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a b s t r a c t

Sulfide oxidase activity of Streptomyces genus is reported here for the first time. Three Streptomyces
strains were selected as new tools to access to enantioenriched R- and S-dialkyl sulfoxides. The bacterial
screening was carried out using cyclohexyl methyl sulfide as model substrate. Both sulfoxide anti-
podes were obtained in a one-pot, time-dependent biotransformation employing Streptomyces phaeo-
chromogenes NCIMB 11741 as biocatalyst. Streptomyces flavogriseus ATCC 33331produced mainly the
S-enantiomer, while Streptomyces hiroshimensis ATCC 27429 yielded enantiopure R-cyclohexyl methyl
sulfoxide.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Enantiomerically pure sulfoxides are valuable organic compounds
which are extensively used as building blocks in the production of
bioactive compounds (Wojaczynska and Wojaczynski, 2010). Among
the approaches to obtain optically active sulfoxides, the oxidation of
prochiral sulfides has become a very useful strategy (Holland, 2001).
Particularly, enzymatic oxidation is one of the most direct and
versatile strategies to achieve this goal. A wide variety of sulfide-
oxidizing enzymes has been described in recent years, with special
focus on Baeyer–Villiger monooxygenases (Rioz-Martínez et al.,
2010; Mascotti et al., 2013), peroxidases (Colonna et al., 1990), flavin
monooxigenases (Rioz-Martinez et al., 2011) and dioxygenases
(Boyd et al., 2004). Although their use as biocatalysts in large-scale
processes is hampered because of the low stability of the enzymes
under reaction conditions and the necessity of expensive cofactors,
the utilization of microbial whole-cells might overcome these issues.
Hence, several microorganisms have been successfully employed for
the asymmetric oxidation of aromatic sulfides, including fungi,
bacteria and yeasts (Adam et al., 2005; Pinedo-Rivilla et al., 2007;
Mascotti et al., 2012; Elkin et al., 2013). Nevertheless, the discovery
of novel wild-type whole-cell biocatalysts capable of performing
the oxidation of dialkyl sulfides with high enantioselectivity is still
a challenge. In the context of our research topic, we have conducted
a bacterial screening using cyclohexyl methyl sulfide as model

substrate in order to find novel biocatalysts capable of oxidizing
dialkyl sulfides with high stereoselectivity. Subsequently we studied
the biocatalytic performance of the selected microorganisms which
showed promising sulfide oxidase activity.

2. Materials and methods

2.1. Chemicals and microorganisms

Cyclohexyl methyl sulfide was purchased from Alfa Aesar.
rac-Cyclohexyl methyl sulfoxide and cyclohexyl methyl sulfone
were prepared by chemical oxidation of the corresponding sulfide
and exhibited physical and spectral properties in agreement with
those previously reported (Holland et al., 1994).

Culture media components were obtained from Merck, Difco
and Britania, and solvents from Merck, Sintorgan and Biopack.
Microorganisms were kindly supplied by the Colección Española
de Cultivos Tipo (CECT), Universidad de Valencia (Spain).

2.2. Growth conditions

Strains were cultured in liquid media, in an orbital shaker
(200 rpm) for 48 h at optimal temperature and medium according
to the American Type Culture Collection (ATCC), as follows:
Streptomyces (28 1C) in Streptomyces medium, Pseudomonas
(26 1C), Arthrobacter (28 1C), Aeromonas hydrophila (30 1C) in
nutrient broth II, Brevibacterium (30 1C) in Corynebacterium medium;
Citrobacter koseri (37 1C); Xanthomonas traslucens (26 1C); Bacillus
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cereus (30 1C) and Bacillus stearothermophilus (55 1C) in nutrient
broth I; Bacillus thermoglucosidasius (55 1C) in Bacillus thermogluco-
sidasius medium, Alicyclobacillus acidocaldarius (55 1C) in Alicycloba-
cillus acidocaldariusmedium. The saturated culture broths (stationary
phase, OD600¼3.9) were centrifuged (3,500 rpm, 20 min). Cell pellets
were washed with 0.1 M sodium phosphate buffer pH 6.0. After
centrifugation (10,000 rpm, 3 min) pellets were directly used as wet
whole-cell biocatalysts.

2.3. General procedure for biotransformation

Assays consisted on 2 mL final volume of 0.1 M sodium
phosphate buffer pH 6.0, 20 mM cyclohexyl methyl sulfide and
75 mg.mL-1 of wet weight biocatalyst (corresponding to 8 mg of
dry weight for S. hiroshimensis ATCC 27429) in 8 mL flasks.
Mixtures were stirred at 28 1C for 48 h. Samples were taken at 0,
18, 24 and 48 h for screening assays, and at 0, 6, 12, 20, 24, 30, 36
and 48 h for time-course experiments. Samples were centrifuged
(10,000 rpm, 3 min) and supernatants were extracted with ethyl
acetate and analyzed by GC-FID. Screening assays and time-course
experiments were repeated three times.

When sulfoxide overoxidation was assessed, racemic cyclo-
hexyl methyl sulfoxide (20 mM) was employed as substrate. For
the evaluation of cosolvents, cyclohexyl methyl sulfide (20 mM)
was dissolved in 2% (v.v�1) of IPA or DMSO. Biotransformations
were carried out in 10 mL final volume.

2.4. Analytical methods

GC-FID analyses were performed on a Perkin Elmer-Clarus 500
instrument. Conversion was determined using a 007 methyl 5%
phenyl silicone column. Temperature setting: 100 1C hold 2 min,
2 1C min�1 to 140 1C, hold 2 min. Injector: 200 1C; carrier gas N2:
25 cm seg�1; FID: 300 1C. Retention times: cyclohexyl methyl
sulfide 5.29 min, cyclohexyl methyl sulfoxide 16.20 min and cyclo-
hexyl methyl sulfone 19.15 min. Optical purity was determined
with a β-DEX-column. Temperature setting: 140 1C, 0.5 1C min�1

to 150 1C, hold 10 min, 0.5 1C min�1to 160 1C, hold 10 min. Injec-
tor: 200 1C, carrier gas N2: 25 cm seg�1; FID: 300 1C. Retention
times: S-sulfoxide 50.1 min, R-sulfoxide 50.9 min. Absolute con-
figuration of enantiomers was assigned using analytical pure
samples.

3. Results and discussion

The bacteria genera screened were chosen on the basis of their
known ability to catalyze several oxidative biotransformations
(Adam et al., 2004; Médici et al., 2011; Linares-Pastén et al.,
2012). Therefore, strains of Streptomyces, Pseudomonas, Citrobacter,
Arthrobacter, Bacillus, Alicyclobacillus, Aeromonas, Brevibacterium
and Xanthomonas were initially tested as biocatalysts to perform
the oxidation of the model sulfide. Out of the thirty one screened
microorganisms, Pseudomonas putida, Pseudomonas stutzeri and
Citrobacter koseri showed poor conversion of the substrate, whereas
Bacillus cereus, Streptomyces badius, S. hiroshimensis, S. phaerocromo-
genes and S. flavogriseus produced significant amounts (425%) of the
sulfoxide (Table 1).

In a second stage, the stereoselectivity of the microorganisms
showing positive sulfide oxidase activity was analyzed. Bacillus
cereus and Streptomyces badius gave a racemic mixture. The
three Streptomyces strains, namely S. hiroshimensis ATCC 27429,
S. flavogriseus ATCC 33331 and S. phaeochromogenes NCIMB 11741,
performed the sulfoxidation reaction with different enantioselec-
tivities (Fig. 1). It should be highlighted that S. hiroshimensis and
S. flavogriseus oxidized the substrate to the R- and S-sulfoxide,

respectively, with no overoxidation to the sulfone. Notably, the
substrate concentration tolerance was found to be higher than
the already reported for whole-cell sulfoxidation procedures (Kelly
et al., 1996). It is known that Streptomyces catalyzes aromatic
hydroxylations (Gopishetty et al., 2007), O- and N-dealkylations
(Niraula et al., 2011), amidations of carbonyl moieties (Bright et al.,
2011), alcohol oxidations (Liu et al., 2006), glycosylations (Marvalin
and Azerad, 2011) and hydrolysis of epoxides (Zocher et al., 2000)
and esters (Molinari et al., 2005). Hence, the sulfide-oxidase activity
of this genusis described herein for the first time.

To assess the biocatalytic performance of the selected micro-
organisms, time-course experiments were performed. It was
found that S. phaeochromogenes showed a complex biotransforma-
tion profile since the stereoselectivity was inverted throughout
the process (Fig. 2-A). The substrate was initially oxidized to the
S-sulfoxide with an excellent enantioselectivity (ee499%). Later,
the ee noticeably dropped (ee¼31%), revealing an evident oxida-
tion to the R-isomer. After this point, the reaction progressed
favoring the R-enantiomer accumulation. Finally, at 48 h an ee of
55% was achieved with a good conversion (c¼55%). This fact might
be explained by the occurrence of at least two simultaneously-
acting enzymes that reached their highest rates at different times.
Moreover, these may be expressed at different moments or reach
their highest activity under diverse metabolic conditions. Since the
formation of the sulfone was evidenced, a subsequent biotransfor-
mation employing rac-cyclohexyl methyl sulfoxide as substrate
was performed to determine the contribution of this reaction to
the sulfoxide optical purity (Table 2). Only a small amount of the
racemic substrate was oxidized to the sulfone and there was no
change in the enantiomeric ratio of both stereoisomers in the
remaining substrate. As a consequence, it was confirmed that this
specific reaction did not contribute to the final ee of the R-sulfoxide.

Table 1
Sulfide oxidase activity screening.

Strain Conversion

Aeromonas hydrophila ATCC 7966 –

Alicyclobacillus acidocaldarius ATCC 27009 –

Arthrobacter oxydansATCC15359 –

Arthrobacter oxydans ATCC 14358 –

Bacillus cereus ATCC 9634 þþ
Bacillus stearothermophilus ATCC 12980 –

Bacillus thermoglucosidasius ATCC 43742 –

Brevibacterium helvolum ATCC 19239 –

Brevibacterium linens ATCC 9172 –

Brevibacterium linens ATCC 9175 –

Citrobacter koseri ATCC 27156 þ
Pseudomonas putida ATCC 12633 þ
Pseudomonas syringae ATCC 10862 –

Pseudomonas stuzeri ATCC 17588 þ
Streptomyces sp. ATCC 11238 –

Streptomyces sp. ATCC 27448 –

Streptomyces badius ATCC 39117 þþ
Streptomyces baldaccii ATCC 23615 –

Streptomyces hiroshimensis ATCC 27429 þþþ
Streptomyces blastmyceticus ATCC 19731 –

Streptomyces cattleya ATCC 35852 –

Streptomyces flavogriseusATCC 33331 þþþ
Streptomyces fradiae ATCC 21096 –

Streptomyces griseostramineus ATCC 19768 –

Streptomyces griseusATCC10137 –

Streptomyces halstedii ATCC 10897 –

Streptomyces mobaraensis ATCC 27441 –

Streptomyces netropsis DSMZ 10846 –

Streptomyces phaeochromogenes NCIMB 11741 þþþ
Streptomyces setonii ATCC 39116 –

Xanthomonas traslucens ATCC 19319 –

Conversion is expressed as –, þ , þþ , þþþ , corresponding to ranges o5%, 5–25%,
25–50% and 450%, respectively. Samples were analyzed by GC-FID.
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When S. flavogriseus was used as biocatalyst, the maximal
sulfide conversion (c¼73%) was achieved in 20 h. Although the
optical purity of the product was poor, this strain was the only one
which showed a constant S enantiopreference (Fig. 2-B).

Finally, the assays carried out with S. hiroshimensis led to the
production of enantiopure R-sulfoxide (ee499%) with good con-
version (c¼61%) (Fig. 2-C). Considering that many of the processes
described for the asymmetric oxidation of dialkyl sulfides deal

with engineered bacteria or mutant enzymes (Kayser, 2009; Rioz-
Martinez et al., 2011), this result should be highlighted due to an
enantioselective transformation is successfully achieved by using a
wild-type ready-available microorganism.

It is known that the use of organic solvents might improve the
biotransformation of xenobiotic substrates in aqueous media
(Zheng et al., 2012). In the attempt of improving the substrate
conversion, further experiments with the addition of IPA and
DMSO, on the basis of their recognition as green solvents
(Sheldon, 2011), were run using S. hiroshimensis as biocatalyst.
These procedures did not improve the results obtained under
standard conditions, since lower conversions were observed.
Moreover, the addition of IPA resulted in a drop of the ee
(Table 3). In order to explain this, we assumed an evident, but
unexpected, inactivation of the enzyme/s involved in the trans-
formation. It has been reported that DMSO can decrease or inhibit
the enzymatic activity, as in the case of peroxidases and catalases

Fig. 1. Biotransformation of cyclohexyl methyl sulfide catalyzed by the selected Streptomyces strains.

Fig. 2. Time-course biotransformation profiles. Graphs A, B and C correspond to S. phaeochromogenes NCIMB 11741, S. flavogriseus ATCC 33331 and S. hiroshimensis ATCC
27429, respectively. (White bars: sulfide, black bars: sulfoxide, grey bars: sulfone, continuous lines: S-sulfoxide ee, dashed lines: R-sulfoxide ee).

Table 2
Biotransformation of rac-cyclohexyl methyl sulfoxide by S. phaeochromogenes
NCIMB 11741.

Time (h) Sulfoxide (%) Sulfone (%) Sulfide (%) Configuration and ee (%)

0 100 0 0 Racemic mixture
24 90 10 0 Racemic mixture
48 90 10 0 Racemic mixture
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(Rammler, 1967). Besides, some BVMOs may exhibit lower bio-
transformation yields and enantioselectivities when IPA is added
(de Gonzalo et al., 2006). This solvent may also trigger cofactor-
regenerating systems, thus activating other enzymes which might
affect the overall ee.

4. Conclusions

The ability of the Streptomyces genus of performing sulfooxida-
tions has been demonstrated for the first time. Three wild-type
Streptomyces strains capable of oxidizing cyclohexyl methyl sulfide
in an enantiocomplementary fashion as whole-cell biocatalysts
were discovered. These biocatalytic tools allowed the access to the
desire optically-enriched sulfoxide by simple, mild and green
processes, since moderate to good conversions and excellent
stereo- and chemoselectivities were achieved. The further optimi-
zation of the reaction parameters may contribute to improve the
productivity and envision large-scale applications.
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