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In this work we propose an automatic low cost procedure aimed at classifying legume species and
varieties based exclusively on the characterization and analysis of the leaf venation network. The identi-
fication of leaf venation patterns which are characteristic for each species or variety is not an easy task
since in some situations (specially for cultivars from the same species) the vein differences are visually
indistinguishable for humans. The proposed procedure takes as input leaf images acquired using a stan-
dard scanner, processes the images in order to segment the veins at different scales, and measures differ-
ent traits on them. We use these features in combination with modern automatic classifiers and feature
selection techniques in order to perform recognition. The process was initially applied to recognize three
different legumes in order to evaluate the improvements over previous works in the literature, and then
it was employed to distinguish three diverse soybean cultivars. The results show the improvements
achieved by the usage of the multiscale features. The cultivar recognition is a more challenging problem,
since the experts cannot distinguish evident differences in plain sight. However, we achieve acceptable
classification results. We also analyze the feature relevance and identify, for each classifier, a small set
of distinctive traits to differentiate the species and varieties.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Many works in the current literature deal with the problem of
automatically identifying plants by means of foliar image analysis.
One of the most common approaches consists in performing shape
analysis of the leaves (Agarwal et al., 2006; Camargo Neto, Meyer,
Jones, & Samal, 2006; Chaki & Parekh, 2012; Du, Wang, & Zhang,
2007; Im, Nishida, & Kunii, 1998; Solé-Casals, Travieso, Alonso, &
Ferrer, 2008). Leaf color and texture can also be taken into consid-
eration. In the work by Pydipati, Burks, and Lee (2006), color tex-
ture features of the leaves are used in combination with
discriminant analysis to detect citrus diseases. Also, a combination
of shape, texture and color features are used in the papers by
Golzarian and Frick (2011) and Bama, Valli, Raju, and Kumar
(2011).
However, in some practical situations there are not evident dif-
ferences in the shape, size, color or texture features of the leaves
for the plants under study. This is the case, for example, of plants
that belong to several cultivars from the same species.

Since there exists correlation between leaf venation characteris-
tics and leaf properties (such as damage and drought tolerance,
among others) (Sack, Dietrich, Streeter, Sanchez-Gomez, &
Holbrook, 2008; Scoffoni, Rawls, McKown, Cochard, & Sack, 2011),
some works in the recent literature highlight the importance of
analyzing the structure of the venation system as a means to per-
form leaf-based plant identification. In the paper by Park, Hwang,
and Nam (2008), a content-based image retrieval system is pro-
posed which analyzes the venation of a leaf sketch drawn by the
user as an initial categorization, and then uses shape features to
find similar leaves existing in the database. On the other hand,
Clarke et al. (2006) and Valliammal and Geethalakshmi (2011) pro-
pose new methods for leaf vein segmentation. However, neither
work includes any characterization or recognition tasks. Recently,
Du, Zhai, and Wang (2013) propose a method based on fractal
dimension features computed both on the veins and the leaf out-
line, and employ k-nearest neighbors to perform classification on
different leaves. However, these leaves are visually very different
and belong to very different families. Additionally, the computed
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features do not provide the experts with a simple vein description
and may not lead to a human direct interpretation.

In a recent work, Price, Symonova, Mileyko, Hilley, and Weitz
(2011) developed an interactive graphic tool named LEAF GUI,
aimed at thresholding, cleaning and segmenting stained leaf vein
and areole images in a user-assisted way. In addition, the software
allows to extract several measures which are automatically com-
puted on these structures. The segmentation algorithms require
that the visibility of the veins were previously enhanced by means
of X-ray techniques, chemical or biological clearing, or back-lit
scanning. LEAF GUI does not include any feature selection algo-
rithm or any plant classification/recognition procedure.

Agricultural specialists require, in many situations, to identify
which species a certain batch of plants corresponds to. Depending
on the species and growth stage of the plants, leaves, flowers, fruits
and/or seeds can be used in conjunction to recognize the species.
But in many other situations, this is not possible. For example, if
the goal is to differentiate diverse cultivars/varieties from the same
species, all the previous mentioned characteristics may be visually
the same. One possibility is to perform DNA analysis to accurately
determine the variety, but this method is expensive. On the other
hand, we propose to investigate the possibility of searching for dis-
tinctive venation patterns that could uniquely identify the varieties
using a low cost procedure based on an image analysis and ma-
chine learning system.

We showed in a previous work (Larese et al., 2014) that it is
possible to recognize different species using exclusively informa-
tion from the leaf veins. The motivation of the present work is to
extend the analysis to the more difficult problem of recognizing
varieties from the same species. We search for the existence of dis-
tinctive leaf vein patterns for different cultivars, when all the other
leaf characteristics (e.g., shape, color and texture) are similar. If the
plants under study have different physiological characteristics
(e.g., drought tolerance), there is a chance that these properties
can be reflected in their veins even if the leaves look similar. In this
work we propose an automatic low cost procedure aimed at seg-
menting and characterizing the leaf veins of plants from the same
family. An automatic procedure is desirable since it provides reli-
ability, reproducibility and economy, besides of providing a solu-
tion to a problem which is not easily solved by the human
experts, as it is the cultivars recognition.

Since this problem is more difficult than separating different
species, we propose to measure vein traits from images at different
scales. We first try the procedure on the simpler problem of species
recognition, showing that the new approach improves the results
reported in our previous work (Larese et al., 2014). Next, we ana-
lyze the cultivar recognition problem.

We use three legume species and three soybean cultivars in or-
der to perform the species and variety recognition, respectively.
The leaves are acquired using a standard flatbed scanner. We per-
form the automatic plant recognition by means of measuring and
classifying morphological traits from central patches extracted
from the previously segmented venation system, i.e., no leaf shape,
color or texture information is considered. We also analyze the dis-
tinctive vein characteristics for each class.

For this purpose, we start by performing segmentation using
the Unconstrained Hit-or-Miss Transform (UHMT) and adaptive
image thresholding in order to extract the veins at several image
scale levels. The UHMT is a mathematical morphology operator
useful to perform template matching. It extracts all the pixels
which follow a certain foreground and background neighboring
configuration.

After segmentation, we compute several morphological mea-
sures on the segmented veins at the different scales, and use them
as features in the classification process. The recognition is per-
formed resorting to three different classifiers, namely, Random
Forests (Breiman, 2001), Support Vector Machines with Gaussian
kernel (Vapnik, 1995) and Penalized Discriminant Analysis (Hastie,
Buja, & Tibshirani, 1995). Recursive Feature Elimination (Guyon,
Weston, Barnhill, & Vapnik, 2002) is also used in combination with
the three classifiers in order to estimate the importance of the in-
put variables in the classification process for the different species
and varieties.

The analysis is performed on two different problems. First of all,
we consider the discrimination between three classes of legumes,
namely soybean (Glycine max (L) Merr), red and white beans
(Phaseolus vulgaris). Red and white beans have very similar leaves,
which are slightly darker for the former. However, in this work we
do not consider color information, but only morphological features
of the veins obtained from the gray scale images.

The second problem consists of identifying three different
cultivars of soybean. This task is more challenging by far, since
the differences in the veins are not obvious to the human experts.
Automatic classification would come to solve this issue in an inex-
pensive way. Additionally, the procedure would highlight relevant
distinctive vein features for each cultivar, and possibly help to re-
late these differences to variety adaptation.

The rest of the paper is organized as follows. In Section 2.1 we
describe the leaf images dataset. Sections 2.2 and 2.3 summarize
the segmentation procedure that we employed to extract the leaf
venation system. We detail the measures computed on the seg-
mented veins in Section 2.4. We briefly describe the classification
and feature selection algorithms in Section 2.5. We present and
discuss the results in Section 3, where we assess the performance
of the procedure and analyze the relevant features. Finally, we
draw some conclusions in Section 4.
2. Materials and methods

2.1. Leaf images dataset

The dataset used in this paper is composed by a total number of
866 color leaf images provided by Instituto Nacional de Tecnología
Agropecuaria (INTA, Oliveros, Argentina). The dataset is divided in
the following way: 422 images correspond to soybean leaves (198
belong to cultivar 1, 176 belong to cultivar 2, and 48 belong to cul-
tivar 3), 272 images are from red bean leaves and 172 from white
bean leaves. They are the images of the first foliage leaves (pre-
formed in the seed) of 433 specimens (211 soybean plants, 136
red bean plants and 86 white bean plants). First foliage leaves were
selected for the analysis, after 12 days of seedling grow, since their
characteristics are less influenced by the environment. We did not
use any chemical or biological procedure to physically enhance the
leaf veins. Instead, a fast, inexpensive and simple imaging proce-
dure was used: the leaves were acquired using a standard flatbed
scanner (Hewlett Packard Scanjet-G 3110) at a resolution of 200
pixels per inch, and the images were stored as 24-bit uncom-
pressed TIFF images. We scanned the abaxial surfaces of the leaves,
since veins appear stronger on this side and can be considerably
better observed.
2.2. Unconstrained Hit or Miss Transform (UHMT)

The UHMT is an extension of the Hit-or-Miss Transform (HMT)
for gray scale images (Soille, 1999). It extracts all the pixels match-
ing a certain foreground and background neighboring configura-
tion. A composite structuring element B is employed, which is a
disjoint set formed by one structuring element that specifies the
foreground configuration, Bfg , and one structuring element for the
background setting, Bbg . The origin of the composite structuring
element matches the foreground.
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The UHMT is defined as

UHMTBðYÞðyÞ ¼max eBfg
ðYÞðyÞ � dBbg

ðYÞðyÞ;0
n o

; ð1Þ

where Y is a gray scale image with set of pixels y and B is a compos-
ite structuring element. It can be computed as the difference
between an erosion with Bfg ; eBfg

ðYÞðyÞ, and a dilation with
Bbg ; dBbg

ðYÞðyÞ, if dBbg
ðYÞðyÞ < eBfg

ðYÞðyÞ. Otherwise it equals 0.
2.3. Vein segmentation

The vein segmentation procedure is shown in Fig. 1 for a white
bean leaf. In the following, we describe each image processing step
in detail.

Since we are only interested in the vein morphological patterns,
we removed from the images all the color information by convert-
ing the RGB images to gray scale. In order to perform this, we fol-
lowed a standard procedure. We calculated the luminance
component (Y) as a weighted sum of the three color channels
(R;G;B), i.e., Y ¼ 0:299Rþ 0:587Gþ 0:114B (Umbaugh, 2005).

Then, we thresholded the gray scale image Y by means of the
automatic iterative threshold selection algorithm (Sonka, Hlavac,
& Boyle, 2008) and filled its holes using morphological reconstruc-
tion (Soille, 1999). After deleting all the connected components ex-
cept the largest one, we got a binary mask for the leaf.

We computed the UHMT on 5 different sized versions of Y,
namely at 100%, 90%, 80%, 70% and 60%. Next we resized back each
resulting UHMT to the original image size. We summed these five
resized UHMTs to obtain the combined UHMT, which highlights
both small and large visible veins simultaneously.
Fig. 1. Vein segmentation procedure.
On the other hand, we also preserved the resized UHMTs calcu-
lated at 100%, 80% and 60%, namely UHMT #1, UHMT #2 and
UHMT #3 (i.e., UHMT #1 is the UHMT computed on the original
gray scale image Y). Each UHMT is intended to highlight a different
level of vein detail.

We used four composite structuring elements (foreground and
background configurations) to detect the leaf veins in four direc-
tions (vertical, horizontal, +45 and �45 degrees). They are depicted
in Fig. 2. Each composite structuring element describes foreground
and background searched hits (in red and green, respectively).

Then, we enhanced the contrast of the four obtained UHMTs
(the combined UHMT and UHMTs #1, #2 and #3). We performed
adaptive histogram equalization and adaptive thresholding, and
removed all the connected components with less than 20 pixels. Fi-
nally, we multiplied the four resulting UHMTs by the previously
computed leaf binary mask to obtain four approximations of the
veins (combined veins + 3 scales, i.e., veins #1, veins #2 and veins
#3).

2.4. Vein measurements

After segmenting the venation system, we measured several
traits on the veins and the areoles. Since our goal is to perform clas-
sification considering only the veins morphology, we avoided the
influence of the leaf shape by cropping a centered 100� 100-pixel
patch for each one of the 4 vein images (the three scales and the
combined veins), and measured all the features on these patches.

In this work we adapted LEAF GUI (Price et al., 2011) measures
to extract a set of features of interest for veins and areoles. For our
particular problem aimed at leaf classification, individual vein/are-
ole measures are not suitable. For this reason, we computed the
median, minimum and maximum feature values for veins and are-
oles where it was appropriate. We measured the 52 traits de-
scribed in Table 1.

These features were computed for each one of the three scales
and the combined veins patches. Altogether, they become a feature
vector of 208 components (52 features�4 patches) per leaf image.

All the features we computed are rotational independent when
considering the whole leaf, except for the edge orientation mea-
sures, namely VmO, VMO and VMeO. These features measure the
angle between the x-axis of the image and the major axis of the el-
lipse having the same second moments as the vein, so if the leaf is
rotated, these 3 features change.

However, since we measured the features on a square patch at
the center of the leaf, all the measures would be affected if the leaf
is rotated. This could be avoided by taking a circular patch instead
of a square one, although the rotational dependence remains for
the 3 orientation features mentioned above.

In this paper, we dealt with this issue by scanning all the leaves
in the same vertical position, thus avoiding significant rotation
influences.

For future general applications, a preprocessing module can be
added in which all the images are previously corrected for rotation
taking as a reference the longitudinal primary vein.

2.5. Classification algorithms

We considered 3 different classifiers, namely Random Forests,
Support Vector Machines with Gaussian kernel and Penalized
Discriminant Analysis. Each one of them is briefly described in
the following subsections.

2.5.1. Random Forests (RF)
Random Forests (RF) (Breiman, 2001) is a state-of-the-art

ensemble algorithm where the individual classifiers are a set of
de-correlated trees. They perform comparably well to other



(a) (b) (c) (d)
Fig. 2. The four pairs of flat composite structuring elements used in the UHMT computation to detect veins in four directions: (a) vertical, (b) horizontal, (c) +45 degrees, and
(d) �45 degrees. Foreground pixel configurations are depicted in red while background pixel configurations are in green. The center of the composite structuring element is
marked with a black dot. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Set of features measured on the leaf veins after segmentation.

Feature # Code Description

1 VNE Total number of edges, i.e., estimated veins.
2 VNN Total number of nodes. The number of connecting nodes between edges.
3 VTNL Total network length. Total distance (in mm) along the skeleton of the vein image patch.
4/5/6 VMeL/VmL/VML Median/min/max edge length. The edge length (in mm) is the distance along the skeleton of a vein.
7/8/9 VMeW/VmW/

VMW
Median/min/max edge width. The edge width (in mm) is the mean of the doubled distances between each skeleton
pixel of the current edge and the nearest non-vein pixel, i.e., areole pixel.

10/11/12 VMeA/VmA/VMA Median/min/max edge 2D area. The edge 2D area (in mm2) is the sum of the widths at every skeleton pixel of the
current edge times the length of one pixel.

13/14/15 VMeSA/VmSA/
VMSA

Median/min/max edge surface area. The surface area (in mm2) of the cylinder centered at the edge skeleton is
computed as the sum of the individual surface areas for each skeleton pixel of the current edge, asP

iSAi ¼ 2pðdi=2Þli , where di is the diameter (width) and li is the length for a skeleton pixel i.
16/17/18 VMeV/VmV/VMV Median/min/max edge volume. The edge volume (in mm3) corresponds to the volume of the same cylinder as in

surface area, and is computed as
P

iV i ¼ pðdi=2Þ2li.
19/20/21 VMeO/VmO/VMO Median/min/max edge orientation. The orientation is the angle (in the range [�90�, 90�]) between the x-axis and the

major axis of the ellipse with the same second moments as the vein.
22 AN Total number of areoles in the image patch.
23/24/25 AMeP/AmP/AMP Median/min/max areole perimeter. The perimeter (in mm) is the distance along the pixels of the border of the

areole.
26/27/28 AMeA/AmA/AMA Median/min/max areole area. The areole area (in mm2) is the number of pixels in each areole times the area of one

pixel.
29/30/31 AMeCA/AmCA/

AMCA
Median/min/max areole convex area. The convex area (in mm2) is the area of the convex hull for the areole.

32/33/34 AMeS/AmS/AMS Median/min/max areole solidity. The solidity is a dimensionless parameter between 0 and 1 which measures the
proportion of the pixels in the convex hull that are also in the area (ratio between the areole area and the convex
area).

35/36/37 AMeMaA/
AmMaA/AMMaA

Median/min/max areole major axis. The major axis (in mm) corresponds to the ellipse with the same normalized
second moments as the areole.

38/39/40 AMeMiA/AmMiA/
AMMiA

Median/min/max areole minor axis. The minor axis (in mm) corresponds to the ellipse with the same normalized
second moments as the areole.

41/42/43 AMeE/AmE/AME Median/min/max areole eccentricity. The eccentricity is a dimensionless parameter between 0 (a circle) and 1 (a
line), which measures the ratio of the distance between the foci of the ellipse having the same normalized second
moments as the areole and its major axis.

44/45/46 AMeEq/AmEq/
AMEq

Median/min/max areole equivalent diameter. The equivalent diameter (in mm) is the diameter of a circle having the
same area as the areole.

47/48/49 AMeMD/AmMD/
AMMD

Median/min/max areole mean distance. The mean distance (in mm) is the mean value of the Euclidean distances
between each areole pixel and the nearest vein pixel.

50/51/52 AMeVD/AmVD/
AMVD

Median/min/max areole variance distance. The variance distance (in mm) is the variance of the Euclidean distances
between each areole pixel and the nearest vein pixel.

M.G. Larese et al. / Expert Systems with Applications 41 (2014) 4638–4647 4641
state-of-the-art classifiers and are also very fast. Random Forests
also allows to estimate the importance of input variables (in their
original dimensional space).

The algorithm constructs a set of unpruned trees from B random
samples with replacement (bootstrap versions) of the original
training dataset. For each random forest tree, a random sample
of m variables from the full set of p variables (m 6 p) is selected
to split the data at each node and grow the decision tree. The final
classification result is the class corresponding to the majority vote
of the ensemble of trees. In this work, we used 500 trees and a
standard value of m ¼ ffiffiffi

p
p

.
Random Forests has an internal procedure to estimate the rele-

vance of the features. After training, the features are shuffled one at
a time. An out-of-bag estimation of the prediction error is made on
this permuted dataset. Intuitively, a feature which is not important
to the model will not alter significantly the classification perfor-
mance when shuffled. On the other hand, if the model made strong
use of a certain feature, changing its values will produce an impor-
tant decrease in performance. The relative loss in performance be-
tween the original dataset and the shuffled dataset is therefore
related to the relative importance of the feature affected by the
process.

2.5.2. Support Vector Machines (SVM)
Support Vector Machines (SVM) (Vapnik, 1995) is a state-

of-the-art classifier which assumes that applying an appropriate
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nonlinear mapping of the data into a sufficiently high dimensional
space, two classes can be separated by an optimum hyperplane.
This decision hyperplane is chosen in such a way that the distance
between the nearest patterns of different classes (i.e., the margin)
is maximized. SVM depends on a regularization parameter, C,
which controls the trade-off between the complexity of the classi-
fier and the number of allowed misclassifications. Inner validation
was used in this work to set this parameter during the training
phase.

The decision surface may be linear or nonlinear. In the latter
case, a kernel function can be used to map the patterns into a high
dimensional space. In this work, we considered SVMs with a
Gaussian kernel (SVMG). The Gaussian standard deviation was
optimized in a validation step during the training.

The feature ranking is performed by following the sensitivity
analysis described in the paper by Guyon et al. (2002) for non-lin-
ear kernels, by sorting decreasingly the features according to the
change they produce in the classification cost function when they
are individually removed.

2.5.3. Penalized Discriminant Analysis (PDA)
Fisher’s Linear Discriminant Analysis (LDA) (Hastie, Tibshirani,

& Friedman, 2009) is a classical classifier and dimension reduction
tool which searches for linear combinations of the features in such
a way that the class means of the linear combinations are maxi-
mally separated relative to the intra-class variance. The classifica-
tion of new observations is then performed by assigning them to
the closest centroid according to a distance metric (typically the
Mahalanobis distance) in the transformed space.

In order to improve LDA, Penalized Discriminant Analysis (PDA)
was proposed by Hastie et al. (1995). PDA is a regularized version
of LDA, which adds a penalty term to the intra-class covariance
matrix. PDA is useful for image classification problems with large
number of highly correlated features.

In this work, standard Ridge Regression (GenRidge) (Hastie
et al., 2009) was used, which has the ridge constant k as the only
free parameter. This constant penalizes high values of the fitted
variables, and is similar to the C parameter in SVM. This parameter
was automatically selected using a validation set in the training
phase.

The importance of each feature can be computed as the sum of
the corresponding loadings (in absolute values) across the eigen-
vectors belonging to the largest eigenvalues (Song, Mei, & Li,
2010). In our case, we have only two eigenvectors, and we chose
to keep both in order to analyze the feature relevance.

2.5.4. Recursive Feature Elimination (RFE)
Recursive Feature Elimination (RFE) was initially proposed in

the work by Guyon et al. (2002), where it was implemented in con-
junction with SVMs to perform feature selection. It is a kind of
backward feature elimination algorithm (Kohavi & John, 1997)
where the relevance of the features is evaluated by ranking subsets
of features instead of ranking the features individually. In this way,
features that are not relevant when considered alone may become
important by complementing another features.

Even though Guyon et al. (2002) originally used SVMs in com-
bination with RFE, any other classification algorithm can be used
instead. In this work, we combined RFE with the three classifiers
under consideration, i.e., RF, SVMG and PDA.

On a validation step, the procedure starts by training the classi-
fier with the whole set of features, and ranking them according to
the importance determined by the classifier. Iteratively, a subset
with the lowest-ranked features found by the classifier is removed
(we selected 10% of the current total features). The accuracy is
computed at each iteration, corresponding to the accuracy
achieved by using the remaining subset. Five-fold cross-validation
is used to determine the optimum cardinality of the best subset of
features.

Finally, the whole training set is used to train the classifier
using, initially, the entire set of features, and progressively elimi-
nating the lowest-ranked subset of features until the previously
determined optimum cardinality is reached. Then, this trained
classifier is used to make predictions on an unseen test set.
3. Results and discussion

The total number of features computed per leaf rises to 208, i.e.,
52 features � 4 patches (combined veins and 3 scales). As a prepro-
cessing step, all the features exhibiting near zero variance across
the examples were discarded. Also, the data were normalized (cen-
tered and scaled). For each one of the three classifiers described in
Section 2.5, both the whole set of features and a subset composed
by the optimal number of relevant features (according to RFE) were
considered. We also compared the results obtained by using both
the combined veins + 3 individual scales with the ones achieved
by considering the features measured on the combined veins only.
Classification was performed in R resorting to the randomForest

(Liaw & Wiener, 2002), mda1 and e1071 (Meyer, 2009) packages.
First, we report the results for the recognition of the three dif-

ferent legume species, i.e., soybean, red bean and white bean. Next,
we discuss the results for the soybean cultivar identification. In all
the cases, we performed 10 runs of 10-fold cross validation to
estimate the final accuracy of the classification procedure. We used
5-fold cross validation for the optimization of the parameters cor-
responding to each classifier as well as the best number of features
for RFE.
3.1. Legume species recognition

The vein segmentation results are shown in Fig. 3,, top panel, for
a soybean leaf, as well as the 100� 100-pixel central patches used
for feature extraction. Fig. 3(b) corresponds to the segmentation of
the combined veins image. Fig. 3(c) is the 100� 100-pixel central
patch obtained from Fig. 3(b). Fig. 3(d)–(f) are the central patches
cropped from the veins at scales #1 to #3, respectively. As it can
be seen from this figure, scale #1 contains mainly the primary or-
der veins while scale #2 preserves more detail about smaller veins.
The veins at scale #1 are much thinner than at scale #2. Scale #3 is
a less noisy version of scale #2, and also shows thicker veins. The
combination of the veins at different scales (Fig. 3(b) and (c)) is
the most complete result, providing detail on both primary and
smaller veins. However, higher order veins (e.g., terminal veins)
are not possible to segment since they are not visible (the images
were scanned without any clearing or amplification procedures,
as explained in Section 2.1). A similar analysis can be done for
the segmentation of a white bean leaf (Fig. 3, middle panel) and
a red bean leaf (Fig. 3, bottom panel).

The total accuracies and accuracies per class obtained by each
classification algorithm are reported in Table 2 as mean ± standard
error (SE). For each alternative automatic classifier, namely RF,
SVMG and PDA, the classification was performed by using 1) the
whole set of features; and 2) only the subset with the most rele-
vant features after performing RFE (as described in Section 2.5.4
and the introductory part of Section 3), namely RF RFE, SVMG
RFE and PDA RFE. The first part of Table 2 shows the results of
using the features measured on the combined veins only (52 fea-
tures), whereas the second part of the table presents the results
of using the combined veins and the 3 individual scales (208
features).

http://cran.r-project.org/web/packages/mda/index.html


(a) (b)

(c) (d)

(e) (f)
Fig. 3. Vein segmentation for a soybean leaf (top panel), a white bean leaf (middle
panel) and a red bean leaf (bottom panel). (a) Original image, (b) combined veins,
(c) central patch extracted from (b), (d) central patch extracted from scale #1, (e)
central patch extracted from scale #2, and (f) central patch extracted from scale #3.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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As it can be observed from Table 2, the recognition of soybean
leaves seems to be the easiest problem, since all the automatic
classifiers configurations provide a mean accuracy over 95.5%.
The recognition of the red bean leaves is also very good (mean
accuracy over 84%). The classification of white bean leaves seems
to be the most difficult, although the results are quite satisfactory
(mean accuracy over 72%).

The accuracies achieved after performing feature selection via
RFE are very similar to the ones obtained by using all the features,
Table 2
Accuracy (mean� SE) for legume species detection using 10 runs of 10-fold cross-validati

Classification algorithm Per class accuracy (mean� SE)%

White bean Red bean

Combined veins
RF 72:26� 1:06 84:72� 0:6
RF RFE 72:30� 1:17 84:46� 0:6
SVMG 77:62� 1:00 85:68� 0:5
SVMG RFE 75:06� 0:97 86:22� 0:6
PDA 82:69� 0:88 85:83� 0:6
PDA RFE 81:87� 0:96 85:64� 0:6
Manual classification 66:43� 5:36 69:44� 6:7

Combined veins + 3 scales
RF 80:43� 0:97 89:03� 0:5
RF RFE 80:20� 0:92 89:29� 0:5
SVMG 81:33� 0:94 89:51� 0:6
SVMG RFE 81:02� 0:85 89:01� 0:6
PDA 90:92� 0:59 91:68� 0:5
PDA RFE 90:03� 0:61 90:32� 0:5
Manual classification 70:82� 13:15 83:28� 3:7
both for the combined veins and the combined veins + 3 scales
traits. The standard errors have very little differences, too. On the
other side, the addition of the features measured on the 3 individ-
ual scales clearly increases the accuracies for all the classes and all
the classifiers (with and without RFE) versus their counterparts
using only the combined veins traits. These results highlight the
benefit of considering the multiscale information extracted from
the veins, showing the improvements introduced by the proposed
approach.

We also analyzed the classification accuracies obtained by five
human experts who developed manual classification of the same
vein image patches. We found that the results of their classification
were much more variable in comparison to the automatic classifi-
ers. We report the average accuracies obtained by the experts con-
sidering only the patches from the combined veins as well as the
average accuracies obtained by using (additionally) the patches
at the 3 individual scales. It is evident that the 3 scales provide ex-
tra information to the experts which highly improves the perfor-
mance of manual classification for white and red beans. For
soybean, four experts out of the five achieve a performance which
is similar or superior to the combined veins features case. Only one
expert diminishes its performance when using the 3 scales, causing
a small decrease in the mean value. However, it is a small loss
against the important improvement achieved for the red and white
bean classes. Overall, for the three species the total accuracy in-
creases when using both combined veins and individual scales
for manual classification.

From Table 2 it is clear that all of the automatic classifiers
(either using feature selection or not) outperform manual classifi-
cation for the three considered classes, apart from providing obvi-
ous advantages in repeatability, reliability and economy.

The results reported in Table 2 using the combined veins fea-
tures only and without RFE (i.e., RF, SVMG and PDA) are consistent
with previous results in the recent literature (Larese, Craviotto,
Arango, Gallo, & Granitto, 2012; Larese et al., 2014). However,
the usage of the combined veins + 3 scales features proposed in
the present work outperform these previous results for all the
cases.

We compared the usage of venation features versus the shape
and texture features described in the work by Golzarian and Frick
(2011). When following the approach of shape and texture fea-
tures, we obtained an average total accuracy of �82% for legume
classification with any of the 3 considered classifiers (RF, SVMG
and PDA), which is much lower than the one we report by using
venation features. Confusion matrices indicate that this result is
on.

Total accuracy (mean� SE)%

Soybean

5 96:00� 0:31 87:75� 0:32
6 95:62� 0:33 87:48� 0:36
9 97:25� 0:25 89:72� 0:28
1 97:44� 0:24 89:48� 0:27
3 96:47� 0:27 90:39� 0:27
3 96:35� 0:28 90:12� 0:30
9 98:29� 0:79 82:90� 1:62

8 98:81� 0:17 92:09� 0:29
9 98:81� 0:16 92:13� 0:28
5 98:15� 0:18 92:10� 0:28
7 98:15� 0:21 91:88� 0:28
1 98:98� 0:14 95:09� 0:21
4 98:86� 0:14 94:43� 0:23
1 96:65� 0:85 87:32� 1:96
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due to the mistakes in classification of white beans which are mis-
classified as red beans, since their leaves look very similar in shape
and texture. However, multiscale venation differences are stronger
and provide a better discrimination for this particular problem.

Fig. 4 depicts the distributions of the generalization errors ob-
tained by each classifier over the 10 runs of 10-fold cross valida-
tion. The mean values of the manual classification accuracies
using the features from the combined veins and combined
veins + 3 scales are also included for comparison purposes.

Evidently, the distributions of RF, SVMG and PDA show an
improvement in the performance when using the features from
the combined veins + 3 individual scales. This can also be noticed
for the manual classification. The distributions of PDA and PDA
RFE with 208 features are completely over the manual classifica-
tion accuracy with 208 features, and do not present outliers. All
the distributions are approximately symmetric and have similar
dispersion, except for RF and RF RFE with 52 features, for which
it is slightly higher.

3.1.1. RFE analysis
Table 3 shows the 10 features most frequently selected as

highly relevant for each algorithm along the 10 runs of 10-fold
cross validation. It is noticeable that some of the features consid-
ered as relevant for each classifier are correlated, according to
Larese et al. (2014). This is the case, for example, for AMA and
AMCA selected by PDA RFE and SVMG RFE with 52 features.
From Table 3 it can also be noticed that the only feature
considered simultaneously relevant by all the algorithms is VMeW
(highlighted in bold).

For the three classifiers with 208 features, the most frequently
selected features are chosen from the combined veins and the 3
individual scales, showing the usefulness of these scales. The fea-
tures which are considered highly relevant simultaneously by the
three algorithms are VNN1, VNE1 and VMeW2 (highlighted in bold
in Table 3).

3.2. Soybean cultivar recognition

Next we applied the proposed procedure to perform the recog-
nition of three different soybean cultivars. Three exemplars (one
per each class) are shown in the three panels of Fig. 5.

From these figures, an analysis similar to the one performed in
Section 3.1 can be made regarding to the differences and
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Fig. 4. Total accuracy distributions over 10 runs of 10-fold cross validation for the diffe
208 features.
similarities between the three segmented individual scales and
the combined veins patches. However, in this case there are not
evident differences between the veins of the three cultivars. More-
over, when analyzing the dataset we noticed that there exists a
high variability between individuals from the same class. Thus, this
application problem is characterized by a relatively low inter-class
and high intra-class variabilities.

We report in Table 4 the total and per class classification accu-
racies obtained by the different proposed automatic classifiers
using both the whole set of features and feature selection by means
of RFE. Since the current problem is more challenging than the spe-
cies recognition one, it is expected to get a lower performance than
for the species classification. However, we highly improved the to-
tal accuracies achieved by manual classification. The total accura-
cies are over 55% for all the algorithms under consideration.
From Table 4 it is also noticeable that the recognition of cultivar
3 is the most difficult to achieve automatically (the best result is
34.28% for PDA RFE with 208 features). Similarly, human experts
also have a very low performance, obtaining 39.47% and 43.98%
of accuracy with the combined veins and the combined veins + 3 s-
cales, respectively. However, all the automatic algorithms highly
improve the manual classification both for cultivars 1 and 2. PDA
RFE with 208 features presents a slightly higher average accuracy.
All the algorithms have similar difficulties in separating the three
cultivars, even though they all highly outperform the manual clas-
sification providing also with less variability.

The distribution of performances along the 10 runs of 10-fold
cross validation for the different automatic classifiers (with and
without feature selection) can be analyzed with the help of
Fig. 6, where the total accuracy distributions are depicted for each
algorithm. From this figure, it is evident that all the distributions
are similar and almost symmetric, except for RF with 52 features
(Fig. 6(a)) and PDA with 208 features (Fig. 6(b)), which present
an asymmetry to the highest accuracies. The distribution of PDA
RFE is entirely above manual classification both for 52 and 208 fea-
tures, reaching higher accuracies in the last case. On the other
hand, the distribution of accuracies for RF and RF RFE is partially
below the manual classification with both numbers of features.

If the leaves to be classified are known to belong all to the same
cultivar (as in the case of an unidentified seed lot), the accuracy of
the system can be substantially improved by taking several exem-
plars from the same seed lot. The seed lot is then assigned to the
most voted class.
RF
RF RFE
SVMG
SVMG RFE
PDA
PDA RFE
Manual

(b)
rent classification algorithms (legume recognition problem). (a) 52 features and (b)



Table 3
List of the 10 most selected features for each classifier and the legume classification problem. The percentage of times that each feature was selected is also shown.

RF with 52 features
VMeW VMeV VMeO VMV AN AmS VTNL AMeMaA AMeP AMMiA
100% 100% 100% 100% 100% 100% 99% 99% 93% 91%

RF with 208 features
VNE1 VNN1 VTNL1 AMP1 AMMD1 AMVD1 VMeW2 AmS2 AMEq2 VMeW
100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

SVMG with 52 features
VNE VMeW VMeV AMCA VNN AN AmS AMA VTNL VMW
100% 100% 100% 99% 98% 96% 96% 93% 91% 81%

SVMG with 208 features
VNE1 VMeW2 VMeW AMP1 AMCA VNN1 AN AMeMD VNN3 VMeL1
100% 100% 99% 98% 98% 94% 94% 93% 92% 91%

PDA with 52 features
VNE VNN VTNL VMeW VMV AMA AMCA VML AMeMD AMEq
100% 100% 100% 100% 100% 100% 100% 97% 97% 97%

PDA with 208 features
VNE1 VNN1 VTNL1 AMCA1 VMeW2 VNE VNN VMeW AMeMD AMCA
100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

(a) (b)

(c) (d)

(e) (f)
Fig. 5. Vein segmentation for a soybean leaf from cultivar 1 (top panel), cultivar 2
(middle panel) and cultivar 3 (bottom panel). (a) Original image, (b) combined
veins, (c) central patch extracted from (b), (d) central patch extracted from scale #1,
(e) central patch extracted from scale #2, and (f) central patch extracted from scale
#3.
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Assuming that all the classes are equally probable, and that the
distribution of the classifier errors is uniform among the classes,
the identification accuracy can be computed resorting to the bino-
mial distribution p0 ¼ ðn!=ððn=cÞ!ðn� n=cÞ!Þpnð1� pÞðn�n=cÞ, where n
is the number of exemplars to be classified, c is the number of pos-
sible classes, p is the average accuracy of the classifier (slightly
higher than 50% is required at least) and p0 stands for the desired
accuracy. For example, in order to achieve p0 ¼ 99% of classifica-
tion accuracy for the PDA RFE with the combined veins + 3 scales
features, from Table 4 we could take p ¼ ð60� 2SEÞ%, resulting in
n ¼ 8 leaves to be evaluated. The class is selected according to
which the majority of the specimens were classified into. The low-
er the performance of the classifier, the higher number of exem-
plars (n) will be required to ensure a desired accuracy.

3.2.1. RFE analysis
We analyzed the number of times that each feature was se-

lected as relevant by the classifiers and RFE along the 10 runs of
10-fold cross validation. In Table 5 we show the 10 features that
were selected more frequently, as well as the percentage of times
that they were selected. From this table, it can be noticed that
VTNL is found relevant for all the considered classifiers (high-
lighted in bold). When using 208 features, the set of the 10 most
frequently selected include features from the three individual
scales and the combined veins image for all the classifiers. This
reinforces the evidence that the 3 individual scales add important
information to the problem, and that the three employed classifiers
can take advantage of them in order to improve the classification.
In addition, it can be noticed that, in this case, VTNL1 is considered
relevant simultaneously by all the classifiers (highlighted in bold in
Table 5).

We develop an automatic low cost procedure to classify legume
varieties, based exclusively on the multiscale vein feature analysis
of scanned leaf images. This method is useful when leaf shape, col-
or and texture do not differ between the classes. We use state-of-
the-art classifiers and feature selection techniques. Our method
improves the previous results published in the recent literature
concerning legume species recognition. Also, our method is tested
on the yet untackled and more difficult problem of legume culti-
vars classification, where the leaves have all similar appearance.
In both problems our method outperforms the human expert clas-
sification accuracy. However, in the second problem our accuracies
are still low, even though they can be raised in the presence of seed
lots where several leaf exemplars can be examined in the knowl-
edge that they all belong to the same unknown class. In this case,
the seed lot can be labeled according to the most frequent class.

Our method assumes that all the leaves were scanned in the
same position, thus avoiding rotation dependence of the measured
features. If this is not the case, a preprocessing step should be
added to previously correct the position of all the leaves by check-
ing the primary vein direction.

The method has been tested on a database composed by only
three legume species, namely soybean, red bean and white bean,
and only three soybean cultivars. It is necessary to test the method
on an augmented database including new species and cultivars.



Table 4
Accuracy (mean� SE) for soybean cultivars detection.

Classification algorithm Per class accuracy (mean� SE%) Total accuracy (mean� SE%)

Cultivar #1 Cultivar #2 Cultivar #3

Combined veins
RF 67:83� 1:19 54:18� 1:17 19:15� 1:64 56:66� 0:76
RF RFE 66:87� 1:20 52:02� 1:09 16:80� 1:60 55:04� 0:67
SVMG 70:92� 1:17 54:64� 1:15 5:78� 1:14 56:78� 0:69
SVMG RFE 70:26� 1:31 54:74� 1:19 5:62� 1:15 56:47� 0:73
PDA 69:49� 1:24 57:24� 1:23 19:32� 1:90 58:76� 0:74
PDA RFE 70:11� 1:23 53:24� 1:11 19:02� 1:78 57:31� 0:77
Manual classification 47:23� 8:06 35:76� 3:71 39:47� 4:32 41:56� 3:01

Combined veins + 3 scales
RF 67:63� 1:04 57:12� 1:06 13:27� 1:63 57:10� 0:67
RF RFE 67:05� 1:04 56:09� 1:11 16:10� 1:71 56:69� 0:63
SVMG 71:41� 1:15 53:36� 1:15 6:67� 1:29 56:57� 0:65
SVMG RFE 68:54� 1:15 56:06� 1:23 11:80� 1:56 56:93� 0:67
PDA 64:53� 1:08 54:60� 1:16 27:03� 2:00 56:17� 0:70
PDA RFE 68:22� 1:12 58:40� 1:16 34:28� 2:37 60:20� 0:75
Manual classification 44:95� 2:00 42:78� 5:37 43:98� 6:97 43:94� 2:48
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Fig. 6. Total accuracy distributions over 10 runs of 10-fold cross validation for the different classification algorithms (soybean cultivar recognition). (a) 52 features, (b) 208
features.

Table 5
List of the 10 most selected features for each classifier and the cultivar classification problem. The percentage of times that each feature was selected is also shown.

RF with 52 features
VNN VTNL VMeV VNE AMA AMCA AMEq VMeA VMeSA AN
100% 100% 99% 98% 98% 98% 98% 97% 95% 89%

RF with 208 features
VNE3 VNE VNN VTNL AMCA2 AMEq2 VTNL3 AMEq1 VTNL1 AN
100% 100% 100% 100% 99% 99% 99% 98% 97% 97%

SVMG with 52 features
AN VTNL AMCA AMP AMMaA AMeE VMeO VNN AMEq VMeL
98% 94% 87% 78% 77% 76% 73% 71% 71% 70%

SVMG with 208 features
VTNL VTNL1 AMMaA3 AN VMW3 VMeV2 VMeA2 VMeO2 AME3 VNE3
99% 94% 82% 78% 77% 74% 71% 68% 65% 63%

PDA with 52 features
VTNL VNN VNE VML VMV AMCA AMMiA VMeO VMeA AN
100% 99% 93% 91% 91% 82% 63% 60% 57% 51%

PDA with 208 features
VNE1 VNN1 VTNL1 VNN2 VNE VTNL VMV VML VNE2 AMCA3
99% 99% 99% 92% 90% 88% 88% 85% 79% 79%
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4. Conclusions

In this work we show how an automatic image analysis and ma-
chine learning system can be implemented to classify leaves from
different species and varieties. This system can provide a reliable,
repeatable and economical means of recognizing plants, outper-
forming manual expert classification. By focusing on vein features
only, we attempt to deal with the problem of visually similar
leaves from different cultivars or varieties, which otherwise
require to be processed by expensive methods, such as DNA
analysis.

We implemented three automatic classifiers, namely Random
Forests, PDA and SVM with Gaussian kernel. We show that our
method works well independently of the employed automatic clas-
sifier. We also demonstrate how the usage of multiscale vein fea-
tures improves the classification accuracy in contrast to single
scale features for the problems under analysis. Additionally, we
show how the three classifiers can be used in combination with
RFE to estimate the relevance of the features in order to highlight
possible vein feature patterns for each species and cultivar.

Our proposed system was tested on two different problems. The
first one is the easiest one, dealing with different legume species,
and has already been considered in the recent literature. The veins
of these species present some differences that are perceivable by
the human experts, judging by the high accuracies they achieve
on this problem. However, our automatic procedure improves both
the human accuracy and the previous results reported in the
literature.

We also tested the proposed method on the more challenging
problem of classifying cultivars from the same species, where the
leaves differences within the same cultivar are approximately of
the same order as the visual differences between leaves from dif-
ferent cultivars. In this case, the performance of the proposed pro-
cedure is much lower than for the first recognition problem,
although the achieved average accuracy outperforms human ex-
perts results.

Even though we obtain low accuracies in this second problem,
they can be improved in the case of seed lot classification by taking
and classifying several leaf exemplars and labeling the seed lot
according to the most frequent class.

Once the proposed system has been trained on the species and
varieties of interest, it could be used to recognize new leaf speci-
mens directly by scanning the new leaf. The system automatically
processes the leaf image, segments the veins and computes the
whole set of features. After this, the trained classifiers use these in-
puts to predict the class of the plant.

Our results are encouraging, but further work is needed aimed
at extending this study to new species and varieties, augmenting
the plant database. Additionally, future work includes the addition
of new features in order to improve the accuracy for the cultivar
recognition. In this direction, semantic relations between vein
branches can be considered. Evaluating the implementation of
the proposed whole system to run in a mobile device is also of
great interest in the near future.

Acknowledgments

MGL, AEB and PMG acknowledge grant support from ANPCyT
PICT 2012-0181.
References

Agarwal, G., Ling, H., Jacobs, D., Shirdhonkar, S., Kress, W., Russell, R., et al. (2006).
First steps toward an electronic field guide for plants. Taxon, Journal of the
International Association for Plant Taxonomy, 55, 597–610.

Bama, B. S., Valli, S. M., Raju, S., & Kumar, V. A. (2011). Content based leaf image
retrieval (CBLIR) using shape, color and texture features. Indian Journal of
Computer Science and Engineering, 2(2), 202–211.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Camargo Neto, J., Meyer, G. E., Jones, D. D., & Samal, A. K. (2006). Plant species

identification using Elliptic Fourier leaf shape analysis. Computers and
Electronics in Agriculture, 50, 121–134.

Chaki, J., & Parekh, R. (2012). Designing an automated system for plant leaf recognition.
International Journal of Advances in Engineering & Technology, 2(1), 149–158.

Clarke, J., Barman, S., Remagnino, P., Bailey, K., Kirkup, D., Mayo, S., Wilkin, P. (2006).
Venation pattern analysis of leaf images. In Advances in visual computing. Lecture
notes in computer science (ISVC2006) (Vol. 4292, pp. 427–436).

Du, J.-X., Wang, X.-F., & Zhang, G.-J. (2007). Leaf shape based plant species
recognition [Special issue on intelligent computing theory and methodology].
Applied Mathematics and Computation, 185(2), 883–893.

Du, J.-X., Zhai, C.-M., & Wang, Q.-P. (2013). Recognition of plant leaf image based on
fractal dimension features. Neurocomputing, 116, 150–156.

Golzarian, M. R., & Frick, R. A. (2011). Classification of images of wheat, ryegrass and
brome grass species at early growth stages using principal component analysis.
Plant Methods, 7(28).

Guyon, I., Weston, S., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer
classification using support vector machines. Machine Learning, 46(1–3), 389–422.

Hastie, T., Buja, A., & Tibshirani, R. (1995). Penalized discriminant analysis. Annals of
Statistics, 23(1), 73–102.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning
(2nd ed.). Springer.

Im, C., Nishida, H., Kunii, T. L. (1998). Recognizing plant species by leaf shapes – A
case study of the Acer family. In International conference on pattern recognition
(Vol. 2, p. 1171).

Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial
Intelligence, 97, 273–324.

Larese, M. G., Craviotto, R. M., Arango, M. R., Gallo, C., & Granitto, P. M. (2012).
Legume identification by leaf vein images classification. In L. Alvarez, M. Mejail,
L. Gomez, & J. Jacobo (Eds.), Progress in pattern recognition, image analysis,
computer vision, and applications. Lecture notes in computer science (Vol. 7441,
pp. 447–454). Berlin Heidelberg: Springer.

Larese, M. G., Namías, R., Craviotto, R. M., Arango, M. R., Gallo, C., & Granitto, P. M.
(2014). Automatic classification of legumes using leaf vein image features.
Pattern Recognition, 47(1), 158–168.

Liaw, A., & Wiener, M. (2002). Classification and regression by randomforest. Rnews,
2(3), 18–22.

Meyer, D. (2009). Support vector machines. The interface to libsvm in package e1071.
Park, J., Hwang, E., & Nam, Y. (2008). Utilizing venation features for efficient leaf

image retrieval. Journal of Systems and Software, 81(1), 71–82.
Price, C. A., Symonova, O., Mileyko, Y., Hilley, T., & Weitz, J. S. (2011). Leaf extraction

and analysis framework graphical user interface: Segmenting and analyzing the
structure of leaf veins and areolas. Plant Physiology, 155, 236–245.

Pydipati, R., Burks, T. F., & Lee, W. S. (2006). Identification of citrus disease using
color texture features and discriminant analysis. Computers and Electronics in
Agriculture, 52, 49–59.

Sack, L., Dietrich, E. M., Streeter, C. M., Sanchez-Gomez, D., & Holbrook, N. M. (2008).
Leaf palmate venation and vascular redundancy confer tolerance of hydraulic
disruption. Proceedings of the National Academy of Sciences of the United States of
America, 105, 1567–1572.

Scoffoni, C., Rawls, M., McKown, A. D., Cochard, H., & Sack, L. (2011). Decline of leaf
hydraulic conductance with dehydration: Relationship to leaf size and venation
architecture. Plant Physiology, 156, 832–843.

Soille, P. (1999). Morphological image analysis: Principles and applications. Springer-
Verlag.

Solé-Casals, J., Travieso, C. M., Alonso, J. B., Ferrer, M. A. (2008). Improving a leaves
automatic recognition process using PCA. In IWPACBB (pp. 243–251).

Song, F., Mei, D., Li, H. (2010). Feature selection based on linear discriminant
analysis. In International conference on intelligent system design and engineering
application (ISDEA), 2010 Vol. 1 (pp. 746–749).

Sonka, M., Hlavac, V., & Boyle, R. (2008). Image processing analysis and machine
vision. Thomson.

Umbaugh, S. E. (2005). Computer imaging: Digital image analysis and processing. CRC
Press.

Valliammal, N., Geethalakshmi, S. (2011). Hybrid image segmentation algorithm for
leaf recognition and characterization. In International conference on process
automation, control and computing (PACC), 2011 (pp. 1–6).

Vapnik, V. (1995). The nature of statistical learning theory. Springer-Verlag.

http://refhub.elsevier.com/S0957-4174(14)00052-9/h0035
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0035
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0035
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0040
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0040
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0040
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0045
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0050
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0050
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0050
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0055
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0055
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0060
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0060
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0060
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0065
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0065
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0070
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0070
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0070
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0075
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0075
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0080
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0080
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0085
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0085
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0090
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0090
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0095
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0095
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0095
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0095
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0095
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0100
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0100
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0100
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0105
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0105
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0115
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0115
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0120
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0120
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0120
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0125
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0125
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0125
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0130
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0130
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0130
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0130
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0135
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0135
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0135
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0140
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0140
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0145
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0145
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0150
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0150
http://refhub.elsevier.com/S0957-4174(14)00052-9/h0155

	Multiscale recognition of legume varieties based on leaf venation images
	1 Introduction
	2 Materials and methods
	2.1 Leaf images dataset
	2.2 Unconstrained Hit or Miss Transform (UHMT)
	2.3 Vein segmentation
	2.4 Vein measurements
	2.5 Classification algorithms
	2.5.1 Random Forests (RF)
	2.5.2 Support Vector Machines (SVM)
	2.5.3 Penalized Discriminant Analysis (PDA)
	2.5.4 Recursive Feature Elimination (RFE)


	3 Results and discussion
	3.1 Legume species recognition
	3.1.1 RFE analysis

	3.2 Soybean cultivar recognition
	3.2.1 RFE analysis


	4 Conclusions
	Acknowledgments
	References


