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Abstract
Accurate calculations of some response properties, like the NMR spectroscopic parameters, are

quite exigent for the theoretical quantum chemistry models together with the computational

codes that are written from them. They need to include a very good description of the electronic

density in regions close to the nuclei. When heavy-atom containing systems are studied, those

requirements become even higher. Given that relativistic effects must be included in one way or

another on the calculation of response properties of heavy-atoms and heavy-atom containing mol-

ecules, different schemes were developed during the past decades to include them in as good as

possible way. There are some four-component models, which include relativistic effects in a very

compact way, although calculations have large time-consumption; one also needs to deal with

new and unusual four-component operators. There are also two-component models, which in gen-

eral may be less accurate, although their application to property calculations on medium-size and

large-size molecules are feasible, and they maintain the application of usual operators. In this

review, we give the fundamentals of the two-component linear response elimination of small com-

ponent formalism, LRESC, together with some applications to few selected response properties.

New physical insights do appear when the LRESC model is used to analyze the effect of the envi-

ronment on magnetic shieldings, and when one search for the relativistic extension of well-known

nonrelativistic relationships like Flygare’s relation among the NMR magnetic shielding and the

nuclear spin-rotation constant. A similar relationship is found for the g-tensor and the susceptibil-

ity tensor.
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1 | INTRODUCTION

The strong influence of relativistic effects on atomic and molecular response properties of heavy-atom containing molecules was first shown few

decades ago.[1] Pyykk€o included relativistic effects in the calculations of NMR spectroscopic parameters by applying a relativistic model that resem-

ble Ramsey’s theory[2] and use relativistic molecular wave function of the relativistically parameterized extended H€uckel method, REX.[3] Other

more elaborated semi-empirical methods and codes were later on used to improve those first results.[4–6]

The importance of including relativistic effects on the calculation of response properties compelled the theoretical chemists to develop new

specific relativistic theories and models. Several formalisms and models appeared in the literature from that time, whose implementations gave

more accurate results than that obtained using previous schemes.[7–12] We can split them into two broad groups: four-component methods and

two-component methods.[12–15]

Even though accurate calculations of response properties of medium-size molecules, meaning molecules containing more than 10 heavy atoms

(belonging to the fourth row or below of the Periodic Table) cannot be actually performed using four-component ab initio methods, they provide
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the best theoretical framework to do it. Conversely, they still have some sound theoretical difficulties about the interpretation of mechanisms and

its electronic origin that will be mentioned below. One remarkable point that must be stressed is the fact that the four-component theoretical stud-

ies of magnetic properties using polarization propagators, one need to consider the contributions of the virtual pair creation/annihilation, to include

what is known within the nonrelativistic (NR) regime as the diamagnetic contributions. This naturally arises within the relativistic regime, but it is not

an easy task when the studies are performed with two-component methods.[12,16]

Polarization propagators are among the most powerful methods to study response properties [10,17–20] They can be used within both regimes,

relativistic, and NR. The implementations of its four-component version[21] does not include at the moment electron correlation til second-order of

approach,[22] which, at least within the NR regime must be used to get accurate results in the calculation of NMR magnetic properties.[10,14] Still the

four-component version of polarization propagators permit to get the paramagnetic and diamagnetic contributions by applying few well defined

approximations shown in Ref. [23] In such a case, the NR paramagnetic contributions arises from the excitations to the positive-energy spectra and

diamagnetic contributions by considering virtual pair creation/annihilation. We should mention that there is another recently developed scheme

which permit the calculation of diamagnetic and paramagnetic relativistic terms for magnetic properties.[24]

Taking into account these last findings, and the work of Fukui and coworkers[25] who developed a gauge invariant scheme by including the

external magnetic field in the Breit–Pauli Hamiltonian up to order c24, a new two-component formalism was derived by two argentinian

groups.[26,27] At almost the same time, another two-component formalism in which perturbation theory was applied to the Breit–Pauli Hamiltonian

(Breit–Pauli perturbation theory, BPPT) although with different grounds was derived.[28,29] The former model, known as linear response with elimi-

nation of small components, LRESC, was first applied to NMR magnetic shieldings, and then, recently, to other response properties.[30–32]

In this review, we shall shortly explain the basic ideas that underlies to the LRESC model, and what physical insights do appears from its applica-

tion. We shall explain it in a systematic way, and show how the leading relativistic corrections to the NR contributions of some response properties

do appear, and shed some light about the electronic mechanisms that only appears within the LRESC model. We shall also explain how the LRESC

models were used to get new relativistic relationships among few response properties, like among NMR magnetic shieldings and nuclear spin-

rotation constants, and among g-factors and susceptibilities. The analysis of the main characteristic of the LRESC will be illustrated with results of

calculations on molecular models and the following response properties: NMR magnetic shielding, nuclear spin-rotation tensor, g-tensor, and

susceptibility.

2 | RESPONSE PROPERTIES

The study of spectroscopic parameters starts with the proposal of phenomenological perturbing Hamiltonians, from which experimental spectra are

described accurately. In the case of perturbations that arise from internal or external magnetic fields and also from the molecular rotation, the phe-

nomenological expression of the energy of a closed-shell molecule is
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where L is the rotational angular momentum (related to the system angular velocity x5 I21 � L, with I the tensor of inertia). This momentum is

given only by the rotational states of the nuclei of the system.[32] In addition, B is an external magnetic field, and lN5
gNe
2mpc

IN is the magnetic moment

of nucleus N. gN, e, mp, and c are the g-factor of nucleus N, the electronic charge, nuclear mass and the speed of light in the vacuum, respectively. IN

is the spin angular momentum of nucleus N. Gaussian units are used throughout this work.

From this expansion, the set of molecular tensors are obtained as
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where rN and JNM are the nuclear magnetic shielding and the indirect nuclear spin coupling tensors (both NMR spectroscopic parameters), respec-

tively; MN the nuclear spin-rotation tensor; v the magnetic susceptibility tensor; and g the rotational g-tensor. DNM is the direct nuclear spin cou-

pling tensor which does not contribute to gas-phase and also to averaged liquid-phase spectra.

Conversely, the molecular Hamiltonian can be separated into two terms: the unperturbed Hamiltonian plus a much smaller perturbative

Hamiltonian
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H5HDCB1V5HDCB1VB1VN1VJ (5)

where HDCB is the Dirac–Coulomb–Breit Hamiltonian and the perturbation terms are: VB (due to an external uniform magnetic field, B), VN (due to

the magnetic moment of each nucleus of the molecule, lN), and VJ, due to the molecular rotation. There are several other perturbations that are not

considered, here, because we restrict our theoretical analysis to the aforementioned five response properties.

When point nuclear models are used, the vector potentials that are the sources of VB and VN are given by

AN5 lN3
rN
r3N

 !
(6)

AB5B3
r
2

(7)

where rN5r2RN refers to the electron position with respect to nucleus N, r taken from the origin of coordinates.

It is worth to mention, here, that definitions given in Equations 2–4 are independent of the theoretical regime in which they are expressed.

3 | MODELS AND LEVELS OF APPROACH

To explore the behavior of response properties three different formalisms are mainly used: wave-function-based, DFT-based, and polarization

propagators. The first two are widely known by the quantum chemistry community. The third one was developed in the early seventies of the 20th

century within a NR framework, and some years later was successfully extended to the relativistic framework.[21]

Polarization propagators give new insights on the way one realize which and how important are the electronic mechanisms involved in the the-

oretical description of response properties. It has some advantages: (i) their formal expressions are the same with independence of the regime where

they are expressed, (ii) the relation among the formal expressions used to calculate properties in both frameworks, relativistic, and NR, arise naturally

by scaling the velocity of light, c, and (iii) it appears quite clearly that paramagnetic and diamagnetic contributions as such are well defined only

within the NR regime. This separation does not appears within the relativistic regime, even though one can obtain them starting from such regime

and making c ! 1. One of its main disadvantage may be on the introduction of four-component electron correlation which is at the moment only

included at its first-order level of approach.

One should also mention that quite recently polarization propagators were written within the QED language giving new roads to include QED

effects together with all other well-known effects.[20] Furthermore, it was also shown that polarization propagators can be obtained from the path

integral formalism, and this fact explains why they have the advantages aforementioned.

The application of four-component methods to the calculation of response properties is highly demanding of computer-power and time-

consumption in ab initio methods when the study considers both, medium-size molecules and high accuracy. They are usually performed on top of

accurate calculation of wave functions and energy spectra, for which the inclusion of electron correlation is usually mandatory.[33–37] This is normally

worked out within the no-pair approximation although a new scheme to go beyond the no-pair approximation was published.[38,39] All the efforts

performed for getting accurate wave functions and energy spectra are then translated to response property calculations.

Furthermore, the usual and well-known nonrelativistic electronic mechanisms, which were historically considered by spectroscopist and quan-

tum chemist to analyze the physics underlying the whole set of spectroscopic parameters, do not appear explicitly in the actual four-component

expressions. In line with this, it must also be mentioned the appearance of the negative-energy branch of the energy spectra which introduce

another source of difficulties in the analysis of electronic mechanisms. So, two-component and scalar formalisms were proposed to reduce computa-

tional costs and continuous using the NR way of thinking about the physics behind response properties.

As mentioned in other recent reviews[12,15,40] and chapter of books,[41] there are several two-component models which were developed during

the last decades. In this review, our main concern is related with two-component methods, and specifically with the LRESC one. So we shall give a

broader explanation of its fundamentals together with its relation with polarization propagators as written in both regimes, relativistic, and NR.

3.1 | Four-component models

Some of the formally most accurate models to treat molecular properties of heavy-atom containing molecules are based on effective four-

component Hamiltonians, which were built on the grounds of their NR equivalents. We specially mention here, due to its relation with magnetic

properties, those developed by Malkin and coworkers,[42–44] at four-component DFT level,[45,46] the linear response theory at the four-component

relativistic molecular Hartree–Fock level of Saue and Jensen,[47] the theories and applications of Liu and coworkers[48–50] and the relativistic polar-

ization propagator formalism[19] which were all implemented at four-component level.

We want to mention few of the four-component calculations of the response properties we are interested in. Calculations of shieldings and

QED effects on water molecules,[13] the first calculations of NMR shielding and indirect spin–spin coupling tensors in hydrogen halides,[51] the gauge

origin independent calculations of molecular magnetizabilities,[52] and the calculation of the second-order magnetic properties of Bast and

coworkers.[53]
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Within the relativistic regime, the perturbative four-component Hamiltonians used to obtain the response properties we are interested in, are

the following

VB5a � AB; VN5a � AN; VJ52x � Je (8)

where a are the Dirac matrices, and Je 5 Le 11=2Re is the total angular momentum.

We shall now sketch the polarization propagators due to they can be separated, after an approximation, in two terms that are related with

equivalent terms in the two-component formalism we are going to explain below in some detail.

3.1.1 | Polarization propagators

The general form of the four-component polarization propagator is given in a matrix form as

hhP;QiiE5 P†
a ;P

†
b ; . . .

� � Waa Wab . . .

Wba Wbb . . .

. . . . . . . . .

0
BB@

1
CCA

21 Qa

Qb

. . .

0
BB@

1
CCA; (9)

where

Pa5 Pjhað Þ; (10)

and

Wab5 hajÊI2Ĥ0j~hb

� �
: (11)

In these expressions, h is a manifold of excitation operators from which the complete set of excited states can be obtained. Besides, the opera-

tors P and Q are described in a basis of excitation operators. Equations 10 and 11 contain binary products defined as

ðPjQÞ5h0 j½P†;Q� j0i (12)

We can write Equation 9 in a more compact way

hhP;QiiE5bPW21bQ (13)

The factor W21 of the rhs of Equation 9 is known as the principal propagator, while bP and bQ are the property matrix elements or, as

they were called within the semi-empirical models, the perturbators.[5] The principal propagator depends only on both the electronic molecular

system as a whole and the spin (time-reversal within the relativistic regime) dependence of the perturbators, but it is independent of the partic-

ular response property. It gives the main streamlines for the transmission of the interaction between the external perturbations related with the

property matrix elements, through the unperturbed electronic system. It means that the external perturbations intervene explicitly only on the

perturbators.

In the exact case, the polarization propagators and the term linear in each of both external perturbations of the second-order corrections to the

energy are equal, that is,

Eð2ÞPQ5Re hhP;QiiE50 (14)

When considering excitations from an occupied MO to both the positive- and negative-energy MOs one shall get an equivalent expression to

that of Equation 9,

hhP̂; Q̂iiE5 ~P
ee
; ~P

ep
� � Wee;ee Wee;ep

Wep;ee Wep;ep

 !21
Qee

Qep

 !
(15)

where ee and ep means that only excitations to positive-energy and negative-energy electronic orbitals are allowed, respectively.

One very important property of this formulation is the fact that both, the relativistic principal propagators and perturbators go to their NR coun-

terparts when the velocity of light is scaled to 1. This means that one can obtain the NR formal expressions and their results of calculations using

this natural limit.

3.1.2 | (e-e) or paramagnetic-like and (p-p) or diamagnetic-like contributions

At first sight, the relativistic four-component expressions of magnetic response properties do not show, explicitly, purely diamagnetic or purely para-

magnetic electronic mechanisms.[21] They provide only one mechanism that is paramagnetic-like due to its formal relation with such type of usual

NR electronic mechanisms. As an example, the full relativistic expressions of the NMR spectroscopic parameters are obtained as
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rM5
e2

c2
c a3rM
r3M

; c a3rG

* +* +
(16)

and

JMN5
e2�h2

hc2
gMgN

c a3rM
r3M

;
c a3rN
r3N

* +* +
(17)

where rG is the electronic position with respect to the Gauge origin. Constants cM and cN are the magnetogyric constants of nucleus M and N,

respectively.

We may ask then: how the diamagnetic and paramagnetic NR mechanisms do appear? As was shown in Ref. [23] the off-diagonal contributions

to the principal propagator are smaller than the diagonal ones. So, leading contributions will include only the diagonal terms, meaning that one can

neglect the Wee;ep and Wep;ee matrices of Equation 15 in not very accurate calculations. In such a case, taking P5Q5V, Equation 15 can be rewrit-

ten as

hhV;Vii � hhV;Viiðe2eÞ1hhV;Viiðp2pÞ

5bP;eeðWee;eeÞ21bQ;ee1bP;epðWep;epÞ21bQ;ep
(18)

From the last equation, it is seen that the hh; iiðe2eÞ and hh; iiðp2pÞ correspond to paramagnetic and the diamagnetic terms, respectively, of any

response property within the NR domain. So, the so called (e-e) and (p-p) contributions to the four-component expressions of the four-component

polarization propagators can be considered as paramagnetic-like and diamagnetic-like, respectively.

3.2 | Two-component models

The main advantages of the two-component models we want to stress are the following: (1) their less expensive use of computational resources,

and (2) the possibility of using well-known electronic mechanisms to explain the behavior of atomic and molecular response properties. This last

advantage refers to the elimination of the negative-energy branch of states and the application of the usual NR way of thinking about the physical

world. When one include the virtual creation and annihilation of electron-positron pairs and four-component operators, one is facing with new inter-

pretative difficulties about the physical mechanisms involved that are still far from being well understood.

Our main concern in this review is on the model coined LRESC, although we should mention few of the more representative two-component

methods that were applied or are being applied to calculate and analyze response properties. They are the methods developed by Fukui and

coworkers,[25,54] Vaara and coworkers or BPPT,[29] DKH,[55–59] ZORA,[60–62] 2c-NESC/HF,[63] and the different X2C models.[64–68]

Zaccari and coworkers[69] published the formal relation that relate the BBPT (Breit–Pauli perturbation theory) approach and another one formu-

lated by Kutzelnigg.[70] These three proposals appeared almost at the same time and started from different grounds.

3.3 | The linear response within the elimination of small components model

In this section, we shall explain in some detail the theoretical grounds of the LRESC model, which was originally presented as a scheme to describe

relativistic effects on the nuclear magnetic shielding tensor.[26,27] At present it has already been extended to analyze some other response properties

which will also be discussed in this review.

The overall procedure has two large steps:

a Apply the Rayleigh–Schr€odinger perturbation theory, RSPT, within the Fock space spanned first by HDCB and then another one spanned by

Hð0Þ. We consider explicitly the contribution of electronic states and positronic states. Afterwards a double perturbation theory is used to con-

sider either operators that conserve the number of particles or operators that do not conserve the number of particles. Some tricky procedures

are involved inside all this, and will be shown when necessary.

b The four-component matrix elements are transformed in two-component matrix elements by using the elimination of small component scheme,

ESC, to expand those matrix elements til order c24. All correcting terms will be expressed in the language of polarization propagators.

We start writing down the unperturbed four-component relativistic Hamiltonian for an N-electron atomic or molecular system, in an appropriate

form

HDCB5HD1VCB (19)

or

HDCB5Hð0Þ1Hð6Þ (20)
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HD is the summation of one-body Dirac Hamiltonians of a particle in the Coulomb field of the nuclei; and VCB stands for the Coulomb–Breit interac-

tions. The eigensolutions of HDCB span a Dirac–Fock space. Its elements have a definite number of particles, meaning N, N12, N14,. . . The term

Hð0Þ does not connect states with different number of particles in the Dirac–Fock space, and Hð6Þ gathers two-body operators that create or

destroy one- and two- electron-positron virtual pairs. In a nutshell, HDCB is a charge conserving operator although it does not conserve the number

of particles.

Introducing a complete set of eigenstates of HDCB in the Dirac–Fock space, the Eð2Þ term can be written as

Eð2Þ5
X
n 6¼0

h0jVjnihnjVj0i
E02En

2
X
n 6¼vac

hvacjVjnihnjVjvaci
Evac2En

(21)

where jni are those states that can be connected with j0i (or jvaci, in the second term) by the application of the perturbation V (that is divided in

three terms) of Equation 5. The state jvaci stands for the vacuum state in the QED picture. The second term of the rhs of Equation 21 means the

vacuum polarization contribution that arise due to the presence of the external (magnetic) field represented by the operator V. This term appears

only in a full relativistic scheme (there is no, and cannot be, such a term within the NR regime) and should be subtracted to properly account for the

modifications that a magnetic field produce in an atomic or molecular electronic system.[71,72] This procedure is similar to that proposed recently by

Liu and Lindgren.[38]

Then, starting from four-component matrix elements of Equation 21, and expanding them as a power series in c21 up to order c24, one finally

obtain the two-component LRESC model. To be coherent in the treatment of the rhs of Equation 21, we divided it in two terms which are defined

according to their NR limits.

Eð2Þ5Ea1Eb (22)

where the contributing terms to Ea fulfill lim c!1 ðE02EnÞ21 6¼ 0 and {jni} ! {jnai}. So, hereafter, they will represent those molecular states which

generate the Schr€odinger-type molecular spectrum and shall be explained in more detail below.

Conversely, Eb is built with those terms which fulfill a similar condition, for example, lim c!1 ðE02EnÞ21 50 and jni ! jnbi. They contain terms

which have contributions from at least one virtual electron-positron pair. The vacuum polarization effects arises due to the presence of the external

potential V and are included in Eb.

Within the relativistic regime, the four-component states fj0i; jnig do have a definite number of particles although they can be different

because of the virtual pair creation/annihilation implicit in V and HDCB. Conversely, the charge Q52eN is conserved in both regimes.

From Equations 21 and 22, the paramagnetic-like and diamagnetic-like contributions to the second-order energy are

Ea5
X
na 6¼0

h0jVjnaihnajVj0i
E02Ena

(23)

and

Eb5
X
nb 6¼0

h0jVjnbihnbjVj0i
E02Enb

2
X

nb 6¼vac

hvacjVjnbihnbjVjvaci
Evac2Enb

(24)

Few considerations shall explicitly be given here:

1. The eigenstates jnai have a definite number of particles. The N-particle eigenstates of Hð0Þ are written as fjnð0Þa i � jnNig,
2. We shall consider zeroth- and first-order contributions to eigenstates jnai (jnai5 jnð0Þa i1 jnð1Þa i, being jnð1Þa i5P m

jmihmjHð6Þ jnNi
EnN2Em

),

3. The eigenstates fjnbig of Hð0Þ are states of N62 or N64 particles and will be written as fjnð0Þb i � jnKi;K5N62;N64g.

Based on these considerations, only Ea has matrix elements with no virtual pair contributions, NP, and both, Ea and Eb, do have few contributions

due to the effect of one- and two- virtual pairs.

Ea ’ ENP
a 1EVPa (25)

We want now to consider the Equation 24 because we proposed for it a tricky solution. Given that one should calculate matrix elements that

contain positive and negative energy states, together with difference of energies that include the whole branch of negative-energy states, we

adopted the proposal used previously in Ref. [23]: the inverse of the difference of energies can be approximated by

E02Enbð Þ2152 2mc21Dnb0

� �21 ffi 2
1

2mc2
21

E02Enb
2mc2

� �
(26)

where Dnb0 5 Enb2E022mc2 is of order c0 or lower so that
Dnb0

2mc2 can be considered as an expansion parameter. We make use of the fact that, within

the QED picture, negative energy solutions of the Dirac equation are re-interpreted as positive energy states for positrons.
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Introducing this relationship in Equation 24

Eb ’ 2
1

2mc2
X
nb

�	
0

����2V1 1
2mc2

½HDCB;V�
����nb


hnbjVj0i

�

1
1

2mc2
X
nb

�	
vac

����2V1 1
2mc2

½HDCB;V�
����nb


hnbjVjvaci

�

5EN12
b 1EN14

b

(27)

where we have used

ðE02EnÞh0jVjnbi5h0j½HDCB;V�jnbi (28)

Then Equation 22 do have the following four terms[26]

Eð2Þ ’ ENP
a 1EVPa 1EN12

b 1EN14
b (29)

Each one of these four terms could have one-body and/or two-body contributions. They explicitly are

ENP
a 5ENP

a ð1Þ1ENP
a ð2Þ (30)

EVPa 5EVPa ð2Þ (31)

EN12
b 5EN12

b ð1Þ1EN12
b ð2Þ (32)

EN14
b 5EN14

b ð2Þ (33)

When the contribution of positronic states is taken separated of that of electronic states, the addition of the first two terms give Eðe2eÞ, and

equivalently, the addition of the last two terms give Eðp2pÞ. Furthermore, the lowest order of relativistic corrections of Eðe2eÞ and Eðp2pÞ is c22.

In the formalism of relativistic polarization propagators (see subsection 3.1.1), Eðe2eÞ is related with the positive energy - positive energy cou-

pling terms of the linear response functions. It yields the so-called “electron-electron” (e-e) rotations. The expansion of Eðe2eÞ will lead to the para-

magnetic term (NR) and its (relativistic) corrections, as shown below. Eðp2pÞ is related with contributions from electronic—positronic coupling terms

of the linear response functions, yielding the so-called “electron-positron” (p-p) corrections. From the Eðp2pÞ energy correcting terms we shall get the

usual diamagnetic contributions to magnetic properties at the NR limit, in addition to its relativistic corrections.

Now, we can go further and supply some details of the second large step, which consist in the application of the scheme of elimination of the

small components to the matrix elements of Equations 23 and 27. In this way, the final expressions shall all be expressed in terms of positive-

energy orbitals.

The four-component matrix elements are transformed to the Pauli space of spinors, j~/ ii by applying the ESC method

h/ð4Þ
i jVj/ð4Þ

j i ffi h~/ ijOðVÞj~/ ji: (34)

Given that we are interested only in the leading order relativistic effects, we shall retain terms up to order c22, and so OðVÞ ffi OnrðVÞ1Oð2ÞðVÞ,
where OnrðVÞ is the NR operator and the remaining term is the leading order relativistic correction to operator V.

According to Refs. [26,28,73], the two-component operators that are actually used in the LRESC model

Oða � ABÞ Oða � ANÞ Oð2x � JeÞ (35)

are obtained when the Equation 34 is applied to the operators of Equation 8 (see Appendix). We shall consider that

j/ð4Þ
i i5

j/L
i i

j/S
i i

 !
(36)

together with the fact that the normalized wave-function is given by

j/L
i i5Nj~/ ii5 12

p2

8c2

� �
j~/ ii; (37)

and the usual ESC relationship among the small and large components

j/S
i i ’

1
2mc

11
VC2Ei
2mc2

� �
ðr � pÞj/L

i i (38)

being the large component exact up to order c22.

The two-component spinors that are solutions of the Breit–Pauli Hamiltonian are expanded in its base. Such a Hamiltonian is obtained from

h/ð4Þ
i jHDCBj/ð4Þ

j i ffi h~/ ijHBPj~/ ji: (39)

where
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HBP5HS1D; (40)

HS stand for the Schr€odinger molecular Hamiltonian and the operator D do contain the generalized N-particle space operators of one-body, D1,

and two-body, D2, terms.[26] The complete one-body term is D15HMv=Dw 1HSOð1Þ, where

HMv52
p4

8m3c2
(41)

HDw5
1

8m2c2
r2VC (42)

HSOð1Þ5
1

4m2c2
r � rVC3p
� �

; (43)

and VC represent the electron-nucleus coulombic attraction. The two-body contribution to D is D25HDwð2Þ 1HOO1HFC2SS 1HSOð2Þ1HSOO.

We are now able to show the final formal expressions for Eðe2eÞ and Eðp2pÞ. So, for two perturbative operators, V1 and V2, the (e-e) contribution

to the energy can be expressed as

ENP
a ðV1;V2Þ5 Eð2Þ OnrðV1Þ;OnrðV2Þð Þ1Eð2Þ OnrðV1Þ;Oð2ÞðV2Þ

� �
1Eð2Þ Oð2ÞðV1Þ;OnrðV2Þ

� �
1Eð3Þ OnrðV1Þ;OnrðV2Þ;Dð Þ;

(44)

where Eð2Þ and Eð3Þ are the second- and third-order corrections to the (NR) energy:

Eð2ÞðA;BÞ5
X
n6¼0

h0jAjnihnjBj0i
E02En

1c:c; (45)

and

Eð3ÞðA;B;CÞ5
X
n;m6¼0


 h0jAjnihnjB2hBijmihmjCj0i
ðE02EnÞðE02EmÞ

1
h0jBjnihnjC2hCijmihmjAj0i

ðE02EnÞðE02EmÞ

1
h0jCjnihnjA2hAijmihmjBj0i

ðE02EnÞðE02EmÞ
�
1c:c:;

(46)

A, B, y C are N-particle operators, j0i is the ground state, c:c: indicate the complex conjugate of the preceding terms, and hXi is the ground-

state expectation value of the operator X (X5A, B, C). When A5B, Equations 45 and 46 do not include the c:c: terms.

To complete the explicit expressions of Ea we give EVPa as

EVPa ðVÞ52
1

2mc2
X
n6¼0

h0NjHð6ÞPN12V1VPN12Hð6ÞjnNihnNjVj0Ni
E0N2EnN

2
1

2mc2
X
n6¼0

h0NjVjnNihnNjHð6ÞPN12V1VPN12Hð6Þj0Ni
E0N2EnN

(47)

where V5V11V2.

Conversely, the actual expressions of Eb are found through some tricky procedures,[26] although we shall sketch, here, the main ones. From

Equation 27 we define the operator X(V) as

XðVÞ52V1
1

2mc2
½HDCB;V� (48)

This operator has two different terms: one-body or X(V; 1) and two-body or X(V; 2). They are

XðV;1Þ52V1
1

2mc2
½HD;V� (49)

and

XðV;2Þ52V1
1

2mc2
½VB;V� (50)

due to [VC, V]50.

Furthermore, for the calculation of the response to two external fields, V should include both of them. Then, being
X

jnbihnbj5 Pp a projector

onto positronic states, or making explicit that Pp is a projection onto the K-particle manifold of the Dirac–Fock space (
X

jnKihnK j5 PK) we can write

both terms of Equation 27 as (For more details see eqs. 61, 62, and 70–75 of Ref. [26])
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EN12
b ðVÞ52

1
2mc2

h0NjXðVÞPN12Vj0Ni1 1
2mc2

hvacjXðVÞP2Vjvaci (51)

and

EN14
b ðVÞ5 1

8m2c4
h0NjHð6ÞPN14VPN12Vj0Ni1h0NjVPN12VPN14H

ð6Þj0Ni
� �

2
1

8m2c4
hvacjHð6ÞP4VP2Vjvaci1hvacjVP2VP4H

ð6Þjvaci
� � (52)

where V5V11V2. If we consider only those terms that involves the one-body part of HDCB (see Equation 32), we get[26]

EN12
b ð1Þ5 1

2mc2
h0NjV1 Pp XðV2;1Þ1V2 Pp XðV1;1Þj0Ni (53)

In the case of magnetic perturbations, the term EN14
b is canceled out with one of the different contributions to EN12

b , although it does not hap-

pens for other perturbative Hamiltonians.

At the end, the actual expressions usable to calculate the (e-e) and (p-p) contributions to atomic and molecular response properties are those of

Equations 44 and 53, respectively.

We should mention that polarization propagators can be applied to calculate every second-order static molecular property at four- or two-

component level of approach. This is apparent from the following equation

Eð2ÞV1V2
5Re hhV1;V2iiE50; (54)

where V1 and V2 are the interaction Hamiltonians that consider external perturbations acting on the unperturbed system. Eð2ÞV1V2
stands for the

second-order correction to the atomic or molecular electronic energy. Response properties are obtained from these expressions.[19]

Within the LRESC model they have a form equivalent to Equation 54

Eð2ÞOðV1ÞOðV2Þ5Re hhOðV1Þ;OðV2Þ iiE50; (55)

where OðV1Þ and OðV2Þ are the operators V1 and V2 written in the framework of the two-component LRESC model.

3.4 | Response properties within the LRESC model

The actual expressions, up to order c22, of the formal two-component operators mentioned in Equations 35, 44, and 55 are

OnrðVNÞ5HPSO1HFC=SD (56)

Oð2ÞðVNÞ5HPSO2K1HFC=SD2K (57)

OnrðVBÞ5HOZ1HSZ (58)

Oð2ÞðVBÞ5HOZ2K1HSZ2K1HB2SO (59)

OnrðVJÞ5HBO2L1HBO2S5HBO2J (60)

Oð2ÞðVJÞ50 (61)

where all explicit expressions of perturbative Hamiltonians are given in the Appendix.

Then, combining two of the perturbative potentials we obtain all tensors we are interested in: VN with VB give the NMR magnetic shielding; VN

with VJ give the spin-rotation tensor; VB with VJ give the g-tensor and VB with VB give the magnetizability. We should also mention that combining

VN with VM we would obtain the J-coupling tensor, JNM, which still have some problems to be worked out within the LRESC model. We should also

mention that, combining VJ with VJ we obtain the operator X that gives the effective tensor of inertia, as mentioned in Ref. [74] but now including

relativistic effects.

In the last set of equations, the NR perturbative Hamiltonians are the following: HPSO is the paramagnetic spin orbit, HFC=SD is the Fermi contact/

spin dipolar, HOZ is the orbital Zeeman, and HSZ is the spin Zeeman. They are originated in the electronic interactions with either, the magnetic

moments of the nucleus N, lN, or with an external magnetic field B. Conversely, HBO2L and HBO2S are the Born–Oppenheimer perturbations that

appears due to the rotation of the nuclear system and is associated with the electronic orbital L and electronic spin S angular momenta, with respect

to the center of mass, CM, of the molecule.

The leading order relativistic corrections are: HPSO2K, the Kinetic-paramagnetic spin orbit, HFC=SD2K, the Kinetic-Fermi contact/spin dipolar, HOZ2K,

the Kinetic-orbital Zeeman, HSZ2K, the Kinetic-spin Zeeman, and HB2SO, the so-called magnetic field induced spin-orbit.

In TablesT1 1 andT2 2, we show a summary of how the (e-e) contributions of properties are expressed within the LRESC model, up to order c22 (see

Equation 44). As usual ;½ � and f; g represent commutator and anticommutator operations, respectively.

Gaussian atomic units (e5m5�h51 and c5137.0359998) are used from here.
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3.4.1 | The NMR magnetic shielding tensor

We now give a brief account of the leading order LRESC corrections to the shielding tensor, r. The correcting terms are summarized in Table 1

where the whole branch of one-body and two-body operators is displayed. In the calculations only one-body operators will be considered.

The whole set of leading relativistic corrections had been clustered in different ways: (i) taking into account their spin character, as singlet or tri-

plet; (ii) taking into account their response order in perturbation theory, namely first-, second-, or third-order; and (iii) regarding the historical classifi-

cation of paramagnetic and diamagnetic terms. We should mention that Vaara and coworkers proposed also to cluster the corrections as “passive”

and “active.”[28]

In TablesT3 3 andT4 4, we show all corrections grouped as paramagnetic and diamagnetic, together with their correcting terms. The operators

involved in both Tables are corrections to the Schr€odinger Hamiltonian of singlet-type, that is, Mass velocity (HMv) and Darwin (HDw) operators; and

of triplet-type as is the case of Spin-orbit (HSOð1Þ) operator.

Regarding the diamagnetic corrections that appears in Table 4, both are of singlet type, although one is of zeroth order and the other one of

first order.

From Equation 53, the (p-p) contribution to the shielding tensor can be obtained making V15VN and V25VB. With this replacement, the contri-

butions of Table 4 can be expressed as

Erðp2pÞðVN;VBÞ5h0jHDiaj0i2 1
4c4

h0jHDia2Kj0i1Eð2ÞðHDia;HMv=DwÞ (62)

where

TABLE 1 LRESC contributions to the no-pair (e-e) part of four-component expressions

Property OðV1Þ OðV2Þ D LRESC contributions to ENP
a

a

r
ðe2eÞ
N

OnrðVNÞ OnrðVBÞ - hhHPSO
N ;HOZii

OnrðVNÞ Oð2ÞðVBÞ - hhHPSO
N ;HOZ2Kii1 hhHFC=SD

N ;HSZ2Kii
1 hhHFC=SD

N ;HB2SOii
Oð2ÞðVNÞ OnrðVBÞ - hhHPSO2K

N ;HOZii
OnrðVNÞ OnrðVBÞ D1 hhHPSO

N ;HMv=Dw ;HOZii
1 hhHFC=SD

N ;HSOð1Þ;HOZii1 hhHFC=SD
N ;HSOð1Þ;HSZii

OnrðVNÞ OnrðVBÞ D2 hhHPSO
N ;HDwð2Þ;HOZii1 hhHPSO

N ;HOO;HOZii
1 hhHPSO

N ;HFC2SS;HOZii
1 hhHFC=SD

N ;HSOð2Þ;HOZii1 hhHFC=SD
N ;HSOð2Þ;HSZii

1 hhHFC=SD
N ;HSOO;HOZii1 hhHFC=SD

N ;HSOO;HSZii

Melecðe2eÞ
N

OnrðVNÞ OnrðVJÞ - hhHPSO
N ;HBO2Lii

OnrðVNÞ Oð2ÞðVJÞ - —

Oð2ÞðVNÞ OnrðVJÞ - hhHPSO2K
N ;HBO2Lii

OnrðVNÞ OnrðVJÞ D1 hhHPSO
N ;HMv=Dw ;HBO2Lii

1 hhHFC=SD
N ;HSOð1Þ;HBO2Lii1 hhHFC=SD

N ;HSOð1Þ;HBO2Sii
OnrðVNÞ OnrðVJ D2 hhHPSO

N ;HDwð2Þ;HBO2Lii1 hhHPSO
N ;HOO;HBO2Lii

1 hhHPSO
N ;HFC2SS;HBO2Lii

1 hhHFC=SD
N ;HSOð2Þ;HBO2Lii1 hhHFC=SD

N ;HSOð2Þ;HBO2Sii
1 hhHFC=SD

N ;HSOO;HBO2Lii1 hhHFC=SD
N ;HSOO;HBO2Sii

Jðe2eÞ
NM

OnrðVNÞ OnrðVMÞ - hhHPSO
N ;HPSO

M ii1 hhHFC1SD
N ;HFC1SD

M ii
OnrðVNÞ Oð2ÞðVMÞ - hhHPSO

N ;HPSO2K
M ii1 hhHFC=SD

N ;HFC=SD2K
M ii

Oð2ÞðVNÞ OnrðVMÞ - hhHPSO2K
N ;HPSO

M ii1 hhHFC=SD2K
N ;HFC=SD

M ii
OnrðVNÞ OnrðVMÞ D1 hhHPSO

N ;HMv=Dw ;HPSO
M ii

1 hhHPSO
N ;HSOð1Þ;HFC=SD

M ii1 hhHPSO
M ;HSOð1Þ;HFC=SD

N ii
1 hhHFC=SD

N ;HMv=Dw ;HFC=SD
M ii1 hhHFC=SD

N ;HSOð1Þ;HFC=SD
M ii

OnrðVNÞ OnrðVMÞ D2 hhHPSO
N ;HDwð2Þ1HOO1HFC2SS;HPSO

M ii
1 hhHPSO

N ;HSOð2Þ1HSOO;HFC=SD
M ii

1 hhHPSO
M ;HSOð2Þ1HSOO;HFC=SD

N ii
1 hhHFC=SD

N ;HDwð2Þ1HOO1HFC2SS;HFC=SD
M ii

1 hhHFC=SD
N ;HSOð2Þ1HSOO;HFC=SD

M ii
aElectronic contributions to the molecular energy (NR linear and quadratic responses).
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HDia5AN � AB (63)

HDia2K52
1
4c4

2
lN � LN
r3N

 !
B � LNð Þ1B � BN12 AN � ABð Þp212p lN � Bð ÞdðrNÞ

" #
(64)

with B5r3AB, the external magnetic field, and BN5r3AN. In addition, LN5ðr2rNÞ3p is the electronic angular momentum with respect to the

nucleus N.

All the details concerning the derivation of the leading order relativistic corrections to Erðp2pÞðVN;VBÞ are given elsewhere.[26]

We can then express the (e-e) contribution of Equation 44 within the LRESC model as (see Table 1)

Erðe2eÞðVN;VBÞ5 Eð2ÞðHPSO;HOZÞ1Eð2ÞðHPSO2K;HOZÞ
1 Eð2ÞðHPSO;HOZ2KÞ1Eð2ÞðHFC=SD;HSZ2K1HB2SOÞ
1 Eð3ÞðHPSO;HMv=Dw;HOZÞ
1Eð3ÞðHFC=SD;HSOð1Þ;HOZÞ1Eð3ÞðHFC=SD;HSOð1Þ;HSZÞ:

(65)

where the one-electron operator D1 do contain the relativistic corrections to the Schr€odinger Hamiltonian, HMv=Dw and HSOð1Þ.

3.4.2 | The nuclear spin-rotation tensor

Few years ago a new relativistic formalism was developed to obtain the spin-rotation tensor.[30,75] Such a tensor do have a nuclear in addition to an

electronic contribution. This last one is also divided in two terms: (e-e) and (p-p) contributing terms. A little later Liu and coworkers proposed another

formalism, based on a body-fixed relativistic molecular Hamiltonian.[49,76] The formulation of the SR tensor within the LRESC formalism requires the

knowledge of two terms of the second-order corrections to the energy: EMðe2eÞ and EMðp2pÞ. Hereafter, only ENPa is considered to obtain EMðe2eÞ,

whereas for EMðp2pÞ only the EN12
b ð1Þ will be taken into account. The first term is

TABLE 2 LRESC contributions to the no-pair (e-e) part of four-component expressions

Property OðV1Þ OðV2Þ D LRESC contributions to ENPa
a

gelecðe2eÞ OnrðVBÞ OnrðVJÞ - hhHOZ;HBO2Lii
OnrðVBÞ Oð2ÞðVJÞ - —

O2ðVBÞ OnrðVJÞ - hhHOZ2K;HBO2Lii
OnrðVBÞ OnrðVJÞ D1 hhHOZ;HMv=Dw ;HBO2Lii
OnrðVBÞ OnrðVJÞ D2 hhHOZ;HDwð2Þ;HBO2Lii1 hhHOZ;HOO;HBO2Lii

1 hhHOZ;HFC2SS;HBO2Lii

velecðe2eÞ OnrðVBÞ OnrðVBÞ - 1
2 hhHOZ;HOZii

OnrðVBÞ Oð2ÞðVBÞ - 1
2 hhHOZ;HOZ2Kii

Oð2ÞðVBÞ OnrðVBÞ - 1
2 hhHOZ2K;HOZii

OnrðVBÞ OnrðVBÞ D1
1
2 hhHOZ;HMv=Dw ;HOZii

OnrðVBÞ OnrðVBÞ D2
1
2 hhHOZ;HDwð2Þ;HOZii1 1

2 hhHOZ;HOO;HOZii
1 1

2 hhHOZ;HFC2SS;HOZii

Xðe2eÞ OnrðVJÞ OnrðVJÞ - 1
2 hhHBO2L;HBO2Lii

OnrðVJÞ Oð2ÞðVJÞ - —

Oð2ÞðVJÞ OnrðVJÞ - —
OnrðVJÞ OnrðVJÞ D1

1
2 hhHBO2L;HMv=Dw;HBO2Lii

OnrðVJÞ OnrðVJÞ D2
1
2 hhHBO2L;HDwð2Þ;HBO2Lii1 1

2 hhHBO2L;HOO;HBO2Lii
1 1

2 hhHBO2L;HFC2SS;HBO2Lii
aElectronic contributions to the molecular energy (NR linear and quadratic responses).

TABLE 3 LRESC corrections to the paramagnetic term on nuclear magnetic shielding tensor

Paramagnetic corrections rSZ2K1rB2SO rOZ2K1rPSO2K rSO rpara2Mv=Dw

Character First-order triplet (P1T) First-order singlet (P1S) Third-order triplet (P3T) Third-order singlet(P3S)

Response functions hhHFC=SD;HSZ2Kii
1 hhHFC=SD;HB2SOii

hhHPSO;HOZ2Kii
1 hhHPSO2K;HOZii

hhHOZ;HFC=SD;HSOð1Þii hhHOZ;HPSO;HMv=Dwii
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EMðe2eÞðVN;VJÞ5hhHPSO1HFC=SD1HPSO2K1HFC=SD2K ; 2x � Jð2Þe ii
1hhHPSO1HFC=SD ; D ; 2x � Jð2Þe ii
5hhHPSO ; 2x � Leii1hhHPSO2K ; 2x � Leii
1hhHPSO1HFC=SD ; D ; 2x � Jð2Þe ii;

(66)

Given that we shall deal with the ground-state of closed-shell systems, the operator Jð2Þe can be replaced by Le in the first two terms. The first

term of Equation 66 is the well-known NR expression of the spin-rotation energy, whereas all the other terms are its relativistic corrections.

It must be stressed that the operator Oð2x � JeÞ do not contribute to the relativistic corrections of the energy, up to order 1=c2 (see Equation

61).

We shall now analyze separately the LRESC expansion of both parts of EMðe2eÞ a � AN;2x � Jð4Þe

� �
. They are

EMðe2eÞ a � AN;2x � Lð4Þe

� �
5hhHPSO ; 2x � Leii

1 hhHPSO2K ; ;2x � Leii

1 hhHFC=SD ; 2
1
4c2

x � rp22 r � pð Þp� �ii
1 hhHPSO1HFC=SD ; D ; 2x � Leii;

(67)

and

EMðe2eÞ a � AN;2x � Sð4Þ
� �

5hhHFC=SD ;
1
4c2

x � rp22 r � pð Þp� �ii
1 hhHPSO1HFC=SD ; D ; 2x � Sii:

(68)

The third term of Equation 67 is canceled by the first term of Equation 68. In addition, expanding the fourth term of Equation 67 and the sec-

ond one in Equation 68, and also using arguments of symmetry it is obtained (retaining only one-body terms, that is, considering EMðe2eÞ5ENPa ð1Þ)
that

EMðe2eÞða � AN;2x � Jð4Þe Þ5hhHPSO ; 2x � Leii
1hhHPSO2K ; 2x � Leii
1hhHPSO ; HMv=Dw ; 2x � Leii
1hhHFC=SD ; HSOð1Þ ; 2x � Leii
1hhHFC=SD ; HSOð1Þ ; 2x � Sii:

(69)

One of the important features of the (e-e) contribution to EM is the fact that the lowest order term of EMðe2eÞ a � AN;2x � Sð4Þ
� �

is of order

1=c2, whereas the lowest order correcting term to EMðe2eÞ a � AN;2x � Lð4Þ
� �

is of order c0. Nevertheless, the former is non-negligible with respect

to the last one.

Therefore, the LRESC expansion of the electronic (e-e) part of the spin-rotation, SR, constant of a nucleus N can be written as[77]

Melecðe2eÞ
N 52

o2

oINoL
EMðe2eÞða � AN;2x � JeÞ

5 MNR2elec
N

1MPSO2K
N 1Mpara2Mv=Dw

N 1MSO2L
N 1MSO2S

N ;

(70)

where MNR2elec
N is the NR electronic contribution to MN; M

PSO2K
N is a second-order RSPT relativistic correction, and the remaining three terms are

third-order corrections.

We shall now turn to obtain the one-body LRESC contributions to Melecðp2pÞ
N . They arise from the evaluation of the electronic excitations to

negative-energy states, in which case the projector is written as Pp512Pe512jnaihnaj. Then, according to Equation 53 we have

EMðp2pÞðVN;VJÞ5 1
2c2

h0NjVNPpXðVJ;1Þj0Ni1h0NjVJPpXðVN;1Þj0Nið Þ; (71)

where

TABLE 4 LRESC corrections to the diamagnetic term on nuclear magnetic shielding tensor

Diamagnetic corrections rDia2Mv=Dw rDia2K

Character First-order singlet (D1S) Zeroth-order singlet (D0S)

Response functions hhHDia;HMv=Dwii hHDia2Ki
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XðVN;1Þ52 a � AN1
1
2c2

HD; a � AN
� �

; (72)

XðVJ;1Þ522x � Je2 1
2c2

HD;x � Je
� �

: (73)

The analysis of the dependence of the energy of Equation 71 with c21 shows that EMðp2pÞðVN;VJÞ is at least of order lN
c2 (VN5a � AN is propor-

tional to lN). As it has been shown that the NR limit of EMðe2eÞðVN;VJÞ is of order lN
c , it is easily deduced that the NR limit of EMðp2pÞðVN;VJÞ is zero.

Besides, the leading order relativistic corrections are obtained retaining only terms of order lN
c in the expectation values of Equation 71. There-

fore, for simplicity (with no loss of precision) it can be taken that

XðVN;1Þ ’ 2 a � AN1
1
2

b; a � AN½ �52 a � AN1b a � AN; (74)

XðVJ;1Þ ’ 22x � Je21
2

b;x � Je½ �522x � Je: (75)

Given that the projection operator over the negative-energy electronic states, Pp512Pe, up to order c21, is expressed as the following 4 3 4

matrix of spinors components

Pp5
0 2

r � p
2c

2
r � p
2c

1

0
B@

1
CA; (76)

the operators in Equation 71 shall be written as

VNPpXðVJ;1Þ5ða � ANÞPpXð2x � Jð4Þe ;1Þ522
2r � AN

r � p
2c

r � AN

0 2r � AN
r � p
2c

0
B@

1
CAx � Je; (77)

and

VJPpXðVN;1Þ5ð2x � Jð4Þe ÞPp Xða � AN;1Þ5x � Je
r � p
2c

r � AN 0

2r � AN 3
r � p
2c

r � AN

0
B@

1
CA: (78)

Then, Equation 71 can be rewritten as

EMðp2pÞðVN;VJÞ5 1
2c2

h0L
Njh0S

Nj
� �

22

2r � AN
r � p
2c

r � AN

0 2r � AN
r � p
2c

0
BB@

1
CCAx � Je1x � Je

r � p
2c

r � AN 0

2r � AN 3
r � p
2c

r � AN

0
BB@

1
CCA

2
664

3
775

j0L
Ni

j0S
Ni

0
@

1
A;

(79)

or

EMðp2pÞðVN;VJÞ5 1
4c3

h0L
Nj x � Je r � pr � AN12r � AN r � px � Je22r � AN x � Je r � p2r � px � Je r � ANð Þ j0L

Ni:

This expression can be reduced to

EMðp2pÞðVN;VJÞ5 1
4c3

h0L
Nj x � Je; r � p½ �r � AN12r � AN r � p;x � Je½ �ð Þj0L

Ni: (80)

As the relativistic leading order corrections to EMðe2eÞ have a factor lN
c3 , which is the same as the factor appearing in Equation 80, EMðp2pÞ will not

have NR contributions. So, Equation 80 gives the lowest order relativistic correction to EMðp2pÞ. Furthermore, given that r � p;x � Je½ �50, then

EMðp2pÞ50 up to this order.

Therefore, the LRESC model explicitly shows that both, the NR and the lowest order relativistic correction to EMðp2pÞ are zero. It means that, up

to order 1/c2

EMðp2pÞðVN;VJÞ50 ) Melecðp2pÞ
N 50: (81)

3.4.3 | The relativistic relationship between the NMR shielding and the spin-rotation constants

Within the relativistic regime there is no immediate relationship among the NMR magnetic shielding and the SR tensors. This is apparent when we

consider the second-order corrections to the energy that are used to obtain the relativistic NMR shielding tensor, and spin-rotation tensor
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Eð2ÞðIN;BÞ5 gN
2mpc

IN � hhðr2rNÞ3a

jr2rNj3
; r2rGð Þ3a½ �ii � B; (82)

and

Eð2ÞðIN; LÞ52
gN

2mpc
IN � hhðr2rNÞ3a

jr2rNj3
; Jeii3I21 � L

52
gN

2mpc
IN � hhðr2rNÞ3a

jr2rNj3
; r2rCMð Þ3p1

1
2
R

� �
ii3I21 � L:

(83)

where lN 5 gN
2mpc

IN is the magnetic moment of nucleus N, IN is its nuclear spin, and gN is its g-factor.

From our LRESC model we can get a deeper insight on why the NR relationship, known as Flygare relationship,[74,78] breakdown.[75] Consider-

ing the LRESC expressions of the (e-e) contribution to Er and EM, both can be related each other, up to order 1=c2, in the following manner

2c
o
oBi

Erðe2eÞða � AN; a � ABÞ52
o
oxi

EMðe2eÞða � AN;2x � JeÞ

1 hhHPSO ; 2
1
4c2

fp2; Ligii

1 hhHFC=SD ; 2
1
2c2

3Sip
22 S � pð Þpi

� �ii
1 hhHFC=SD ;

1
c2

r � rð ÞVCSi2 r � Sð ÞriVC½ �ii

1 hhHFC=SD ; HSOð1Þ ; Siii:

(84)

From the definitions of NMR shielding and SR tensors, we can rewrite this relationship as

r
ðe2eÞLRESC
N 5

mp

gN
Mðe2eÞLRESC

N � I

1 rOZ2K
N 1rSZ2K

N 1rB2SO
N 1

1
2
rSO2S
N :

(85)

where Mðe2eÞLRESC
N is given by the Equation 70. We can see that the NR Flygare’s relation

rNR2para
N 5

mp

gN
MNR2elec

N � I; (86)

is fulfilled,[74,78] together with the following relationships,[77]

rXN5
mp

gN
MX

N � I (87)

being X5PSO-K, para-Mv/Dw, and SO-L. The SO-S contribution has a similar relationship although with an extra factor 2,

rSO2S
N 52

mp

gN
MSO2S

N � I: (88)

TableT6 6 gives a representation of the LRESC contributions shared among the relativistic r
ðe2eÞ
N and Melecðe2eÞ

N tensors. It shows schematically

which of the LRESC contributions to the shielding constants are also found in the SR tensor.

We should now introduce an analysis of the system of units used to relate both properties. We should take care of the fact that throughout

the whole of this article the Gaussian cgs atomic system of units is used, and the fact that the NMR shielding is a dimensionless magnitude

expressed in parts per million (ppm). So, the expression of the SR tensor, MN shall be expressed as dimensionless. Given that atomic units were used

in the derivation of this last property, the SR tensor shall be expressed at the end in Hartrees. As kHz are the units used in their measurements,

they have to be transformed using the fact that 1 Hartree56.5796839207293 1012 kHz (Taken from Ref. [79]).

It is worth to highlight the fact that all relativistic corrections of the SR constants (up to order 1=c2) are included in the relativistic corrections of

the NMR shieldings, but they have additional terms related with operators HOZ2K; HSZ2K, and HB2SO. In addition to that, there is a factor 2 of differ-

ence between the SO due to spin contribution to both properties.

TABLE 5 LRESC core and ligand corrections

First-order triplet First-order singlet Third-order triplet Third-order singlet Zeroth-order singlet First-order singlet

P1T P1S P3T P3S D0S D1S

core ligand core

rSZ2K1rB2SO rOZ2K1rPSO2K1rSO1rpara2Mv=Dw rDia2K1rDia2Mv=Dw
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During the last few years several works were published containing studies related with the breakdown of the NR relationship among rN

and MN.
[44,80–88] They applied the formalism given in Ref. [30] on heavy atom containing systems, using the NR relation from which the electronic

contribution to the SR constant can be transformed to units of magnetic shielding. Comparison of their results with four-component calculations

show large differences among rN andMN within the relativistic regime if one use the NR Flygare’s model.

Recently, based on the fact that the OZ-K, SZ-K, and B-SO mechanisms are core-dependent, an extension of the Flygare’s relationship was pro-

posed, in which the shielding tensor can be obtained from the SR tensor employing the new M-i (i5I; II; III; IV;V) models.[77,89] The M-III model was

the best model proposed in Ref. [77] and it is expressed as:

rM2III
N 5

mp

gN
MN � I1ratomN 1

1
2
rSO2S
N (89)

It is still possible to propose a better model,[89] which must include all spin-dependent contributions in the last term of the model given in Equa-

tion 89. If we do this we arrive to

rM2V
N 5

mp

gN
MN � I1ratomN 1

1
2c

mSN2m
atom;S
N

� �
(90)

where

mSN5hh r2rNð Þ3a

jr2rNj3
; Sð4Þ ii: (91)

The new term 1
2c mSN2m

atom;S
N

� �
is a generalization of 1

2 r
SO2S
N , which represent now its lowest order contribution.

First, applications of the new relationship of Equation 90 show that they are much accurate than the previous attempts to obtain a relativistic

generalization of Flygare’s model.[89]

3.4.4 | The rotational g-tensor and the magnetic susceptibility tensor

As shown in Equation 4, the rotational g-tensor involves the operators VB5a � AB and VJ52x � Je, and the susceptibility tensor has a bilinear

dependence of the operator VB.

In the case of the g-tensor, we should mention that the action of the operator L on the nuclear variables of the electronic wavefunction is

equivalent to (minus) the action of the total electronic four-component angular momentum operator.[32] This is the reason why the g-tensor

depends on Jð4Þe .

Both tensors can be written as a sum of two terms: one nuclear and one electronic. The electronic terms are obtained in both cases through

the linear response approach.[51,90] This can also be done for spin-rotation tensors. In our case they are

gN5
X
N

ZNmp ðrN;G � rN;CMÞI212ðrN;G � I21ÞrN;CM
h i

1mpc hhre;CM3a ; Jeiix50 � I21:

(92)

and

vN52
1
8

X
N

Z2
N

mNc2
Îr2N2rtNrN
� �

2
1
4
hha3re;G; a3re;Giix50: (93)

As happens for all relativistic polarization propagators,[19] the ones of Equations 92 and 93 involves excitations to positive-energy electronic

states ((e-e) rotations) and negative-energy electronic states ((p-p) rotations), which after few approximations can be expressed as two separated

terms.[23] The NR limit of the (e-e) and (p-p) contributions of both properties corresponds to their paramagnetic and diamagnetic terms, respectively.

As it was previously suggested[51] and explicitly demonstrated few years ago,[32] the NR relationship between the electronic part of the rota-

tional g-tensor and the paramagnetic component of the susceptibility tensor is lost within the relativistic regime (see Equations 92 and 93). Besides,

in the NR limit the Flygare’s equivalence[74] is recovered.

TABLE 6 LRESC (e-e) contributions shared among relativistic rN and MN tensors

r
ðe2eÞ2LRESC
N

rNR2para
N 1rPSO2K

N 1r
para2Mv=Dw
N 1rSO2L

N 11
2 r

SO2S
N

1
2 r

SO2S
N rOZ2K

N 1rSZ2K
N 1rB2SO

N

5 mp

gN

� �
Mðe2eÞ2LRESC

N � I 5 1
2 r

SO2S
N ffi r

atomðe2eÞ2LRESC
N

5 mp

gN

� �
3 MNR2elec

N

�
1MPSO2K

N 1Mpara2Mv=Dw
N 1MSO2L

N 1MSO2S
N Þ� I 51

2 r
SO2S
N 5ratom2OZ2K

N 1ratom2SZ2K
N 1ratom2B2SO

N
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Again, the application of the LRESC model allows us to get a deeper understanding of the relation between both properties within a relativistic

framework.

The expansion for the magnetic interaction has been worked out above and it was extensively discussed by different authors.[26,28,73] It has the

form (see Equations 58 and 59):

Oða � ABÞ5HOZ1HSZ1HOZ2K1HSZ2K1HB2SO (94)

Following the same arguments used in the LRESC expansion of the matrix elements of the four-component operator Jð4Þe for the SR tensor we

can write (see Equations 60 and 61)

Oð2x � Jð4Þe Þ5HBO2L1HBO2S: (95)

From this equation, we observe that no terms of order 1=c2 contribute to the four-component total angular momentum operator Jð4Þe .

Considering the last two equations, the energy expansion (up to order 1=c2) can be written as

Egðe2eÞðVB;VJÞ5hh HOZ1HSZ1HOZ2K1HSZ2K1HB2SO
� �

; HBO2L1HBO2S
� �ii

1 hh HOZ1HSZ
� �

; D ; HBO2L1HBO2S
� �ii (96)

We shall mention again that if closed shell electronic structures are considered, then the one-body corrections belonging to Egðe2eÞ are

Egðe2eÞðVB;VJÞ5hhHOZ ; HBO2Lii1hhHOZ2K ; HBO2Lii
1 hhHOZ ; HMv=Dw ; HBO2Lii
1 hhHOZ ; HSOð1Þ ; HBO2Sii1hhHSZ ; HSOð1Þ ; HBO2Lii:

(97)

or

Egðe2eÞ a � AB;2x � Jeð Þ5hHOZ ; 2x � Leii
1 hhHOZ2K ; 2x � Leii
1 hhHOZ ; HMv=Dw ; 2x � Leii;

(98)

From this expression, the g-tensor (see Table 2) is

gelecðe2eÞ5mp hhLe ; Leii � I21

2
mp

4c2
hhfp2; Leg ; Leii � I21

1mp hhLe ; HMv=Dw ; Leii � I21:

(99)

The first term of Equation 99 is the NR paramagnetic contribution to the g-tensor,[74] whereas the other two are the mechanisms of the leading

order relativistic effects of gðe2eÞ. In this way, the LRESC model applied to the g-tensor give the following results

gelecðe2eÞ522mpc
o2

oBoL
Egðe2eÞða � AB;2x � JeÞ

5gNR2elec1gOZ2K1gMv=Dw;

(100)

These mechanisms are analogous to those of the nuclear SR tensor.[30] In the case of the g-tensor, unlike for the SR tensor, the spin-orbit con-

tribution vanishes identically.

Now, we look for the electronic mechanisms that underlies the gðp2pÞ term. Following the same arguments exposed above for the LRESC

expansion of Eðp2pÞ, in this case, we have that the one-body (p-p) contributions are

Egðp2pÞðVB;VJÞ5 1
2c2

h0NjVBPpXðVJ;1Þj0Ni1h0NjVJPpXðVB;1Þj0Nið Þ; (101)

where

XðVB;1Þ52 a � AB1
1
2

b; a � AB½ �52 a � AB1b a � AB; (102)

XðVJ;1Þ522x � Je21
2

b;x � Je½ �522x � Je: (103)

Expanding the operators of Equation 101 (with Pp up to order 1=c) and applying the kinetic balance prescription to write Equation 101 in terms

only of j0L
Ni, and retaining terms up to order 1=c3, we obtain

Egðp2pÞðVB;VJÞ5 1
4c3

h0L
Nj x � Je; r � p½ �r � AB12r � AB r � p;x � Je½ �ð Þj0L

Ni: (104)
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As happens for the SR tensor, the relativistic correction is also zero. Then, the lowest order contribution to the (p-p) part of the energy is zero.

It means that, on the grounds of the LRESC model, the following expression is valid up to order 1=c2:

Egðp2pÞ a � AB;2x � Jeð Þ50 ) gelecðp2pÞ50: (105)

Now, we turn to the magnetic susceptibility tensor. Applying Equation 94, and including terms with the dependence on c up to order 1=c2

Evðe2eÞðVB;VBÞ5hhHOZ1HSZ ; HOZ1HSZii
1hhHOZ1HSZ ; HOZ2K1HSZ2K1HB2SOii
1hhHOZ2K1HSZ2K1HB2SO ; HOZ1HSZii
1hhHOZ1HSZ ; D ; HOZ1HSZii

5hhHOZ ; HOZii12 hhHOZ2K ; HOZii
1hhHOZ ; HMv=Dw ; HOZii:

(106)

As for the g-tensor, the SO terms (hhHOZ ; HSOð1Þ ; HSZii) are zero when closed shell electronic structures are considered. Therefore, the corre-

sponding (e-e) part of the energy will be given by the following three terms (see Table 2):

Evðe2eÞða � AB; a � ABÞ5hhHOZ ;
1
2c

Le � Bii12 HOZ2K ;
1
2c

Le � B
	 
	 


1 HOZ ; HMv=Dw ;
1
2c

Le � B
	 
	 


;

(107)

The first of them is the NR paramagnetic contribution to the magnetic susceptibility, whereas the remaining two terms are the leading order rel-

ativistic contributions originated in the operator HOZ2K and in the scalar correction to the Schr€odinger Hamiltonian, HMv=Dw.

Therefore, according to the LRESC model, velecðe2eÞ can be expanded (up to order 1=c2) as

velecðe2eÞ52
o2

oBoB
Evðe2eÞða � AB; a � ABÞ

5 vNR2para

1vOZ2K1vpara2Mv=Dw;

(108)

When closed shell electronic structures are considered, the relativistic mechanisms appearing in Equation 108 are of the same type as those

mechanisms found for gLRESCðe2eÞ. Nevertheless, the OZ-K correction carries a different factor. In fact, within the LRESC approach this is the unique

difference between the (e-e) contribution to the susceptibility tensor and the rotational g-tensor.

For the (p-p) contribution we proceed as we did above,

Eðp2pÞ5
1
2c2

hW0jða � ABÞPpð21bÞða � ABÞjW0ið Þ: (109)

From this equation, the diamagnetic component of the susceptibility tensor is obtained in the NR limit, together with the leading order relativis-

tic contributions.

3.4.5 | The relativistic relationship among the g-tensor and the v-tensor

From a theoretical point of view the relativistic magnetic susceptibility arises as a second-order correction to the energy due to the interaction

among the electronic system and an external and uniform magnetic field.

According to the LRESC model, its electronic (e-e) contributions can be expressed as in Equation 107 Conversely, the rotational g-tensor arises

from induced molecular magnetic moment due to its rotational motion. In this case, according to the LRESC model, its (e-e) electronic contribution is

given by Equation 98. Then, a straightforward relationship between both expressions is immediately obtained,

2c
o
oBi

Evðe2eÞða � AB; a � ABÞ52
o
oxi

Egðe2eÞ a � AB;2x � Jeð Þ

1hhHOZ2K ; Liii;
(110)

which, in terms of the properties, is equivalent to

vðe2eÞLRESC 52
1

4mpc2
gðe2eÞLRESC � I1

1
2
vOZ2K (111)

From, here, the NR Flygare’s relation is naturally recovered taking the NR limit. Within the relativistic framework, there is a factor 2 in the OZ-

K contribution that formally breaks down such a relationship, when considering relativistic effects up to order 1=c2.
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4 | APPLICATIONS OF THE LRESC MODEL

In this section, we are going to show some of the more relevant applications of the LRESC model. We start with the analysis of the nuclear magnetic

shieldings, and then the spin-rotation constants. We will show the performance of our two-component model on the reproduction of four-

component calculations together with the analysis of the electronic origin of the different contributions to the relativistic corrections. All calculations

were performed considering only monoelectronic contributions, in such a way that Eðe2eÞ5ENP
a ð1Þ and Eðp2pÞ5EN12

b ð1Þ is taken hereafter (see Equa-

tions 29–33), because the remaining two-body terms are not yet implemented in the DALTON code.[91,92]

4.1 | Nuclear magnetic shielding constant

The LRESC model was first developed to analyze relativistic effects on the NMR magnetic shieldings. Then, historically it was this property the most

analyzed using the LRESC.

4.1.1 | LRESC theoretical performance and few selected applications

Earliest results of calculations of magnetic shielding tensor applying the LRESC model were published in Refs. [26,27,93,94]. There, all one-body

correcting terms to the shielding constants of HX and CH3X (X5F, Br, I) were presented as benchmark calculations. It is worth to highlight, here,

that, in four-component RPA calculations, two-body effects arising from the Coulomb interaction are included within the mean field approach.

When these contributions are taking into account, even though they are small, the overall results with the LRESC method become excellent, as

stated in Ref. [27].

In Ref. [93], results for the so-called scalar field dependent terms rDia2K (see Table 4) and rOZ2K1rPSO2K (see Table 3) were presented. The

analysis of the orbital contribution to each correcting term of atomic ions X– and HX (X5F, Cl, Br, I), have shown that the inner shells were respon-

sible for almost the total value of these corrections. One interesting finding was that rDia2K and rOZ2K1rPSO2K are not sensitive to the changes of

the molecular orbitals of the valence shell. Also, rPSO2K vanishes for symmetric spherical electronic distributions (see Table 3), and its value in HX

molecules is originated in the p-type lone pairs of the atom X.

Another study of contributions using localized orbitals was published by Gomez et al. in Ref. [94]. In that paper, relativistic corrections to the

diamagnetic term of the shielding constant were evaluated in terms of localized molecular orbitals. The relative importance of the contributions of

the inner core and the valence shell molecular orbitals was clearly exposed. For noble gases, the difference r4comp2rnr for diamagnetic contribution

was compared with the same difference in the LRESC context, rLRESC2rnr. It was found that the description of the diamagnetic terms with the

LRESC scheme was very good, except for Radon atom. In this last case, the LRESC method does not reproduce accurately all the relativistic effects.

This fact is under study in our research group.

To assess the completeness of LRESC regarding its theoretical grounds, in Ref. [69], Zaccari et al. focused on the formal relations that shows

the gauge invariance of the LRESC method, and compared this scheme with two other similar descriptions for shielding constants, namely the

Breit–Pauli approximation presented by Vaara and coworkers[28] and the approach proposed by Kutzelnigg in Ref. [95]. It was shown, by the formal

expressions and by calculations, that the LRESC model is gauge invariant for shielding constants. The HX and CH3X (X5Br, I) model compounds

were used. It was formally shown how different LRESC correcting terms compensate each other to give an overall gauge invariance of the shielding

constant. The consistency among the LRESC, Breit–Pauli, and ESC-minimal-coupling approaches was also shown.

Roura et al. applied the LRESC formalism but using the molecular Hartree–Fock Hamiltonian.[96] They obtained relations involving the Coulomb,

J, and exchange, K, operators for LRESC shielding corrections. The mean field effects that arise from direct Coulombic contributions were obtained.

Resulting in all cases by adding the Coulombic part of the HF operator to the external Coulomb field in the one-body LRESC expressions. Both

exchange and different terms from the Breit operator are also consistently included. Regarding the diamagnetic term it includes a mean field correc-

tion depending on the exchange operator without a one-body counterpart. Roura et al., claims this term to lead a small contribution to the nuclear

magnetic shielding constant. In this framework, the mean field spin orbit[97,98] corrections are recovered, as well as the mean field counterpart of

two-body effects. The contribution of mean field effects on diamagnetic term was estimated (in ppm) as: 1
32p ð Z

mc2Þ2ð106Þ (see eq. 74 of Ref. [96]),

yielding around 0.08 ppm for Xe atom.

Diamagnetic terms were also studied in more details. A better description of the shielding constants of sixth row atoms were published in Ref.

[99]. An alternative approach to the electron-positron contribution to magnetic properties, based on two-component Breit–Pauli spinors, was pre-

sented there. It was coined as geometric elimination of small component (GESC). In the presence of a magnetic perturbation, the manifolds of differ-

ent particle number operators are connected. This occurs even if the Coulomb–Breit interaction in the molecular Hamiltonian is neglected. The

effect of the positronic manifold is wholly taken into account by means of the positronic Hamiltonian (H1), expressed as a geometric series (see Ref.

[99]). Numerical results were presented for noble atomic gases and the HI molecule. For Xe atom the performance of GESC was quite good and pro-

vided an extra contribution of 334.27 ppm. GESC versus four-component calculations at RPA level of approach are 7052.8 ppm versus 7011 ppm,

respectively (see table 3 on Ref. [99]). Total BPPT values of constant for Xe were reported as 6718.5 ppm (Refs. [73,100]) and 6747.2 ppm (Ref.

[101]).
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4.1.2 | Basis set analysis and gauge independence

We studied the convergence of basis sets for calculations of rNR, as well as for the different LRESC relativistic corrections. In TableT7 7, we show the

basis set used for the SnH2F2 molecule, in which case converged results were obtained. A similar behavior was obtained for all other molecular sys-

tems that contain Hydrogen, Halogen, group-11, and group-14 nuclei.

It can be seen in Table 7 that the convergence of calculations using different basis sets is obtained with the MMA-lresc basis set, which is an

smaller version of aug-cc-pVTZ-lresc basis set and was named aug-Jun1 basis set in earlier works.[102–104] The differences in the values of the total

shielding, obtained as the addition of the NR shielding constant with all relativistic corrections, is smaller than 1 ppm compared with the values

obtained using the larger basis set (aug-cc-pVTZ-lresc). Hereafter, we will consider all calculations of the shielding constant and their relativistic cor-

rections as calculated with the MMA-lresc basis set, unless otherwise is specified.

To show the gauge origin independence we carried out calculations of the relativistic corrections in the SnF2H2 molecule. The gauge origin was

placed at both positions, the fluorine atom and the tin atom. Results of calculations are shown in TableT8 8.

We found that the quality of the basis set used in those calculations is such that there is no significant difference when the gauge origin is

placed at the nucleus of interest or in a vicinal atom.

4.1.3 | Nuclear magnetic shielding with the LRESC scheme

LRESC for nuclear magnetic shielding constants was first tested on HX (X5F, Cl, Br, I) molecular systems, taken as benchmark compounds. This

was done in the papers where the theoretical formalism was presented.[26,27] To have a complete sight of LRESC, heavy atom containing molecular

systems were studied. We also aim to have an insight on each correcting term, and finally on 2014 we proposed an overview to treat relativistic cor-

rections grouped in two terms. We named those terms as core- and ligand-dependent.[102] We present in this section a brief account of LRESC

achievements in describing heavy atom containing molecular systems.

The nuclear magnetic shielding of the nucleus N given by the LRESC formalism can be written as

rLRESC
N 5rNR

N 1rcorr
N (112)

where rNR is the NR shielding value and rcorr represents the relativistic corrections coming from the different electronic mechanisms of the LRESC

scheme as it was described in section 3.

Melo and coworkers have shown in several works that the magnetic shielding calculated with LRESC scheme are in very good agreement with

those obtained with four-component methods for atoms up to the fifth row of the Periodic Table.[26,27,102,103,105] For medium-size molecular sys-

tems the differences among four-component and LRESC values are, in general, close to 2% and for heavier molecular systems, like SnI4, such a dif-

ference is close to 5%. However, for atoms belonging to the sixth row of the Periodic Table, like Au, Hg, Pb, and At, the differences reach values

that are between 15% and 20% lower than the relativistic values.[103,105,106]

In terms of the chemical environment of a heavy atom, Maldonado et al. studied in Ref. [105] the effects on the nuclear magnetic shielding con-

stant of the surrounding atoms to central Sn and Pb in SnH2XY and PbH2XY (X, Y5F, Cl, Br, I) molecular systems. The electronic origin of the rela-

tivistic effects were discussed applying the LRESC model. It fave a 16% composition of HAVHA (heavy atom effect on vicinal heavy atom[107]) type

on r(Sn) at SnH2I2. It was found that the HAVHA type effect is due to the appearance of contributions that are different of rSO2L. With LRESC

TABLE 7 Basis set convergence on r(Sn) for all LRESC mechanisms. Uncontracted basis set were used in all cases

Sn F H NR SZ-K B-SO OZ-K1PSO-K SO-L para-Mv/Dw Dia LRESC

½21s15p11d2f� ½10s5p1d� ½4s1p�a 3084.5 2169.8 2513.8 296.8 16.9 2342.1 2791.6 3920.5

½23s20p16d5f� ½15s9p6d2f� ½10s3p2d�b 3103.7 2217.9 2460.1 303.2 15.0 2346.7 2792.6 4040.4

½25s21p16d5f� ½15s9p6d2f� ½10s3p2d�c 3100.8 2220.4 2460.6 304.0 15.0 2347.2 2792.7 4039.7

adyall.cv2z for Sn and cc-pCVDZ for F, H.
bMMA-lresc.
caug-cc-pVTZ-lresc.

TABLE 8 Gauge origin dependence for LRESC calculations on SnH2F2 with MMA-lresc basis set

SnH2F2 Atom NR SZ-K B-SO OZ-K1PSO-K SO-L Para-Mv/Dw Dia LRESC

Gauge on Sn Sn 3103.7 2217.9 2460.1 303.2 15.0 2346.7 2792.6 4040.4

Gauge on F Sn 3103.7 2217.9 2460.9 301.2 15.2 2345.2 2792.2 4039.7

Gauge on F F 450.2 12.2 23.0 1.5 2.5 24.7 26.6 452.0

Gauge on Sn F 450.2 12.2 23.1 0.2 2.5 23.3 25.2 453.5
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plus an estimation of GESC correction to the heavy atom, shielding constants were compared to four-component RPA benchmark calculations. The

LRESC model had an excellent performance when diamagnetic terms were corrected via GESC. For this case, most of relativistic correcting terms

were not sensitive to the chemical environment. The ones which did change when substitutes changed were: rSO2L; rOZ2K1rPSO2K, and

rpara2Mv=Dw , only one of them being of SO-type. The other two reflect the enhancement of the PSO electronic mechanism due to a kinetic energy

correcting term and angular momentum. The last term is always negative and opposite to the OZ-K1PSO-K. Then, its contributions are attenuated

although when added to the SO-FC it gives a fine tuning for reproducing the total relativistic corrections to the shieldings of central and substituent

atoms.

Regarding the spin-Zeeman operator of the spin-orbit contribution to shielding tensor, Ruiz de Az�ua et al. critically discussed in Ref. [108] the

assessment of the LRESC model on properties of linear molecules. They have shown that this correction yields no contribution to the isotropic

shielding constant of linear molecules, but it has higher importance when individual tensor components are evaluated. Specially, when studying the

anisotropy of the shielding tensor. In that paper it was found an interesting relation between SZ and OZ contributions to SO effects. Numerical

examples were provided, showing that the individual shielding tensor components and the anisotropy of the tensor are in good agreement with

results obtained with other methods, in particular with DHF approach.

Ruiz de Az�ua and coworkers reported for Xe atom in XeF2: rzz(Xe)56143.5 (6477.8) ppm with LRESC (GESC) scheme and the chemical shift

dr54597.2 ppm (LRESC). They compared the results with DFH values taken from Ref. [109]: rzz(Xe)56418.3 and 6380.0 ppm; dr(Xe)54268.0

and 4479.9 ppm. Also comparison with experimental results were made: dr(Xe)5 4722 and 4260 ppm; both measures in liquid CNH solvent[110]

and solid phase.[111]

An interesting study of magnetic properties of Hg containing compounds, is the work published by Arcisauskaite et al.[106] They studied how

important are relativistic effects on NMR shielding constants and chemical shifts of linear HgX2 (X5Cl, Br, I, CH3) compounds applying three differ-

ent methods. Calculations performed with LRESC, ZORA and four component approaches were compared. Both, LRESC and ZORA are good

enough to reproduce carbon shielding constants in Hg(CH3)2 within 6 ppm. In the case of chemical shifts, the LRESC fails to reproduce the tendency

of ZORA and four component, even though ZORA underestimates the absolute shielding constant of mercury by 2100 ppm. Also a gaussian nucleus

model for the Coulomb potentials was studied, reducing the shielding constant on Hg by 100–500 ppm and chemical shifts by 1-143 ppm when

compared with point nuclear model. No effects were found on shielding constants for the lighter nuclei (C, Cl, Br, I). It is worth to mention that

LRESC results lack in this case of the GESC correction, which inclusion might have reproduce in a better way chemical shifts.

To evaluate all LRESC corrections, one has to take into account 15 terms which can be divided in second- and third-order, and also of singlet

and triplet type, as stated in Tables 3 and 4. Historically this way of showing LRESC results was useful to compare it with other theoretical schemes,

as BPPT and minimal coupling. On the contrary this way of showing results is not quite useful to get insight on the overall shielding behavior, in

terms of the molecular electronic origin of relativistic effects. To overcome this drawback two papers were written with a new proposal of grouping

the leading relativistic corrections in terms of which molecular environment is the main source for those corrections.[102,103] They can be divided in

terms of core- and ligand-dependence, and they are explained in TableT5 5. “Core” corrections correspond to those LRESC corrections which do not

change their absolute values when the environment of the studied nucleus is changed. Conversely, “ligand” corrections are those which have a

strong dependence on each specific molecular environment.

4.1.4 | Core- and ligand-dependent corrections

The core-dependent contributions are given by all diamagnetic and one paramagnetic like corrections: mean values of diamagnetic singlet correc-

tions (rSð0Þ
d ); first-order diamagnetic singlet corrections (rSð1Þ

d ) and first-order paramagnetic triplet corrections (rTð1Þ
p ).

rcore5rSð0Þ
d 1rSð1Þ

d 1rTð1Þ
p (113)

Ligand-dependent contributions are given by the rest of the leading LRESC paramagnetic like corrections: first-order paramagnetic singlet cor-

rections (rSð1Þ
p ); third-order paramagnetic singlet corrections (rSð3Þ

p ); and third-order paramagnetic triplet corrections (rTð3Þ
p ).

rligand5rSð1Þ
p 1rSð3Þ

p 1rTð3Þ
p (114)

In TableT9 9, we show results of the calculations of NR magnetic shieldings and the whole set of relativistic corrections coming from the LRESC

scheme in several model compounds, like IX, AgX, GeH3X, and SnX4 (X5H, F, Cl, Br, I) and the addition of all terms grouped as core- and ligand-

dependent. Nonrelativistic calculations were performed with the DALTON suite of programs.[91]

As aforementioned, the core-dependent corrections were rearranged in three specific terms: rSð0Þ
d ; rSð1Þ

d , and rTð1Þ
p . Each one of them must be

analyzed separately, because they arise from different electronic mechanisms, have different behavior, different signs, and they are not of the same

order of magnitude. Two of them modify the diamagnetic component of the nuclear magnetic shielding (p-p part), and the third one modifies the

paramagnetic component (e-e part).

For heavy central atom in tetrahedral compounds, like Sn, rTð1Þ
p represents a large percentage of the rnr value. When the substituent halogen

atom becomes heavier, such a percentage do increases because the NR value is smaller; for SnI4 such a percentage reaches 66%. This correction is

strongly core-dependent, and, for heavy atoms, it is of the same order of magnitude as rnr, as shown in Table 9. For light and not so heavy atoms,
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like germanium, such contributions are smaller when they are compared with the NR shielding value (smaller than 30%). The behavior of rSð0Þ
d is sim-

ilar to that of rTð1Þ
p , although it is less important than the latter and it has also opposite sign. The highest variations appear for tin atoms when they

are in the center of the molecule, and such corrections are among 32.9% and 42.6% of rnr. The third core-dependent correction is rSð1Þ
d , although

its contribution is smaller than the other ones. The variation with respect to the NR shielding constant is among 10.1% and 12.9% for tin containing

molecules.

For the light central atoms, the total core-dependent contributions are not so important; but for molecules containing tin atoms they are almost

of the same order of magnitude as rnr. Such contributions are between 27.9% and 36.0% of rnr(Sn), but the variation comes from the different NR

shielding values. As an example, the total core-dependent contribution to r(Sn) in SnF4 is 964.76 ppm and for SnI4 it is 964.77 ppm. However,

rnr(Sn) is 3455.42 ppm in the former case and 2676.59 ppm in the latter, giving rise to different percentages.

When the chemical shifts (d(Sn)) are calculated with respect to a reference system, the core-dependent contributions are almost completely

canceled each other and the final value arises from the differences among the NR values, together with the ligand-dependent corrections.

FigureF1 1 shows the relationship between the core-dependent contributions and the atomic number of the nucleus whose magnetic shielding is

calculated. Two different fitting dependence can be proposed through quadratic and potential functions. Both functions give excellent fittings: rcore

ðZÞ50:77Z2223:11Z1194:27 (ppm) and rcoreðZÞ50:0056Z3:083 (ppm).

Regarding ligand-dependent corrections, the rSð1Þ
p term increases its value when the central atom becomes heavier, but it does not change very

much when the environment is modified, even when the central atom is surrounded by several heavy atoms. Their contributions are close to 10%

of the corresponding rnr values. Conversely, the contributions of rSð3Þ
p are larger than rSð1Þ

p reaching values close to 20% of rnr. Both contributions

have opposite signs, giving a total contribution less than 10% (negative) for the heaviest molecular system and decreasing the total shielding value,

r(Sn). In some of the lighter molecular systems, both contributions almost cancel each other.

The most important of the whole set of ligand-dependent relativistic corrections is rTð3Þ
p , which is responsible of many relativistic effects. Such

a correction includes the FC and SD contributions as can be seen in Table 5. The FC term has a very large range of variation when the weight of

the molecule grows up and it can be of the same order of magnitude as the NR value. For light systems rTð3Þ
p is negative because the contributing

TABLE 9 Leading relativistic corrections obtained with the LRESC model to magnetic shielding for Ag and I nuclei in AgX and IX linear mole-
cules, and for Ge and Sn nuclei in GeH3X and SnX4 tetrahedral compounds (X5H, F, Cl, Br, I)

Core Ligand

Molecules rnr rSð0Þd rSð1Þd rTð1Þp rSð1Þp rSð3Þp rTð3Þp Core Ligand LRESC 4-comp

AgH 4157.66 2940.72 283.45 1458.70 142.59 269.02 275.85 801.43 22.28 4956.81 4803.55

AgF 4229.29 2940.69 283.35 1458.67 123.75 267.67 52.02 801.32 108.10 5138.71 5019.70

AgCl 4087.53 2940.79 283.40 1458.69 141.45 283.41 22.44 801.30 53.15 4941.98 4827.98

AgBr 4076.90 2941.27 283.43 1458.88 143.25 271.90 213.72 801.03 57.63 4935.56 4841.57

AgI 4037.13 2942.19 283.47 1459.10 150.58 254.92 26.25 800.38 89.41 4926.92 4845.26

IH 4539.80 21361.89 415.69 2098.97 279.71 2266.20 157.55 1152.77 171.06 5863.62 5885.47

IF 21478.73 21361.94 415.68 2101.72 1153.72 21852.01 2460.07 1155.47 1761.79 1438.53 927.08

ICl 1923.10 21362.02 415.68 2100.53 659.56 2992.04 1357.95 1154.19 1025.47 4102.76 3745.18

IBr 2799.68 21362.52 415.68 2100.19 523.67 2809.94 1061.69 1153.36 784.42 4737.46 4403.04

I2 4290.44 21363.37 415.70 2099.85 317.54 2495.61 273.59 1152.18 95.52 5538.14 5532.36

GeH4 1765.68 2287.85 83.75 450.81 66.61 265.05 29.30 246.71 27.73 2004.66 1979.67

GeH3F 1561.10 2287.87 83.74 450.83 74.47 282.12 0.47 246.70 27.19 1800.61 1756.47

GeH3Cl 1601.30 2287.96 83.75 450.87 73.38 279.38 3.84 246.65 22.16 1845.79 1802.71

GeH3Br 1614.55 2288.47 83.75 451.01 74.34 281.33 29.80 246.29 22.81 1883.65 1850.29

GeH3I 1655.51 2289.36 83.75 451.10 75.02 285.24 99.26 245.49 89.04 1990.04 1954.32

SnH4 3270.26 21137.66 345.16 1757.93 298.83 2304.29 238.33 965.43 243.79 4191.91 4126.14

SnF4 3453.94 21137.69 345.03 1757.41 260.64 2291.25 20.00 964.76 210.62 4408.08 4364.52

SnCl4 2929.16 21138.06 345.15 1757.93 322.65 2401.14 91.62 965.02 13.13 3907.31 3988.53

SnBr4 2819.86 21139.89 345.23 1759.50 347.81 2450.95 579.22 964.83 476.07 4260.76 4480.72

SnI4 2672.93 21141.24 345.26 1760.75 372.94 2507.85 1715.75 962.98 1580.84 5216.74 5512.86
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SD term are larger than the FC one (in absolute value). For medium-size systems both values are almost the same so they cancel each other, and

then the total value is close to zero; but for heavy molecular systems the FC correcting term increases its value considerably and at the same time

the SD term becomes not very important. For SnI4 molecule, rnr(Sn)52672.93 ppm and rTð3Þ
p (Sn)51715.75 ppm representing 64.2% being the

largest contribution.

The total core- and ligand-dependent corrections are shown in FigureF2 2 for germanium and tin atom-containing molecules, in GeH3X and SnX4

(X5H, F, Cl, Br, I) model compounds. It can be seen in this Figure that for germanium atom, the main relativistic corrections are of core-dependent

type. When the weight of the central atom grows up the most important corrections come from the ligand-dependent type, but only for heavy halo-

gen substituent atom like Br and I.

The analysis given above shows a compensation among core- and ligand-dependent contributions. The addition of core-dependent and two of

the three ligand-dependent corrections (excluding rTð3Þ
p ) gives a very small contributions for light systems, and for the heaviest molecular system,

SnI4, it reaches the largest absolute value, 26.4%. Conversely, only rTð3Þ
p correction has a very different behavior and this is the reason why it was

considered the main electronic mechanism responsible of ligand relativistic effects. However, this is true only for light or not so heavy molecules,

since for heavy ones rTð3Þ
p does not reproduce the total relativistic effect for the nuclear magnetic shielding. The other relativistic corrections do

increase their contribution, especially those that are core-dependent. As a consequence, the addition of rnr plus rTð3Þ
p does not give good enough

reproduction of the relativistic value for heavy atoms because the others contributions become important.

For linear molecules, like AgX and IX (X5H, F, Cl, Br, I), the behavior of the relativistic contributions are different from those of the tetrahedral

geometry, as can be seen in Table 9. The performance of the LRESC is not good enough for IX molecules, like IF, where the difference with the

four-component value is large. The main relativistic corrections to the total magnetic shielding for the whole set of studied linear molecules are of

core-dependent type. They have a different behavior when we compare them with the magnetic shielding of central atoms in tetrahedral com-

pounds. The ligand-dependent corrections to r have a small dependence with the type of the substituent for silver atom, but for a heavier nucleus

like iodine, such contributions are larger. When iodine atom is bounded to fluorine atom, the most important ligand-dependent contributions do

C
O
LO

R

F IGURE 1 Relationship between core-dependent corrections on r and the atomic number of nuclei

C
O
LO

R

F IGURE 2 Core- and ligand-dependent corrections on r(Ge) and r(Sn) in GeH3X and SnX4 (X5H, F, Cl, Br, I) model compounds
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appear, being larger than the core-dependent ones. This seems to be the source of the difference with four-component value where the higher

order corrections may be important.

FigureF3 3 shows core and ligand-dependent contributions for AgX and IX molecules. Within the set of these corrections, the SO is the main one.

Such SO effects are more positive in the whole set of molecular systems when the halogen is X5F. Furthermore, when the weight of the molecule

increases few other important electronic mechanisms do become important.

4.2 | Nuclear spin-rotation constants

As seen in subsection 3.4.3, the SR and shielding tensors have some common mechanisms according to the LRESC model. Here, we analyze how

accurately the LRESC model reproduces the four-component results of SR constants in the molecule series IX (X5H, F, Cl, Br, I) also analyzed in

subsection 4.1, and we study how they are related with the shielding constants.

Nonrelativistic and relativistic calculations were performed at the RPA level of approach of the polarization propagator formalism with Hartree–

Fock and Dirac–Hartree–Fock wave functions, respectively, as implemented in the DALTON[91,92] and DIRAC program packages.[22]

In all calculations, we employed the nonrelativistic Dunning’s augmented correlation-consistent aug-cc-pCV5Z basis set for H, F, and Cl

atoms.[112] For Br and I, we used the relativistic acv4z basis sets of Dyall, dyall.acv4z.[113] The small component basis sets of relativistic calculations

were obtained by applying unrestricted kinetic balance (UKB) prescription. Uncontracted gaussian basis sets were used with the common gauge-

origin (CGO) approach in all calculations. Experimental geometric distances in gaseous phase compounds were used for the IX (X5H,[114] F,[115]

Cl,[114] Br,[114] I[114]) series. The same geometries were used both in the NR and relativistic calculations. The bond distances in Å are: 1.6090 (HI),

1.9098 (IF), 2.3210 (ICl), 2.4691 (IBr), and 2.6663 (I2). To describe the coulombic electron-nucleus interaction, a point nuclear model was employed

C
O
LO

R

F IGURE 3 Core- and ligand-dependent contributions to magnetic shielding in linear model compounds AgX and IX (X5H, F, Cl, Br, I)

TABLE 10 Nuclear spin-rotation constants of nuclei of the IX (X5H, F, Cl, Br, I) systems obtained applying both four-component and LRESC
methodologies

mp I
gN
Melecðe2eÞ

?;N
mp I
gN
Melecðp2pÞ

?;N

X N mp I
gN

[ppm/kHz] mp I
gN
Mnuc

?;N LRESC 4-comp LRESC 4-comp

H 127I 4.18 8.69 21415.56 21359.89 0.00 0.38

1H 0.84 3.41 47.16 47.00 0.00 0.00

F 127I 97.30 57.81 28099.91 28493.62 0.00 2.85

19F 20.82 50.80 568.57 512.96 0.00 20.02

Cl 127I 238.41 81.01 24137.22 24312.62 0.00 1.53

35Cl 489.63 69.53 232.12 230.86 0.00 20.02

Br 127I 478.88 123.31 23214.04 23391.31 0.00 1.20

79Br 383.77 115.98 2774.61 2698.21 0.00 20.04

I 127I 728.20 140.18 22006.02 21992.33 0.00 0.51

Results are multiplied by the factor mp I
gN
, to obtain their values in ppm. Nuclear and electronic values of SR constants are displayed separately, and the

latter are splitted into their (e-e) and (p-p) contributions.

J_ID: Customer A_ID: QUA25487 Cadmus Art: QUA25487 Ed. Ref. No.: QUA-2017-0167.R1 Date: 25-October-17 Stage: Page: 23

ID: jwaa3b2server Time: 15:57 I Path: //chenas03/Cenpro/ApplicationFiles/Journals/Wiley/QUA#/Vol00000/170113/Comp/APPFile/JW-QUA#170113

AUCAR ET AL. | 23 of 32



in all calculations, because it was the nuclear model used in the derivation of all the LRESC operators. Nuclear size effects were not considered in

this work; they do not affect at all the main conclusions of the present work.

The diagonal tensor elements of properties are labeled in such a way that ? refers to the xx and yy tensor elements, for linear molecules along

the z axis.

In TableT10 10, we see that Melecðe2eÞ
?;N (N5 I, X) are well reproduced by the LRESC method, obtaining differences of less than 5% with respect to

four-component results. There are two reasons to explain this behavior: (i) two-body operators were not included in the LRESC calculations of this

work, as stated previously, and (ii) differences due to higher order effects (higher than those of order 1
c2) are not included in the current LRESC devel-

opment. In addition, the (p-p) contributions are exactly zero according to the LRESC theory, whereas the four-component values are of a few ppm,

fully corresponding to higher order corrections (of order 1=c4 and higher).

In TableT11 11, each one of the LRESC contribution to the SR constants of I and X nuclei in IX (X5H, F, Cl, Br, I) systems is shown. It must be

taken into account that such results do not include two-body contributions. A comparison of Tables 11 andT12 12 shows the full equivalence of the

NR contributions of SR and shielding constants, but also of the PSO-K, para-Mv/Dw and SO-L mechanisms. A factor 2 distinguish the SO-S contri-

butions to both properties.[77]

As stated in Ref. [77], the OZ-K, SZ-K, and B-SO values are in agreement with the homologous contributions of the shielding of free atoms.

In FigureF4 4, it is clearly seen that Mðe2eÞ
?;N is better reproduced by the LRESC model than rðe2eÞ

?;N for iodine in the IX series. Following the argu-

ments given in Refs. [77,89], and taking into account the recently proposed relationships between SR and shielding constants, some explanation of

this behavior can be made.

An analysis of the models given in Equations 89 and 90, and their application to Figure 4, shows that the differences between four-component

and LRESC values of the shielding of iodine includes the homologous differences for the SR constants, but they also includes the differences

TABLE 11 Individual LRESC contributions to the SR constants of both nuclei in IX (X5H, F, Cl, Br, I) systems.

mp I
gN

3

X N MNR2elec
?;N MPSO2K

?;N Mpara2Mv=Dw
?;N MSO2L

?;N MSO2S
?;N

mp I
gN
MLRESCðe2eÞ

?;N

H 127I 21457.05 205.75 2400.04 156.00 79.77 21415.56

1H 17.81 0.04 0.04 29.38 20.11 47.16

F 127I 210 473.16 1507.93 22754.20 2361.38 1258.14 28099.91

19F 682.79 21.29 8.32 27.83 2113.42 568.57

Cl 127I 25442.91 771.75 21478.90 1360.22 652.61 24137.22

35Cl 238.89 23.03 237.65 2126.45 2103.87 232.12

Br 127I 24168.70 580.29 21206.95 1097.99 483.33 23214.04

79Br 2196.80 3.79 2136.39 ––333.10 2112.12 2774.61

I 127I 21927.55 253.46 2732.10 237.21 162.96 22006.02

Results are multiplied by the factor mp I
gN
, to obtain values in ppm.

TABLE 12 Individual LRESC contributions to the perpendicular (e-e) contributions to the shielding tensor of both nuclei in IX (X5H, F, Cl,
Br, I) systems

X N rNR2elec
?;N rPSO2K

?;N rpara2Mv=Dw
?;N rSO2L

?;N rSO2S
?;N rOZ2K

?;N rSZ2K
?;N rB2SO

?;N rLRESCðe2eÞ
?;N

H 127I 21457.05 205.75 2400.04 156.00 159.54 143.00 2552.76 2528.60 831.37

1H 17.81 0.04 0.04 29.38 20.22 0.03 0.00 0.00 47.09

F 127I 210 473.16 1507.93 22754.20 2361.38 2516.27 142.41 2552.83 2529.37 24675.90

19F 682.79 21.29 8.32 27.83 2226.83 0.75 10.74 22.63 464.01

Cl 127I 25442.91 771.75 21478.89 1360.22 1305.22 141.71 2552.81 2529.99 21320.09

35Cl 238.89 23.03 237.65 2126.45 2207.74 3.01 76.57 219.32 275.73

Br 127I 24168.70 580.29 21206.95 1097.99 966.66 141.14 2552.81 2531.20 2567.96

79Br 2196.80 3.79 2136.39 2333.10 2224.24 34.92 714.98 2160.29 2297.13

I 127I 21927.55 253.46 2732.10 237.21 325.91 141.06 2552.80 2532.06 318.74

Results are given in ppm.
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between four-component and LRESC values of the shielding of the free iodine atom and higher order effects corresponding to the SO-S contribu-

tion. In other words, according to Equations 89 and 90, and following Refs. [77,89], it can be showed that

r4cN 2rLRESCN ffi mp

gN
M4c

N 2MLRESC
N

� �
� I1 ratom24c

N 2ratom2LRESC
N

� �

1
1
2c

mSN2m
atom;S
N

� �
2
1
2
rSO2S
N

� �
:

(115)

In Equation 115, it is shown that we can analyze the origin of “post-LRESC” contributions to shielding constants. In our current study, they

have two origins, as we have mentioned: (i) the two-body terms not included in our LRESC calculations; and (ii) the effects of orders higher than 1
c2.

Following Equation 115, it is seen that mp I
gN

M4cðe2eÞ
?;N 2MLRESCðe2eÞ

?;N

� �
is included as part of r4compðe2eÞ

?;N 2rLRESCðe2eÞ
?;N

� �
. According to Figure 4, the

second and third term of the rhs of Equation 115 must be taken into account, because they play an important role.

C
O
LO

R

F IGURE 4 4c and LRESC perpendicular (e-e) components of shielding and spin-rotation (in ppm) tensors of iodine in IX (X5H, F, Cl, Br, I) systems

TABLE 13 Differences between four-component and LRESC values of calculated perpendicular (e-e) contributions to shielding and spin-
rotation tensors of iodine in IX compounds

Molecule mp I
gI

DMðe2eÞ
? ðIÞa Dratomðe2eÞðI2Þa 1

2cDm
Sðe2eÞ
? ðIÞb Drðe2eÞ

? ðIÞa

HI 55.66 2232.76 23.26 2180.81

IF 2393.71 2232.76 2495.87 21122.47

ICl 2175.40 2232.76 2243.46 2652.67

IBr 2177.27 2232.76 2189.23 2599.99

I2 13.69 2232.76 16.82 2200.79

Values of shielding of free ionized iodine are also displayed. All values are given in ppm.
aD indicates the difference between four-component and LRESC values of the corresponding magnitude.
b 1
2cDm

Sðe2eÞ
? ðIÞ5 1

2c mSðe2eÞ
? ðIÞ2matom;Sðe2eÞðI2Þ

� �
2 1

2r
SO2S
? ðIÞ.
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From calculations of the shielding of free iodine atom simply ionized, we found that r4compðe2eÞðI2Þ2rLRESCðe2eÞðI2Þ� �
5 1934.46 ppm –

2167.22 ppm52232.76 ppm. This difference indicates that higher order effects must be considered also for free shielding constants.

In the particular cases of iodine in HI and I2, the agreement between LRESC and four-component values of Mðe2eÞ
? ðIÞ is excellent (55.66 and

13.69 ppm of difference, respectively; see Figure 4 and TableT13 13), whereas for rðe2eÞ
? ðIÞ the differences are not negligible, but are the smallest of

this set of molecules. As shown in Table 13, the main origin of the LRESC versus four-component differences in rðe2eÞ
? ðIÞ, for HI and I2, are the

higher order effects of the shielding of free iodine atom.

For the remaining systems (IF, ICl, and IBr), the differences between four-component and LRESC calculations of rðe2eÞ
? ðIÞ are due not only to

higher order effects of ratomðe2eÞðI2Þ (as in the case of HI and I2), but also they are due to higher order effects on Mðe2eÞ
? ðIÞ and on mSðe2eÞ

? ðIÞ2
matom;Sðe2eÞðI2Þ (the third term in the rhs of Equation 115).

Therefore, Table 13 allows one to deeply understand Figure 4, and particularly to know the origin of the differences between four-component

and LRESC result of calculations. Work along this line of research is currently in progress in our laboratory.

5 | CONCLUSIONS

There are several two-component methods that introduce relativistic effects as perturbative corrections. They were first developed to accurately

reproduce the four-component energy spectra.

The two-component linear response elimination of small component, LRESC, model was developed in the beginning to reproduce magnetic

response properties, but then it was used to reproduce any of the response atomic and molecular properties.

In this review, we have given the fundamentals and the basic assumptions used to obtain the explicit expressions of the LRESC model. They

are: (i) One should start working with the Rayleigh–Schr€odinger perturbation theory, and divide the second-order correction to the energy into two

terms, each depending on its behavior when c goes to infinity. There appears what we call the (e-e) or paramagnetic-like terms and the (p-p) or

diamagnetic-like terms; (ii) the last term can be obtained making a transformation of the inverse of the difference of energies that consider

negative-energy electronic states. This transformation is one of the key points of the model; (iii) once this transformation is made, the next step is

to transform the four-component matrix elements into two-component matrix elements using the elimination of small component technique.

There is a second key assumption related with the vacuum. Given that the ground state is considered with respect to the vacuum, one need to con-

sider also the effect of the perturbation on the vacuum to get the correct effect of the perturbation on the electronic states (both branch of energy

states). Then, the (p-p) contributions do contain a term which introduce the polarization of the vacuum due to the presence of the external perturbation.

We also analyzed the different relativistic correcting terms that appears in the LRESC model. One interesting physical insight arises due to the

fact that there are correcting terms which depends on the core alone, and other terms that depends on the environment, named as core-dependent

and ligand-dependent terms, respectively. Using this separation one can get specific patterns of variations of relativistic effects on NMR magnetic

shieldings of different families of compounds.

Another very important finding shown in this review is related with the relativistic generalization of some of the well-known NR relationships, like

Flygare’s relation among SR and shielding constants. The LRESC model allows for the comparison of equivalent terms that arises in the different

response properties. Being them exactly the same, one can find the way to generalize their NR relationship with the introduction of some new assump-

tions. In our case, we have shown how to construct the relativistic relationship among the NMR magnetic shielding and the spin-rotation constants, and

also, among the g-tensors and susceptibilities. When the velocity of light is scaled to infinity these two relationships recover its NR expressions.

The separation of the theoretical expressions of response properties in terms of their perpendicular and parallel components, together with

their (e-e) and (p-p) parts, give new insights about which are the main electronic mechanism involved when including relativistic correcting terms to

the NR expressions, and how to understand and treat them. We are also able to have a look on the origin of the differences among the LRESC and

the four-component results.

There are some molecular systems for which the LRESC model does not accurately reproduce the four-component results, but there are now

clear indications on why it happens and how this difference can be overcome.

In short, we have shown, here, how powerful the LRESC model is for: (i) reproducing four-component values of response properties of atomic and

molecular systems; (ii) the analysis based on known NR operators of the electronic mechanisms that underlies the different relativistic effects that appears

in the response properties; and (iii) the search of the relativistic generalization of the likely relationships among properties that arises due to similar external

perturbations. We probed it for the relationship among NMR shielding and spin-rotation constants, and the g-tensor and the susceptibility tensor.
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APPENDIX

We include, here, the techniques used to obtain the two-component operators used in the LRESC model and its actual expressions. The four-

component operators that need to be transformed are a � A and x � Je

The operator a � A
Let us start with the four-component matrix element of the opertoar a � A

h/ð4Þ
i ja � Aj/ð4Þ

j i ffi h~/ ij N
r � p
2c

� �
11

V2Ei
2c2

� �
r � AN1N r � A 11

V2Ej
2c2

� �
r � p
2c

� �
N

� �
j~/ ji: (A1)

where N5 12 p2

8c2

� �
stands for the normalilzation constant of the wavefunction.

The NR correcting terms are then obtained when only terms of lower order in 1=c are considered

Oða � AÞð0Þ5 r � p
2c

� �
r � A1r � A r � p

2c

� �

5
1
c
p � A1 1

2c
r � ðr3AÞ:

(A2)

When A5AN the paramagnetic Spin-orbit, PSO, the Fermi-contact, FC, and the spin-dipolar, SD operators appear:

HPSO5
1
c
p � AN5

1
c
lN � LN

r3N
; (A3)

HFC=SD5
1
2c

r � ðr3ANÞ5 1
2c

r � r3AN; (A4)

although when A5AB the orbital Zeeman, OZ, and spin-Zeemman, SZ operators appear.

HOZ5
1
c
p � AB5

1
2c

L � B; (A5)

HSZ5
1
2c

r � ðr3ABÞ51
c
S � B: (A6)

Relativistic corrections to the matrix elements of magnetic interactions arise when the different magnetic potentials are considered. In the case

of A5AN
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(
2

p2

8c2
;

r � p
2c

� �
r � AN1r � AN

r � p
2c

� �)
52

1
8c2

fp2;HPSO1HFC=SDg: (A7)

On the other side, we shall consider terms that comes from V2Ei
2c2 . In this case, we introduce the commutator

r � p
2c

;
V2Ei
2c2

� �
52

i
4c3

r � rV; (A8)

and the relation

ðV2EiÞj/ii52
p2

2
j/ii (A9)

to rewrite the corresponding terms of Equation A1 as

h~/ ij
r � p
2c

� � V2Ei
2c2

� �
r � A1r � A V2Ej

2c2

� �
r � p
2c

� �� �
j~/ ji

5h~/ ij 2
i

4c3
r � rV2

p2

4c2
r � p
2c

� �� �
r � A

1 r � A i
4c3

r � rV2
r � p
2c

� � p2

4c2

� �
j~/ ji

5h~/ ij
1
2c3

r � ðrV3AÞ

2
p2

8c3
p � A1ir � p3Að Þ2 p � A2ir � p3Að Þ p2

8c3
j~/ ji

5h~/ ij
1
2c3

r � ðrV3AÞ

2
1
8c2

(
p2;

p
c
� A
)
2

1
8c3

p2; ir � p3A
� �j~/ ji:

(A10)

In short, we get for the potential VN the following relativistic operators

HPSO2K52
1
4c2

fp2;HPSOg; (A11)

HFC=SD2K52
1
8c2

fp2;HFC=SDg1 1
2c3

r � rV3AN

2
1
8c3

p2; ir � p3AN
� �

:

(A12)

In the case of A5AB, by following again the same procedure as in the case of A5AN, we obtain the lower order relativistic corrections when

V5VB

HOZ2K52
1
4c2

fp2;HOZg; (A13)

HSZ2K52
1
4c3

3Sp22 S � pð Þp� � � B; (A14)

HB2SO5
1
2c3

r � rð ÞVCS2 r � Sð ÞrVC½ � � B: (A15)

The operator x � Je
The matrix elements of VN were analyzed above (together with those of VB, for shielding). Therefore, we focus our attention now to the expansion

of the matrix elements of VJ. Applying the same arguments used for shieldings, we obtain:

h/ð4Þ
i j 2x � Jeð Þj/ð4Þ

j i ffi 2h~/ ij Nx � Jð2Þe N1N
r � p
2c

� �
11

V2Ei
2c2

� �
x � Jð2Þe 11

V2Ej
2c2

� �
r � p
2c

� �
N

� �
j~/ ji; (A16)

where N512 p2

8c2 is the wave function normalization factor. The NR electronic total angular momentum operator Jð2Þe is given by the addition of the

two NR angular momentum operators, the orbital and the spin. So Jð2Þe 5r3p1 1
2 r, where r are the Pauli matrices.
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The lowest order terms are of order c0, whereas the leading order relativistic effects are given by those terms of order c22. Considering that

the terms involving V2E
2c2 are of order c24 and c26, the leading order expansion of the matrix elements of Equation A16 are

h/ð4Þ
i j 2x � Jeð Þj/ð4Þ

j i ffi 2h~/ ij Nx � Jð2Þe N1
r � p
2c

� �
x � Jð2Þe

r � p
2c

� �h i
j~/ ji: (A17)

As the electronic total angular momentum operator is a rotation generator, it is fullfilled that it commutes with r � p, or
r � p
2c

; Jð2Þe

h i
50; (A18)

and, therefore, there are NR corrections of order c22. Then, Equation A17 gives rise to

h/ð4Þ
i j 2x � Jeð Þj/ð4Þ

j i5h~/ ij 2x � Jð2Þe

� �
j~/ ji; (A19)

which is equivalent to state

O 2x � Jð4Þe

� �
5HBO2J5HBO2L1HBO2S; (A20)

where

HBO2J52x � Jð2Þe ; (A21)

HBO2L52x � Le; (A22)

HBO2S52x � Se: (A23)

A complete development of Equation A17 will give us an insight on how we can split the orbital and the spin angular momentum operators. It

can be rewritten as

x � h/ð4Þ
i jJej/ð4Þ

j i ’ x � h~/ ijðLe1SÞj~/ ji1

x � h~/ ij 2
1
8c2

fp2; ðLe1SÞg1 1
4c2

r � pðLe1SÞr � p
� �

j~/ ji:
(A24)

and, as a consequence of Equation A18, we have

r � pðLe1SÞr � p5ðLe1SÞp251
2
fðLe1SÞ; p2g: (A25)

Then, it is explicitly shown that there are no relativistic corrections, up to order c22, related to the operator Jð4Þe ,

x � h/ð4Þ
i jJð4Þe j/ð4Þ

j i ’ x � h~/ ijðLe1SÞj~/ ji: (A26)

Nevertheless, it is important to highlight that a different behavior is found for the individual Lð4Þe and Sð4Þ operators, where

x � h/ð4Þ
i jLð4Þe j/ð4Þ

j i 6¼ x � h~/ ijLej~/ ji; (A27)

x � h/ð4Þ
i jSð4Þj/ð4Þ

j i 6¼ x � h~/ ijSj~/ ji: (A28)

It is clear that this occurs because of the noncommutativity of operators Le and S with r � p. Only the addition of both satisfies the commutation

relation.

The matrix elements found for that operators are, then,

x � h/ð4Þ
i jLð4Þe j/ð4Þ

j i5x � h~/ ijLe1
1
4c2

rp22 r � pð Þp� �j~/ ji; (A29)

x � h/ð4Þ
i jSð4Þj/ð4Þ

j i5x � h~/ ijS2
1
4c2

rp22 r � pð Þp� �j~/ ji: (A30)

In the last equation, the matrix elements involving the spin operator, h~/ ijSj~/ ji will be zero if j~/ ii or j~/ ji are the ground state electronic wave

function. In addition, it is seen that the relativistic corrections to both operators (up to order 1=c2) are equal and have opposite signs.
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