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ABSTRACT: Composite materials formulated with a nat-
ural polyphenolic matrix (commercial tannin adhesive made
from quebracho tannin extract), pine woodflour as reinforc-
ing material, and hexamethylenetetramine as hardener were
prepared and tested. Scanning electron microscopy of frac-
tured samples was used to analyze the efficiency of the
wetting and adhesion of the filler to the surrounding matrix.
Thermogravimetric analysis was used in the thermal char-
acterization of the woodflour and the tannin extract. Flex-
ural, compression, and dynamic-mechanical tests were per-

formed on composites to study the relationship of the filler
content and particle size with the composite final properties.
Moreover, the influence of the moisture content on the phys-
ical and mechanical properties of the different composites
was analyzed. Results indicated that the mechanical prop-
erties were severely affected by the absorbed moisture.
© 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 000–000, 2004

Key words: tannin adhesives; woodflour composites; micro-
structure; thermal properties; mechanical properties

INTRODUCTION

In many countries, the development of new adhesives
is driven by environmental considerations, which in-
clude the reduction of emissions of volatile organic
compounds, such as phenol and formaldehyde. Most
scientific studies and technological reports on the ap-
plications of tannin extracts are related to their use in
the manufacture of adhesives for particleboards and
plywood, as well as for laminated woods. On the other
hand the use of woodflour as a reinforcing filler is an
attractive commercial alternative because of its low
cost and wide availability.

Polyflavonoid tannin extracts have been produced
and used industrially in many applications since the
end of the nineteenth century.1 Among these uses, the
major applications have been as tanning agents for the
manufacture of leather and wood adhesives.1,2 Poly-
flavonoid tannins are natural polyphenolic materials,
composed mostly of flavan-3ol repeating units (Fig. 1)
and smaller fractions of polysaccharides and sugars.
These polyphenolic materials can be hardened by re-
action with formaldehyde or hexamethylenetetramine
(HEXA) crosslinking agents.1,2

The reaction of HEXA with tannin adhesives in
aqueous solutions was studied by Pizzi,3,4 who
showed that HEXA is not a formaldehyde-yielding
hardener and thus it leads to cured products with low

formaldehyde emissions. The crosslinking reactions
proceed by formation of reactive HEXA fragments or
intermediates that react with the phenolic nuclei of the
polyflavonoid tannins.

The most widely used industrial tannins are ob-
tained from the wood of the quebracho tree (Schinopsis
balansae, Argentine) and from the bark of mimosa
(Acacia mearnsii, Brazil and South Africa). Most scien-
tific studies and technological reports on the applica-
tion of tannin extracts are related to their use in the
manufacture of adhesives for particleboards and ply-
wood, as well as for laminated woods.1,2 Studies that
report the behavior of these adhesives for the manu-
facture of molding powders or fiber composite mate-
rials are scarce in the open literature.5

Many authors have studied and reported informa-
tion about the characterization of different tannin ex-
tracts and their reactions with several hardeners.1,2,5–8

Nevertheless, analyses of the thermal and mechanical
properties of these composite materials have not yet
been published.

The focus of this work was on the analysis of the
thermal and mechanical properties of composite ma-
terials formulated from a commercial quebracho tan-
nin adhesive, pine woodflour, and HEXA as hardener:
the effect of moisture on the final properties of these
materials is also addressed.

Water absorption, flexural, compression, and dy-
namic-mechanical tests were performed on the com-
posites and the relationship between the filler (concen-
tration and particle size) and the measured properties
was studied.

Correspondence to: M. Mosiewicki (mirna@fi.mdp.edu.ar).

Journal of Applied Polymer Science, Vol. 91, 000–000 (2004)
© 2004 Wiley Periodicals, Inc.
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EXPERIMENTAL

Materials

The matrix was obtained by crosslinking of a commer-
cial quebracho tannin adhesive, Colatan GT100 (Uni-
tan S.A.I.C., Argentine). This is a fine brown powder
used as a 40% (by weight) aqueous solution in the
preparation of specimens, according to the usual com-
mercial practice. The hardener was hexamethylenetet-
ramine (HEXA; Mallinckrodt, Argentine), used in a
proportion of 10% with respect to the mass of dried
adhesive.

The chosen filler was pine woodflour (J. Dos Santos
Freire, Buenos Aires, Argentine). All the woodflour
particles passed through a 40-mesh sieve (U.S. Stan-
dard) and were retained successively by 60-, 100-, and
200-mesh sieves corresponding to average particle
sizes of 250 to 420, 150 to 250, and 75 to 150 �m,
respectively.

Techniques and testing

Compounding and molding

The composite materials were prepared by mixing the
filler and the 40 wt % tannin aqueous solution in an
intensive mixer. Improved wetting of the particles was
obtained by introducing the hardener (previously dis-
solved in water) at the end of the mixing step, given
that the advance of the crosslinking reaction is mini-
mized with this addition sequence. The resultant pow-
derlike mixture was introduced into a metal mold to
be cured under an applied pressure. Because of the
initial condition of the mixture, the method used re-
sembles the synthesizing technique of ceramics.

The mixture was cured in a metal mold (diameter:
145 mm; thickness: � 3 mm) at 160°C and 4.2 MPa for
30 min. The mold was cylindrical, closed with a piston
that applied the load of a heating hydraulic press to
the sample. Water vapor as well as some ammonium-

containing low molecular weight byproducts were
evacuated from the mold, which was not hermetic, but
that completely impeded the escape of the solids.

However, it was clear that a fraction of the products
of low molecular weight produced in the condensa-
tion did not leave the mold and contributed to the
formation of microvoids in this process. This “micro-
foaming,” which was distributed throughout the sam-
ple, contributed to reduce the overall volumetric con-
traction and cracking was eliminated. Actually, this
has been the goal of using fillers in thermosets for
years.

According to the objective of this work, samples
were prepared as follows:

1. By maintaining a fixed particle size (75–150 �m)
and varying filler contents from 60 to 90% by
weight with respect to total composite weight.

2. By maintaining a fixed filler content and vary-
ing particle size of the woodflour.

Because of the strong compatibility between the ligno-
cellulosic materials and the chosen matrix, it was not
necessary to use any compatibilizing or coupling
agents.

Specimens of each sample were dried in a vacuum
oven for 72 h at 60°C before testing.

Samples of the unfilled thermoset were prepared to
obtain the value of the density of the cured matrix.
Microvoiding occasioned by condensation byproducts
was of more concern in these samples because con-
traction during curing was not alleviated by the pres-
ence of the woodflour. Thus, two different techniques
were used to prepare the samples: (1) the tannin ex-
tract powder was mixed with 10% weight of HEXA
(dry powders) to promote the condensation; (2) the
tannin extract powder was molded to promote self-
condensation. In both cases, the reaction was carried
out under the same conditions as those used in the
preparation of the composite materials. These samples
were used only in the determination of the density of
the unfilled thermoset of the composites’ matrix. The
higher value measured for the self-condensated tannin
extract was preferred because, given that it produced
less-gaseous byproducts, it led to a material without
microvoiding.

Microscopy

The efficiency of dispersion during mixing was ana-
lyzed using optical microscopy. Scanning electron mi-
croscopy (SEM) was used to obtain microphotographs
of the fracture surfaces of the wood pine composites
(scanning electron microscope Model SEM 505; Phil-
ips, The Netherlands). The samples were previously
coated with gold.

Figure 1 Flavan-3ol repeating unit in polyflavonoid tannin.

2 MOSIEWICKI, ARANGUREN, AND BORRAJO
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Thermogravimetric analysis

Thermogravimetric tests were performed using a
TGA-50 thermogravimetric analyzer (Shimadzu,
Kyoto, Japan) at a heating speed of 10°C/min under
air atmosphere.

Dynamic-mechanical tests

Dynamic-mechanical tests were performed using a
Perkin–Elmer dynamic mechanical analyzer (DMA 7e,
length of specimen platform: 15 mm; Perkin Elmer
Cetus Instruments, Norwalk, CT), under a nitrogen
atmosphere. The dynamic and static stresses for the
material composites were maintained at 400 and 800
kPa and those for the matrix at 200 and 400 kPa,
respectively. The frequency of the forced oscillations
was fixed at 1 Hz and the heating rate was 10°C/min.
The specimens were cut to 20 � 3 � 2 mm3, and the
linear dimensions were measured up to 0.01 mm. At
least two replicate determinations were made for each
sample to ensure the reproducibility of results.

Moisture sorption

Humid environments were prepared in hermetic con-
tainers maintained at 15 � 2°C in equilibrium with
aqueous solutions of sulfuric acid (18 and 35 wt %) to
ensure 90 and 60% relative humidity (RH).

Specimens of each sample were dried to a constant
weight, determined with an analytical balance (�0.001
g), before exposure to humid environments.

The weight changes, attributed to moisture absorp-
tion, were recorded until no further change was de-
tected. All the samples were maintained under these
conditions for up to 100 days, a period of time that
was sufficiently long enough to reach the equilibrium
moisture content (EMC). The measurements were per-
formed on at least four specimens for each sample.

The objective was to determine the percentage mois-
ture content M (percentage weight gain), as mani-
fested by the weight gain of the material as a function
of time t:

M�t� �

Weight of wet material �
weight of dry material

Weight of dry material � 100 (1)

The EMC is the M(t) value evaluated at the steady
state, usually at the end of the test.

Compression tests

These tests were carried out on dry composites ac-
cording to ASTM D 695-85. The specimens were cut
from the molded plates in the form of prisms of 2.5
mm width and about 5 mm in height. An Instron 8501

universal testing machine (Instron, Canton, MA) was
used, and all measurements were performed at a
crosshead speed of 2 mm/min. The tests were per-
formed on at least three specimens for each sample.

Flexural tests

Three-point bending tests were performed on wet and
dry composites in accordance to ASTM D 790-93 stan-
dard (sample type 1) using an Instron 8501 Universal
testing machine at a crosshead speed of 2 mm/min.
The bending modulus (Eb), ultimate stress (�u), and
ultimate deformation (ru) were determined from the
stress–strain curves. At least four specimens of each
sample were tested.

Composite specimens of approximately 2.5 � 10
� 60 mm3 were cut from the molded plates for testing.

RESULTS AND DISCUSSION

Morphology analysis

Stiff gels are generally formed at room temperature,
by mixing aqueous solutions of tannin adhesive and
HEXA.9 Figure 2(a) and (b) show the results of incor-
porating HEXA before and after dispersing the filler in
the tannin aqueous solution. Incorporating the HEXA
hardener before the filler leads to inhomogeneous ma-
terials, with gel-like lumps of resin, agglomerating a
portion of the particles, while leaving other particles
unwetted and generating empty zones (holes) in the
material. The addition of HEXA after mixing the filler
leads to better dispersion of the particles in the resin
solution. Figure 2(b) shows that, in this case, most of
the particles are coated by the tannin solution.

The cured material shows good bonding between
the woodflour and the matrix. This adhesion could be
observed by SEM and is illustrated in Figure 3, which
shows the fracture surface of a sample tested in three-
point bending. Fiber pull out is scarcely observed,
whereas fiber breakage is the most common feature,
indicating that there is a good adhesion between the
matrix and the fiber.

The lumen of the wood cells appears partially un-
filled with the resin because of the high filler concen-
trations used. The amount of matrix is insufficient to
perfectly coat all the individual filler particles and so
direct aggregation of wood particles can occur. The
matrix presents a microfoamed structure that origi-
nated in the condensation reaction of the tannin ad-
hesive with HEXA during the cure molding process.
These features have an important effect on the density
of the composites. The experimental values were in
the range of 1–1.2 g/cm3, which were lower than the
densities predicted using the rule of mixtures as
shown:
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1
�composite

�
xmatrix

�matrix
�

xwoodflour

�woodflour
(2)

where � is the density and x is the weight fraction;
�matrix (1.375 g/cm3) is the experimental value ob-
tained for the tannin self-condensed resin [this value
was used instead of that corresponding to the hexa-
crosslinked tannin, which produced a microfoamed
matrix of lower density (voiding)]; and �woodflour (1.53
g/cm3) is taken as the density of the cell wall.10

Nico5 reported experimental density values close to
the theoretical predictions for similar composites.
However, to prepare these materials very high pres-
sures were used during curing (200–400 bar), which
are considerably higher than those used commercially.

Thermal characterization

These tests were carried out on samples of woodflour
and tannin adhesive to study their degradation behav-

Figure 2 Different photographs showing the tannin/HEXA complex: (a) HEXA incorporated before filler dispersion; (b)
HEXA incorporated after filler dispersion.

Figure 3 SEM micrographs of the composites (�1000) showing surface fractures from flexural tests. Matrix microvoiding
and interphase adhesion are indicated with arrows (black and white, respectively).
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ior and to select an optimum molding temperature for
curing the samples.

Figure 4 shows that thermal decomposition of
woodflour occurs in three main steps: (1) below 100–
120°C; (2) in the range of 120 to 350°C; and (3) above
350°C. Similar data were reported for lignocellulosic
materials.11

The first step corresponds to the loss of absorbed
moisture and does not involve degradation of the
material. The mass lost (7.7%) is in the same range of
the equilibrium moisture content observed in the
moisture absorption tests. The second step shows a
double peak with maxima at about 270 and 325°C. In
this region chain scissions occur and also water mol-
ecules are lost as a result of the intramolecular con-
densation of hydroxyl groups. Finally, in the third
step, pyrolitic degradation of the wood components
occurs.12,13

Figure 5 shows the thermal degradation curve for
the tannin adhesive. It is a quite complex curve that
shows the initial water loss (9.4% of the original
weight), followed by different degradation steps that
begin around 200°C. The complex condensed aromatic
structure of tannin leads to high thermal resistance.
Although wood degradation is almost complete at
500°C, tannin adhesive shows a remaining weight
(TG) of about 42%. Actually, the TG curve shows a
plateau at about 30%, which extends from 550 to
720°C, where the final degradation step takes place. It
is concluded that the tannin adhesive shows remark-
able thermal resistance, as is common in phenolic
resins.

The glass-transition temperature (Tg) of the tannin
adhesive was located at 126°C by differential scanning
calorimetry, the same region where Tg appears for
pure tannin.1

According to the above results, a temperature of
160°C was selected for the curing step. In these con-

ditions the tannin adhesive is above its glass transi-
tion, whereas thermal degradation is negligible.

Dynamic mechanical tests

The dynamic mechanical behaviors of the pinewood,
the HEXA-crosslinked tannin adhesive, and the com-
posites were evaluated in the bending mode.

Figure 6 shows the storage modulus obtained from
temperature scans for the different dry samples.

The dynamic modulus of the pinewood shows a
very slight increase of the modulus from the begin-
ning of the test to about 120°C. This change is related
to the loss of water, which acts as a plasticizer in wood
(as discussed in the TGA analysis). The storage mod-
ulus E� remains constant from that region up to about

Figure 4 TG (percentage of remaining weight) and DTG
(derivative signal) versus temperature curves for woodflour. Figure 5 TG (percentage of remaining weight) and DTG

(derivative signal) versus temperature curves for tannin ad-
hesive.

Figure 6 Storage modulus versus temperature for compos-
ites prepared with different percentages of filler and pine
wood (frequency 1 Hz).
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200°C, and then a continuous decrease occurs coinci-
dent with the second degradation step in wood.

Because the percentage of wood filler added to the
composites is relatively high, all of them show behav-
ior comparable to that of the wood, with the main E�
reduction beginning above 200–250°C.

The storage modulus of the composites at room
temperature increases as the wood filler concentration
is increased from 60 to 80% by weight. The 90% com-
posite shows lower modulus than the 80% sample.
The reason for this is the extremely high concentration
of particles, which precludes complete particle wet-
ting by the resin, so that the cohesion of the material is
compromised. In general, at the concentrations used
in this study, direct contact between filler particles is
mostly responsible for the load transfer in the com-
posites. Moreover, the particles introduce an elevated
degree of mechanical restraint that reduces the mobil-
ity and deformability of the matrix.

Moisture absorption

Figure 7 shows the equilibrium moisture content
(EMC) reached by the materials as a function of the
filler content at 60 and 90% relative humidity. The
results show an unexpected reduction of the EMC as
more woodflour is added to the material. This unusual
behavior is the result of the hygroscopic nature of the
tannin matrix, which presents a high proportion of di-
and tribenzylamine bridges.9 These groups are highly
polar and favor water absorption. Besides, the filler
and the polymeric matrix have an abundance of hy-
droxyl groups that also contribute to the hygroscop-
icity.

Moreover, in the case of the tannin matrix, the SEM
micrographs show a foamed morphology (Fig. 3),

which also increases the capacity of water absorption
by diffusion and capillarity effects.

As expected, the higher the ambient humidity, the
higher the EMC, given that the driving force for water
diffusion absorption increases. It can also be seen that
the effect is more important for the unfilled material
and becomes more moderate as the woodflour content
increases.

The fitted curve was obtained using the following
expression:

100
EMC % �

Xwoodflour

EMC %woodflour
�

Xmatrix

EMC %matrix

Xmatrix � 1 � Xwoodflour (3)

where Xwoodflour and Xmatrix are the wt % of woodflour
and matrix, respectively.

The EMC of woodflour (EMC%woodflour) was kept as
a fitting parameter of the expression. The resulting
values were 5.03 and 13.40 at 60 and 90% RH, respec-
tively, which are in the same order of magnitude as for
EMC values reported in the literature for other wood-
flours15 and are in agreement with the previous dis-
cussion concerning TGA.

Figure 8 shows the typical evolution of the water
absorption process as a function of elapsed time. All
samples showed a very high initial rate of water ab-
sorption, which is revealed by the steep initial slope of
the moisture content percentage versus time plots.

The rate of moisture absorption was modeled using
not only the classical equations for unidirectional dif-
fusion shown below, but also the diffusion coefficient
D as a fitting parameter averaged over the whole
curve.

Figure 7 Final (equilibrium) moisture content (EMC) as a
function of the wt % of filler at 60 and 90% RH.

Figure 8 Evolution of moisture content as a function of
time at 90 RH for the material loaded with 70 wt % wood-
flour. Symbols correspond to four replicate samples.
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The total amount of diffusing substance entered into
the sheet at time t (Mt) can be obtained from16 the
following equation:

Mt

M	
� 1 � �

n�0

	 8
�2n � 1�2�2 exp� � D�2

�2l�2 �2n � 1�2t� (4)

where D is the diffusion coefficient, 2l is the thickness
of the sheet, and M	 is the total amount of diffusing
substance that had entered into the sheet after an
infinite time.

The repeatability of the test was very good as well
as the resulting fitting but, because of the steep initial
slope, the model has a very low sensitivity to varia-
tions in the D parameter. For this reason, although it
was not possible to establish a functionality of D with
woodflour content, it was possible to calculate a range
of values for the diffusion coefficient of the samples
between 2 � 10�8 and 9 � 10�8 cm2/s. These values
are of similar in magnitude to those usually reported
for wood and similar composites.15

The effect of particle size on moisture absorption
was initially investigated. Table I shows the results for
a composite prepared with 70 wt % of woodflour.
Although the average particle sizes used cover a rel-
atively wide range, no significant differences were
found in the results. This finding is understandable in
view of the contribution of matrix and filler to mois-
ture absorption. Because the matrix is responsible for
the major part of the water absorbed in the composite,

details of the woodflour particles are not relevant to
these results.

Flexural and compression tests

Effect of the filler content

The stress–strain response is linear up to the point of
failure for all the dry composites, but shows some
bending for the humid materials (Fig. 9). This obser-
vation is attributed to the plasticizing effect of water
on wood cell wall components and the matrix.

Table II shows the bending modulus (Eb) of the
composites as a function of the filler content. The
elastic bending modulus increases with increasing
woodflour concentration up to 80 wt % and then de-
creases. The behavior is analogous to that observed in
dynamic mechanical tests. As mentioned before, this
could be explained by the incomplete wetting of the
particles, attributed to the high content of filler used.
A similar tendency can be seen in this figure for the
ultimate stress as a function of the concentration of
woodflour.

TABLE II
Flexural (Bending Modulus, Ultimate Stress, and Ultimate Deformation) and Compressive Properties (Compressive

Modulus and Ultimate Stress) as a Function of Neat Woodflour Content for Dry Samples

Woodflour
(wt %)

Flexural properties Compressive properties

Bending
modulus,
Eb (GPa)

Ultimate
stress, �u

(MPa)

Ultimate
deformation, ru

(�1000)

Compressive
modulus, Ec

(GPa)

Ultimate
stress, �u

(MPa)

60 3.49 � 0.79 31.10 � 6.65 14.30 � 4.10 0.91 0.14
70 4.27 � 0.43 39.51 � 4.77 10.74 � 1.68 1.52 0.19
80 4.94 � 0.37 48.24 � 9.42 10.13 � 0.68 2.03 0.48
90 4.41 � 0.55 35.18 � 7.32 8.99 � 0.72 1.03 0.13

TABLE I
Equilibrium Moisture Content for Pine Woodflour of

Different Average Particle Sizes

Woodflour (average
particle size, �m)

Equilibrium moisture content
(%)

60 RH 90 RH

250–420 6.14 � 0.22 15.89 � 0.05
149–250 6.59 � 0.31 15.85 � 0.04

74–149 6.57 � 0.12 16.71 � 0.05

Figure 9 Stress–strain response of the dry (—) and wet (– –
–) material with 80 wt % of filler.
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As is usually the case, the elongation of the com-
posites decreases with the increase of the filler content
in the samples.

It is known that fillers with higher stiffness than that
of the matrix can increase the modulus of composites,
but generally cause a dramatic decrease in the elon-
gation at break. Almost all the deformation occurs in
the matrix, if the filler is more rigid than the matrix.
On the other hand, if there is good adhesion between
the two components, a decrease of the elongation at
break of the composite can be expected.17,18 In the
present case, the mechanical response suggests good
adhesion, in agreement with the SEM microscopic
observations.

Similar behavior was found in compression tests
(Table II). Material failure occurred in the linear part
of the curve and no plastic deformation could be ob-
served. This behavior is explained as being the result
of combining a rigid matrix with a high concentration
of rigid particles.

Figure 10 shows the comparison of the results ob-
tained in three-point bending tests from dry, wet, and
redried samples for different filler weight percentages.
Regarding the properties of the wet samples at 90 RH
(after 100 days), they exhibit an important reduction of
the modulus attributed to moisture in the composites.
The decrease in Eb for the humid materials can be
attributed to two factors: changes in the wood cell wall
and matrix plastification. The disruption of highly
ordered hydrogen bonds in the wood structure,
through formation of less-ordered water–water hy-
drogen bonds, weakens the resistance of wood to ap-
plied stress and thus results in the loss of strength and
stiffness as the moisture content increases. It is impor-
tant to notice that the materials recover, although not
completely, after redrying, reaching property values
close to those corresponding to the original dry mate-
rials.

Effect of the particle size

Figure 11 shows the dependency of the flexural me-
chanical properties with the particle size. The modu-
lus and strength are lower for large size particles,
probably because of larger dispersion problems and
excessive direct particle–particle contacts. Large par-
ticle agglomerates are less effective in transfer load.
Decreasing the woodflour particles below a 100-mesh
sieve did not produce appreciable changes in the mea-

Figure 10 Comparison of flexural properties of dry (f),
wet (F), and redried (�) samples for different filler weight
percentages: (a) bending modulus (Eb); (b) ultimate stress
(�u); (c) ultimate deformation (ru).

Figure 11 Dependency of the flexural mechanical properties as a function of the particle size. Bending modulus, Eb (f);
ultimate stress, �u (E).

8 MOSIEWICKI, ARANGUREN, AND BORRAJO

F10

F11

tapraid5/z8e-polyapp/z8e-polyapp/z8e00504/z8e0046d04a bennicoj S�9 12/4/03 20:20 Art: 13125 Input-wsc



sured properties, indicating similar dispersion and
load transfer characteristics.

Compression tests (not shown) showed identical
trends.

CONCLUSIONS

The wetting behavior of woodflour by the aqueous
tannin solutions is excellent, leading to very good
matrix–fiber adhesion in the composite material.

Fracture surface morphologies show that the matrix,
consisting of the cured tannin material, is partially
foamed and the lumen of some wood particles is
incompletely filled with the matrix material. These
two features contribute to lower the experimental den-
sity from that corresponding to the compact material
predicted by the rule of mixtures.

Flexural and compression mechanical properties
reach a maximum at a woodflour concentration of
80%. Above that concentration, these properties di-
minish because the amount of tannin adhesive is in-
sufficient to wet the fibers uniformly. At a fixed wood-
flour concentration, the flexural and compression
modulus diminish when the size of woodflour parti-
cles increases.

The storage moduli of the composite materials have
reasonable and constant values up to 200°C. Above
this temperature, thermal degradation starts with the
consequent deterioration of the properties.

The mechanical properties of the composites are
significantly deteriorated because of water absorption.
Results show that the cured tannin matrix is more
hygroscopic than the woodflour fibers.

The water absorption rate is very high and practi-
cally independent of the concentration and size of the
woodflour in the composites. This effect is associated
with the high polarity of the composite components,

matrix microporous structure, and partially empty lu-
men of fibers.

In the dried state, the thermal and mechanical prop-
erties of the investigated woodflour/tannin materials
have values adequate for use in some industrial ap-
plications where high stiffness is an important re-
quirement. On the other hand this study shows that
their use in humid atmospheres must be avoided.
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