in
case of plain stress. As can be observed in these results, the non-
associativity degree which represents the plastic volumetric dilata-
tion, strongly destabilizes the failure mode of porous frictional
materials. However, the influence of the non-associativity degree
on the failure mode is considerably more relevant in the local
material, for all different considered cases. Moreover, in the non-
local porous material, the failure mode destabilization is limited
to extremely (and unrealistically) small values of the volumetric
non-associativity degree.

In Fig. 16, the regularization limitation of the gradient-based
poroplastic theory in this work as detailed in case 2 of Section
5.1 is evaluated. Constant value of the initial pore pressure equal
to �10 kPa is considered under both plane strain and plane stress
states.

Finally, in Fig. 17, a large spectrum of possible pore pressure,
from 0 to �50 kPa is considered in the evaluation of the regulariza-
tion limitations of the gradient poroplastic theory. The results
drained condition assuming plain strain state and local plasticity.



Fig. 10. Discontinuous bifurcation condition in (r0 , det(A), p) space for drained condition assuming plain stress state and local plasticity.

Fig. 9. Discontinuous bifurcation condition in (r0 , det(A), p) space for undrained condition assuming plain strain state and local plasticity.

Fig. 11. Discontinuous bifurcation condition in (r0 , det(A), p) space for undrained condition assuming plain stress state and local plasticity.

Fig. 12. Discontinuous bifurcation condition in (r0 , det(A), p) space assuming plain strain state and gradient-plasticity for: (a) drained condition; (b) undrained conditio
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Fig. 13. Discontinuous bifurcation condition in (r0 , det(A), p) space assuming plain stress state and gradient-plasticity for: (a) drained condition; (b) undrained condition.

Fig. 14. Influence of non-associativity degree, under plain strain state and: (a) drained condition for local plasticity; (b) undrained condition for local plasticity; (c) drained
condition for non-local plasticity; (d) undrained condition for non-local plasticity.

Fig. 15. Influence of non-associativity degree, under plain stress state and: (a) drained condition for local plasticity; (b) undrained condition for local plasticity; (c) drained
condition for non-local plasticity; (d) undrained condition for non-local plasticity.

Fig. 16. Limitation of gradient-based poroplasticity formulation for an initial value of the pore pressure equal to�10 kpa, assuming drained condition and: (a) plain strain; (b)
plain stress.
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Fig. 17. Limitation of gradient-based poroplasticity formulation for: (a) drained condition; (b) undrained condition, assuming plain strain condition.
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demonstrate that the case 2 of Section 5.1 leads to discontinuous
bifurcations in the gradient poroplastic theory. As before, the
drained condition is more critical than the undrained one.
7. Conclusions

The conditions for localized failure in the form of discontinuous
bifurcation were analyzed in the framework of thermodynamically
consistent elastoplastic theories for partially saturated porous
materials like soils. Local and gradient-based non-local forms of
this constitutive theory were considered. A particular form of gra-
dient poroplastic theory was taken into account whereby the state
variables are the only ones of non-local character.

The numerical method for the analysis of discontinuous bifurca-
tion consists in the evaluation of the stress domain where the sin-
gularity of the localization tensor is fulfilled. In the analytical
procedure, the performance of explicit solutions of the critical/
minimum hardening modulus corresponding to the first singular-
ity of the localization tensor in the deformation history are evalu-
ated. Also, the localization tensor and the analytical solutions of
the minimum hardening modulus for localization were formulated
for the local and gradient-based poroplastic constitutive theories
particularized for the Cam-clay model, under both drained and un-
drained hydraulic conditions.

Under consideration of plane strain and plane stress states, the
numerical results demonstrate that the hydraulic and stress condi-
tions play a relevant role in the failure performance of local and
non-local partially saturated soil materials. Both materials show
that drained hydraulic condition are considerably more critical
for localization and discontinuous bifurcation than the undrained
one. In the local poroplastic material the results show that the fail-
ure modes along the maximum strength surface vary from very
localized and brittle to diffuse and ductile as the confinement pres-
sure increases. Particularly, under the more critical hydraulic con-
dition (drained case), the region in the stress space associated with
localized failure modes covers a sector of much higher confine-
ment in case of plane stress state than in plane strain one.

The gradient-based poroplastic material does not show a real
transition point dividing the regions in the stress space character-
ized with localized and diffuse failure modes, in none of the con-
sidered hydraulic and stress conditions. Nevertheless, and due to
the particular forms the gradient characteristic lengths of the pore
and skeleton phases are defined in the non-local constitutive mate-
rial, the conditions for discontinuous bifurcation are very closed to
be fulfilled in the low confinement regime of the stress space, par-
ticularly under drained conditions. This means that under these
hydraulic and confinement conditions, and in both plane strain
and plane stress states, the considered non-local porous material
leads to strong reductions of the failure diffusion, while keeping
the well-posedness of the related differential constitutive equa-
tions. This is in agreement with the physical reality and demon-
strates the capabilities of the constitutive theory to capture
quasi-brittle failure modes without losing the strong ellipticity of
the involved differential equations.

Finally, a particular case where the regularization capabilities of
the gradient-based poroplastic theory in this work is suppressed,
was also evaluated. The results demonstrate this deficiency of
the non-local theory which is clearly more critical in case of
drained hydraulic conditions.

Appendix A. Expressions for the plastic consistency condition

For the sake of clarity last equation is rewritten in compacted
form

� _Unloc þ �hþ �hnloc
� �

_k ¼ _Ue � _U ðA:1Þ

where _Ue is the local loading function, �h the generalized plastic
modulus, �hnloc the gradient plastic modulus, and _Unloc the gradient
loading function defined as

_Unloc ¼ l2a@QaU @QaU
� Hnloc

a ij
_k;ij þ Hnloc

a ij;j
_k;i

h i
þþ2@2

QaQa
U�Qa;iH

nloc
a ij

_k;j
n o

ðA:2Þ

�hnloc¼�l2
a@QaU @2

QaQa
U� Hnloc

a ij Qa;ijþHnloc
a ij;jQa;i

h i
þþ@3

QaQaQa
U�Qa;iH

nloc
a ij Qa;j

n o
ðA:3Þ

Both, the local yield function and the generalized plastic modu-
lus can be decomposed into the components ( _Ue

s ; hs) and ( _Ue
p and

hp) related to the soil skeleton and to the porous, respectively. This
decomposition is valid for undrained and drained conditions.

_Ue ¼ _Ue
s þ _Ue

p ðA:4Þ

�h ¼ hs þ hp þ �H ðA:5Þ

with

�H ¼ Hloc
a @QaU@QaU

� ðA:6Þ

where, for drained condition, it can be obtained
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while for undrained condition
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Appendix B. Constitutive relationship for gradient-based
poroplasticity

The gradient-plasticity constitutive relationship of Eq. (15) with
drained conditions are

Eep;sd
ijkl ¼ C0

ijkl �
C0

ijmn@rmnU
�@rpqUC0

pqkl

�h
ðB:1Þ

Eep;pd
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U�

�h
ðB:3Þ

_f g ¼ l2
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a ij

_k;ij ðB:4Þ

In the same way, the gradient-plasticity constitutive relation-
ship of Eq. (16) with undrained conditions are presented here as
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Perić, D., 1990. Localized Deformation and Failure Analysis of Pressure Sensitive
Granular Materials (Ph.D. thesis). University of Colorado, CEAE Dept., Boulder.
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