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Abstract We studied the breakdown rates and the inverte-
brate abundance and biomass for the litter of five native aquat-
ic plants (Eichhornia crassipes, Eichhornia azurea, Thalia
mult i f lora , Oxycaryum cubense and Hydrocotyle
ranunculoides) in a shallow rain-fed lake using litter bags.
The diets of the prawn Pseudopalaemon bouvieri and the
amphipodHyalella curvispinawere determined and classified
into five food items. Litter breakdown was fast (>0.010 day−1)
for all species studied, although the breakdown rates were
significantly affected by the litter species. The abundance of
invertebrates colonizing the litter was significantly different
among the species, but the biomass did not differ. The inver-
tebrate taxa that colonized the litter of the different species
were broadly similar, consisting primarily of oligochaetes, am-
phipods, prawns, ostracods, gastropods, water mites and sev-
eral types of insect larvae (chironomids and mayflies). In terms
of the number of individuals, naidid oligochaetes dominated
the assemblages. In terms of biomass, P. bouvieri and
H. curvispina reached 67.6 and 18.2 % of the total, respective-
ly. Our results indicate that macroconsumers are involved in the
breakdown process, since these species consume plant remains
and detritus and highlight the importance of leaf litter compo-
sition on the abundance of invertebrates that colonize the litter.
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Introduction

Most food chains in wetlands are detrital, based on the high
production of the vegetation (Mitsch and Gosselink 1993).
Invertebrates are the link between primary producers and
fish (and other vertebrates), for which they are prey.
However, there is a paucity of detailed information about
the roles that particular species play in the food webs in
wetlands (Batzer et al. 1999).

Litter breakdown has been recognized as a complex pro-
cess, and conceptual models have been formulated to describe
this process in low-order streams in the context of the ecosys-
tem as a whole (Graça et al. 2015). In forested streams, the
abundant leaf litter subsidies from riparian trees are typically
the major source of energy in food webs. The tropical and
subtropical wetlands of South America have high productivity
of aquatic plants, and year-round growth often leads to the
development of large macrophyte standing stocks (Carignan
and Neiff 1992; Melack and Forsberg 2001). Nevertheless,
despite having high macrophyte diversity (Chambers et al.
2008; Neiff et al. 2011), the decomposition rates in South
American wetlands are known only for the dominant aquatic
plants (Eichhornia crassipes, Eichhonia azurea, Paspalum
repens, Polygonum spp., Panicum elephantipes and Typha
latifolia) in different types of riverine wetlands connected to
large rivers (Bruquetas de Zozaya and Neiff 1991; Pagioro
and Thomaz 1999; Poi de Neiff et al. 2006) and reservoirs
(Stripari and Henry 2002; Bottino et al. 2013). Leaf break-
down processes are governed by intrinsic factors related to
the chemical properties of the litter, such as secondary
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compounds and nutrient content, as well as extrinsic factors
related to the environmental conditions where the process oc-
curs (Webster and Benfield 1986). Many studies (see Webster
and Benfield 1986) have provided indirect evidence for the
importance of invertebrates in leaf breakdown, whereas others
have suggested that invertebrates are not important in this
process. A global analysis comparing six continents indicated
that shredder density is 2.5 times higher in temperate streams
than in tropical streams (Boyero et al. 2012). A paucity of
shredding invertebrate detritivores and a high proportion of
collectors or predators is a frequent characteristic of many
tropical and subtropical wetland assemblages (Neiff and Poi
de Neiff 1990; Dudgeon and Wu 1999; Stripari and Henry
2002; Mathuriau and Chauvet 2002; Capello et al. 2004;
Gonçalves et al. 2006; Rueda-Delgado et al. 2006; Galizzi
and Marchese 2007; Poi de Neiff et al. 2009). There are sev-
eral possible explanations for this paucity that are not mutually
exclusive (Boulton et al. 2008). One possibility is that the
shredding taxa have been overlooked because some genera
belong to a different functional feeding group in temperate
rivers than those in tropical rivers. Other studies have sug-
gested that the apparent lack of shredders in tropical systems
reflects sampling deficiencies that exclude macroconsumers
such as crabs (Wantzen et al. 2002; Dobson 2004), fish or
shrimp (Rosemond et al. 1998). Shrimp play an important role
in the food webs of tropical waters as grazers, predators and
detritivores, but their ecological effects on food webs are
strongly taxon-dependent (Jacobsen et al. 2008). Information
is scarce about the functional feeding groups of aquatic inver-
tebrates in South America, and studies generally follow clas-
sification from the Holarctic region (Merritt and Cummins
1996). Gut content analysis is needed to ascertain the
function of invertebrates found in Afrotropical (Masese
et al. 2014) and Neotropical (Tomanova et al. 2006)
streams. A third explanation for the paucity of shredders
in many wetlands, especially in those dominated by sub-
merged and floating plants, is that the rapid breakdown of
plant material by mechanical, microbial and chemical pro-
cess precludes shredding (Wissinger 1999).

In several shallow lakes of the province of Corrientes, am-
phipods (Hyalella curvispina Shoemaker) and prawns
(Pseudopalaemon bouvieri Sollaud) are frequent and abun-
dant in vegetated areas (Poi and Galassi 2013). P. bouvieri is
omnivorous, consuming a high proportion of algae and detri-
tus (Carnevali et al. 2012).

The aim of this study was to evaluate how the diversity of
litter species affects litter processing in a subtropical wetland.
For this purpose, we compared leaf breakdown and the abun-
dance and biomass of invertebrates that colonize the leaf litter
of five aquatic plants in an in situ experiment with litter bags.
To elucidate the importance of invertebrates in the leaf break-
down process, we also investigated the trophic spectrum of the
dominant macroconsumers in the same wetland.

Our hypotheses are, first, that leaf litter of different species,
which decompose at different rates, will support different in-
vertebrate assemblages both in terms of abundance and bio-
mass; second, that the biomass of prawns and amphipods
dominate the invertebrates that colonize the litter and third,
that macroconsumer omnivores contribute to litter breakdown
by shredding leaf litter.

Methods

Study Area

The province of Corrientes is characterized by a subtropical
climate with long, warm summers and short, not usually se-
vere winters (Bruniard 1999). The average annual temperature
ranges from 13 to 19.5 °C. During summer, the absolute max-
imum temperature ranges from 42.5 to 46.5 °C. In the north-
eastern region of the province, there are more than 100 sub-
rounded, shallow, rain-fed lakes that have low salinity and
electrical conductivity ranging between 25 and 150 μS cm−1

(Poi and Galassi 2013). One such lake, which is located at
27°22’ S and 58°32’ W, was selected for this study. It has an
area of 22 ha and a maximum depth of 4 m, and 25 % of its
water surface is covered by different species of aquatic plants.

Experimental Design and Analysis

Leaf breakdown was measured by the litter bag method
(Crossley and Hoglund 1962). Five macrophyte species,
Eichhornia crassipes (Mart.) Solms, Eichhornia azurea
(Sw.) Kunth, Thalia multiflora Horkel, Oxycaryum cubense
(Poepp & Kunth) Lye, and Hydrocotyle ranunculoides (L. f.),
were chosen on the basis of expected differences in nutrient (N
and P) and lignin content. These species are native and very
common in the wetlands of northeastern Argentina.
E. crassipes and H. ranunculoides were distributed to several
countries though the ornamental trade and are considered in-
vasive species outside of their native range.

We collected recently senesced leaves of macrophytes in
the study lake. Air-dried leaves (10 g) were placed into
20 × 20 cm nylon litter bags with 5 mm mesh. In November
2010, five replicate bags of leaf litter from each species were
incubated on four sampling dates, for a total of 100 litter bags.
Each set of bags was anchored to the bed of the wetland and
was collected at random after 7, 14, 30 and 45 days. Each bag
was packed into a separate plastic bag in the field and was
returned to the laboratory. The leaf material was gently
washed on a sieve (125 μm mesh) to remove silt, epiphytes
and invertebrates. The remaining plant material was dried to a
constant weight at 105 °C.When the mass loss was calculated,
corrections were made for the moisture content of air-dried
samples up to the constant dry weight (105 °C). The
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invertebrates were counted, separated by taxonomic group
and, after identification, were dried to constant mass at
60 °C for 48 h and weighed to the nearest 0.01 g.
Abundance was expressed as the number of invertebrates per
litter bag. The total biomass (g per litter bag) was estimated as
the sum of the dry weight of the dominant taxa (Naididae,
Glossiphoniidae, Palaemonidae, Hyalellidae, Caenidae,
Hydrachnidia, Libellulidae, Coenagrionidae, Gomphidae,
Chironomidae and Ancylidae). The taxa of minor biomass
were pooled, weighed and assessed as previously described.

The physical and chemical water conditions were assessed
on each collection date. The temperature and oxygen concen-
tration were measured with a YSI 54A polarographic probe,
and pH was measured with a WTW 330/SET-1 digital pH
meter. The water samples were filtered within 1–2 h of collec-
tion using pre-washed Gelman DM-450 (0.45 mm-pore)
membranes for the spectrophotometric analyses of NH4

+ (in-
dophenol blue method), NO3

− + NO2
− (called NO3

−) by Cd
reduction and total phosphorus (molybdenum blue method)
with persulfate oxidation (APHA 1998). At the beginning of
the experiment, the leaf subsamples from each litter type were
dried at 60 °C to determine the nutrient content. The nitrogen
(macro-Kjeldahl method), phosphorus (AOAC 1990), and fi-
ber contents (Ankom Fiber Analyzer) were expressed as the
percentage of dry weight.

The decomposition constant, k (Olson 1963), for the expo-
nential model was calculated using the equation

Wt ¼ W0 e−kt

where W0 is the original amount of litter, Wt is the amount of
litter remaining after time t, and t is the time in days.

The Macroconsumer Trophic Spectrum

Prawns (Pseudopalaemon bouvieri) and amphipods (Hyalella
curvispina) were collected in the vegetated area of the lake
during November and December, when the spring peak of
their populations occurs, with a 35 cm diameter and 500 μm
mesh net. The vegetation was rinsed into a white container,
and the individuals were separated by hand. The diets of both
macroconsumers were analyzed by removing their digestive
tracts under a stereoscopic microscope. The stomach contents
of P. bouvieri and the digestive tract of H. curvispina were
mounted in 50 % glycerol. The contents of the digestive tract
of H. curvispina were previously dyed with 0.004 % safranin
for 24 h to facilitate the identification of the items consumed.
We examined 44 P. bouvieri stomachs; the items consumed
were sorted into taxonomic groups and counted under a com-
pound microscope at 150× to 600×. The different taxonomic
groups were identified to the lowest possible taxonomic level
using the keys in Lopretto and Tell 1995; Merritt and
Cummins 1996 and Domínguez and Fernández 2009.

A total of 32H. curvispina individuals were analyzed,
but only 20 had content in their digestive tracts. The ma-
terial observed was classified into five food items: plant
remains, algae, detritus, animal remains and indeterminate
material. Twenty ocular fields were chosen randomly and
photographed (400× magnification) with a digital camera
mounted to the stereoscopic microscope (Leica ICC50
HD). The food items recorded in each ocular field were
photographed, and their relative frequencies were calcu-
lated. To quantify the food items consumed, 10 ocular
fields per individual were selected at random, and the
percentage of the total area covered by each food item
was estimated using the software ImageJ 1.44.

Statistical Analyses

Analysis of covariance (ANCOVA) was used to determine the
differences in the decay coefficient (k day−1) with species as
the main factor. Tukey tests were used to identify significant
differences among the mean breakdown rates of the litter spe-
cies. The number and biomass of invertebrates per litter bag
were compared among species using generalized linear mixed
models (GLMMs) with species as the main factor and time as
the repeated measure, and subsequent Fisher’s LSD (al-
pha = 0.05) post hoc tests were used for comparisons among
the means. ANOVA with Tukey’s post hoc test was used to
assess differences in the proportion of food items consumed by
adults and juveniles of P. bouvieri between the sampling dates.

All statistical analyses were performed with INFOSTAT
software (Di Rienzo et al. 2012). The data were log (x + 1)
or arcsine transformed to reduce the heterogeneity of vari-
ances if necessary.

Results

Environmental Characteristics

During the experiment, the water temperature varied between
22.5 and 25 °C, the electrical conductivity varied between 55
and 72 μS cm−1, and the pH varied between 7.3 and 7.7. High
dissolved oxygen content was recorded in the surface lay-
er (8.2 mg L−1), decreasing to a minimum at the lake
bottom (5.2 mg L−1). The mean Secchi disk depth was
0.87 m. The water had a total nitrogen concentration of
between 25 and 110 μg L−1 and a low total phosphorous
concentration (<5 μg L−1).

Leaf Litter Breakdown

The five species of aquatic vascular plants exhibited a wide
range of initial litter nutrient concentrations, lignin contents
and L:N ratios (Table 1). As expected, H. ranunculoides
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exhibited low lignin content and high nutrient concentration.
The initial lignin content of T. multiflora and O. cubense
leaves was approximately 10 times greater than that of
H. ranunculoides leaves.

After 45 days of incubation, the remaining dry weight var-
ied between 4.4 and 58.6 % for all of the species (Fig. 1). The
decay coefficients (k) estimated at the end of the incubation
time ranged from 0.05205 to 0.01102 day−1. Based on these k
values, the estimated half-life of the litter was 13.31 days for
E. azurea and 62.88 days for T. multiflora (Table 1).
H. ranunculoides decomposed fairly rapidly, and the total loss
of leaf litter through the 5 mm mesh occurred in the first
14 days. The half-life of H. ranunculoides litter could thus
not be estimated, and this species was not included in the
comparisons among the species.

The comparison of the decay coefficients (k) using
ANCOVA showed that there was no interaction between the
curves, and the slope of the regression differed significantly
(F = 38.69, p < 0.0001) among the litter species. The mean leaf
breakdown rate differed significantly between two pairs of
species: E. azurea-E. crassipes and O. cubense-T. multiflora
(Tukey’s post hoc test, p > 0.05), but the rates of mass loss
were similar between the species of each pair.

Invertebrate Colonization

The leaves were rapidly colonized by macroinvertebrates,
reaching 243 individuals per leaf bag for O. cubense (Fig. 2)
after only 6 days of incubation. On this date, a mean abun-
dance of 278 invertebrates was found for H. ranunculoides,
but it was the only available information because the total
mass loss occurred after 14 days. The number of inverte-
brates per bag peaked at 381 (Fig. 2) after 30 days of
incubation for E. azurea leaf litter (469.3 invertebrates
per g of remaining litter).

The differences in the number of invertebrates per litter bag
were significant among the litter species (GLMMs, F = 3.87,
p = 0.0188). The mean number of invertebrates colonizing
E. azurea and O. cubense litter per litter bag was significantly
different from the number colonizing the litter other plant
species, as the abundance of invertebrates on E. crassipes
and T. multiflora litter was similar (Fisher’s LSD, p = 0.05).

E. azurea supported the highest macroinvertebrate biomass
after 30 days of incubation (Fig. 3), peaking at 113.1 mg per
litter bag. However, the biomass of invertebrates colonizing

Table 1 Concentration of Lignin
(L) and Nitrogen (N) and
Phosphorus (P) in the leaves of
the five studied macrophytes

Litter types L% N% P% L:N k day−1 Adj.r2 t 0.50 (days)

Eichhornia azurea 2.19 2.70 0.38 0.81 0.05205 0.955 13.31

Eichhornia crassipes 2.85 2.48 0.36 1.14 0.04047 0.9638 17.12

Hydrocotyle ranunculoides 1.04 3.70 0.23 0.28

Oxycarium cubense 11.50 1.79 0.20 6.24 0.01771 0.917 39.13

Thalia multiflora 12.56 1.46 0.33 8.60 0 .01102 0.874 62.88

The decay coefficient (k day−1 ), the model r2 and the half live of the different leaf litter at the end of the incubation
time (45 days)

Fig. 2 Mean number (± S.E.) of invertebrates per litter bag for the
different litter species during breakdown

Fig. 1 Remaining litter dry weight for the different litter species. The
errors bars represent ± 1 SD
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the litter was not significantly different among the litter spe-
cies (GLMMs, F = 2.71, p = 0.06).

The invertebrate assemblages that colonized the litter of
each species were broadly similar, consisting primarily of ol-
igochaetes, amphipods, prawns, ostracods (Limnocytheridae),
gastropods (Ancylidae), water mites (Hydrachnidia) and sev-
eral insect larvae, predominantly chironomids and mayflies.
Naidid oligochaetes (mainlyDero spp. andPristina spp.) were
the most abundant taxa in all leaf litter, reaching 86.6 % of the
total number of invertebrates (Fig. 4). Ostracods (Cytheridella
ilosvayi Daday) were both frequent and abundant. Thus, col-
lectors dominated the invertebrate assemblages on the studied
litter of each species. Predatory water mites (Piona sp. and
Arrenurus sp.) were more abundant at the beginning of the
experiment than after 30 days of incubation (Fig. 4). The
highest proportion of Hyalella curvispina was found on
O. cubense and E. azurea litter (Fig. 4) after 6 incubation days.
Prawns (Pseudopalaemon bouvieri) were recorded in low rel-
ative abundance after 30 incubation days. Several insect fam-
ilies, such as Pleidae (Neoplea sp.), Corixidae (Tenagobia sp.),
Leptoceridae, Gomphidae, Libellulidae, Coenagrionidae,
Staphylinidae and Pselaphidae, were found at low relative
abundance (<1 %) and frequency.

When expressed in terms of biomass (Fig. 5), the propor-
tion of Naididae did not exceed 56.4 %, and a significant
portion of the total biomass was represented by leeches,
prawns and amphipods. The Glossiphoniidae (Helobdella
sp.) biomass (Fig. 5) was highly variable, ranging from 3.2
to 19.1 % of the total biomass. Pseudopalaemon bouvieri and
Hyalella curvispina reached 67.6 % (O. cubense) and 18.2 %
(T. multiflora), respectively (Fig. 5). Chironomidae larvae
(Dicrotendipes sp., Goeldichironomus sp. and Chironomus
decorus Johannsen) contributed up to 2.9 and 2.3 % of the
total abundance and biomass (Figs. 4 and 5), respectively. The
relative biomass of insect families with high individual dry
weight such as Caenidae, Libellulidae, Coenagrionidae and
Gomphidae (grouped as other taxa in Fig. 5) was highly var-
iable. Mayfly (Caenis sp.) larvae were recorded at low abun-
dance but accounted for 9.4 % of the total biomass in
O. cubense and E. crassipes litter after 6 incubation days.

The Macroconsumer Trophic Spectrum

Adult prawns primarily consumed algae (both unicellular and
filamentous), plant remains and detritus on both sampling
dates (Fig. 6). Juveniles ate proportionally more animal re-
mains (oligochaetes, copepods, cladocerans, midge larvae
(Chironomidae), other insect larvae, protozoa and rotifers)
than detritus. Animal remains were the item most consumed
by juveniles in December (Fig. 6). The proportions of the food
items consumed by juveniles differed significantly between
the sampling dates (ANOVA, F = 4.8, p = 0.04), but the diet
of adults did not differ (ANOVA, F = 1.48, p = 0.2).

The analysis of the digestive tract contents ofH. curvispina
showed that detritus and plant remains were the food items
that covered the greatest percentage of the total covered area,
followed by algae and indeterminate material, in both males
and females (Fig. 7). The lowest proportion of the total area
was covered by animal remains (0.2 %). Detritus (fine partic-
ulate organic matter) was the most frequently occurring item
(87.3 %) followed by plant remains (72.3 %), algae (mostly
Chlorophytes, 24.7 %), indeterminate material (18.8 %) and

Fig. 4 Relative abundances of the main taxa found in the leaf litter after 6 and 30 incubation days

Fig. 3 Mean biomass (±SD) of invertebrates per litter bag for the
different litter species during breakdown
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animal remains (2.5 %). Additionally, we found calcium oxa-
late crystals and fungal spores at frequencies of 5 and 0.5 %,
respectively, and these items occupied a low percentage of the
total covered area (0.1 %).

Discussion

Leaf Litter Breakdown

According to the three groups of decay rates (fast, medium
and slow) proposed by Petersen and Cummins (1974), litter
breakdown was fast (>0.010 days−1) for all of the species
studied. The water conditions in the studied wetland (good
dissolved oxygen availability, neutral pH and temperature
above 22.5 °C) favor rapid decomposition, even in marsh
plants with high lignin content such as O. cubense and
T. multiflora. The half-life ofE. crassipeswas within the range
recorded in wetlands connected to the Paraná River at similar
latitudes (10.3–34.6 days) (Poi de Neiff et al. 2006). The

decay rate found for E. azurea leaf litter was faster than the
rate obtained by Pagioro and Thomaz (1999) in the Upper
Paraná River (0.0047 day−1) using leaf packs and that
obtained by Stripari and Henry (2002) and Bottino et al.
(2013) in two Neotropical reservoirs using leaves and petioles
in litter bags.

The effect of litter species on breakdown rates may be due
to differences in the initial chemical composition of the leaves
of the studied species. Many studies have found that under
uniform environmental conditions, decomposition rates were
explained by internal factors related to litter quality, such as
nitrogen, carbon and lignin content or the ratios of C:N and
L:N (Webster and Benfield 1986; Richardson et al. 2004;
Leroy and Marks 2006; Poi de Neiff et al. 2006). Due to the
limited number of species and the variation in leaf quality in
our study, we did not test the relationship between breakdown
rates and the initial chemical composition of the litter.

The litter bag methods that have been used in decomposi-
tion studies vary greatly in both the amount of material placed
in the litter bags and the mesh size used (Abelho 2001),

Fig. 5 Relative biomass of the main taxa found in the leaf litter after 6 and 30 incubation days

Fig. 6 Proportions of the food items consumed by Pseudopalaemon
bouvieri in the lake during November and December

Fig. 7 Percentage of the total area covered by each food item in the lake
during November
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although a mesh size of 5 mmwas proposed byWantzen et al.
(2008) as a standard methodology for studies of leaf decom-
position in streams. However, a great loss of leaf fragments in
the 5 mm mesh occurred in aquatic plants that are structurally
very weak (such as H. ranunculoides), for which leaves de-
compose soon after death. The fast disappearance of
H. ranunculoides may be due to the mesh size used in our
experiment, but more studies are needed regarding this topic
in Neotropical wetlands.

Invertebrate Colonization

The number of invertebrates per litter bag was significantly
affected by the litter species, but we did not find consistent
differences in invertebrate biomass. The absence of differ-
ences was most likely due to the large variability in biomass
among replicate bags caused by the sporadic presence of spe-
cies with high individual dry weight, such as members of
Libellulidae, Coenagrionidae and Gomphidae. The total in-
vertebrate abundance in our study was higher than has been
reported for E. azurea and E. crassipes in other Neotropical
wetlands (Stripari and Henry 2002; Poi de Neiff et al. 2009).

Our results show that leaf litter from the different species
supported different abundances of invertebrates in the wetland
studied. Many studies, primarily those that have been con-
ducted in streams, have found that invertebrate densities are
high for leaf litter with rapid decomposition rates (Webster
and Benfield 1986). We found high abundances of inverte-
brates in the litter of both E. azurea andO. cubense, for which
leaf litter decomposes at different rates. However, the lowest
abundance was found in the litter with the slowest breakdown
rate (T. multiflora). According to Stripari and Henry (2002),
E. azurea has high polyphenol content, although during the
decomposition process, a decrease in its concentration was
observed after 14 incubation days. We did not measure poly-
phenol content, but it is clear from the high abundance and
biomass of invertebrates that none of the aquatic plants stud-
ied produced deterrent substances that would prevent inverte-
brate colonization.

Naidid oligochaetes (mainly collector-gatherers) are the
largest invertebrate group in terms of the number of individ-
uals, but the proportion of this group decreased when biomass
is included in the analysis. The importance of oligochaetes in
litter breakdown was described by Chauvet et al. (1993) in the
Garonne River, where naidids represented up to 73 % of the
total number of invertebrates. The most frequent insect fami-
lies associated with leaf breakdown in our study were
Caenidae and Chironomidae. The larvae ofCaenis spp., which
are typical of lentic condition, are closely associated with mac-
rophyte stands in different wetlands (Batzer et al. 1999).

The taxonomic composition of these invertebrate assem-
blages were different than those reported in previous decom-
position studies carried out with aquatic plants in the Paraná

River floodplain (Poi de Neiff et al. 2009). In these floodplain
wetlands, macroconsumers are often rare or absent. This pau-
city could be related to the extreme variation in limnological
conditions: turbidity at rising water and oxygen depletion in
falling water (Poi de Neiff and Carignan 1997). Conversely, in
rain-fed oligohaline lakes of Corrientes with high water trans-
parency and good dissolved oxygen availability, the
P. bouvieri population reached 1,411 individuals per m2

(Carnevali et al. 2012).
Our results suggest that the biomass of a single species of

prawn and a single species of amphipod dominate the inver-
tebrates that colonize the litter. In a similar way, the biomass of
crabs in tropical African streams often comprise at least 70 %
of the total benthic invertebrate biomass (Dobson et al. 2007).

The Macroconsumer Trophic Spectrum

Pseudopalaemon bouvieri adults and juveniles are omnivo-
rous and feed at different trophic levels, and this coincides
with previously published evidence from 6 lakes in the same
area of study (Carnevali et al. 2012). The food items found in
the digestive tracts of H. curvispina corroborate the findings
of Saigo et al. (2009) in a previous study of individuals col-
lected in lakes of the Paraná River floodplain. Hyalella
curvispina acts as collector-gatherer and shredder, consuming
detritus (the item with greatest proportion and frequency) and
vegetal tissue.

In the floodplain lakes located near the studied site, herbiv-
ory by invertebrates on the above-water line parts of
E. crassipes floating meadows varied between 13 and 26 %
of the leaf biomass (Franceschini et al. 2010). Therefore,
when a large fraction of the biomass remains available
as detritus and the litter decomposes quickly, it is not
surprising that collector-gatherers dominate invertebrate
assemblages in terms of the number of individuals.
However, macroconsumers become important when inver-
tebrate biomass is considered in breakdown studies.

Our results indicate that macroconsumers are involved in
the processing of detritus in the wetland studied, as these
species consume both plant remains and detritus. Our findings
are supported by previous studies of tropical streams, where
shrimp have been shown to significantly influence on ecosys-
tem function (Cross et al. 2008) by regulating leaf litter break-
down (Crowl et al. 2006).

The results of this study contribute to elucidating the role of
invertebrate omnivores on litter breakdown processes in sub-
tropical rain-fed wetlands and highlight the importance of leaf
litter composition on the abundance of invertebrates that col-
onize the litter. We suggest that future studies evaluate
both the abundance and biomass of invertebrates (most
published data refer to the former), which would allow
amphipods and prawns to be considered as integral
components of these assemblages.
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