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Abstract: Protein–protein interactions are essential to all aspects of life. Specific interactions result

from evolutionary pressure at the interacting interfaces of partner proteins. However, evolutionary
pressure is not homogeneous within the interface: for instance, each residue does not contribute

equally to the binding energy of the complex. To understand functional differences between resi-

dues within the interface, we analyzed their properties in the core and rim regions. Here, we char-
acterized protein interfaces with two evolutionary measures, conservation and coevolution, using a

comprehensive dataset of 896 protein complexes. These scores can detect different selection

pressures at a given position in a multiple sequence alignment. We also analyzed how the number
of interactions in which a residue is involved influences those evolutionary signals. We found that

the coevolutionary signal is higher in the interface core than in the interface rim region. Addition-

ally, the difference in coevolution between core and rim regions is comparable to the known differ-
ence in conservation between those regions. Considering proteins with multiple interactions, we

found that conservation and coevolution increase with the number of different interfaces in which

a residue is involved, suggesting that more constraints (i.e., a residue that must satisfy a greater
number of interactions) allow fewer sequence changes at those positions, resulting in higher con-

servation and coevolution values. These findings shed light on the evolution of protein interfaces

and provide information useful for identifying protein interfaces and predicting protein–protein
interactions.

Short Abstract: The objective of this study is to characterize the coevolutionary signal at the inter-

faces of protein–protein interactions. We used a large data set of protein complexes, finding that
the coevolutionary and conservation signals are higher at the interface core than at the interface

rim region. We also found that conservation and coevolution increase with the number of different

interfaces in which a residue is involved. These findings shed light on the evolution of protein
interfaces.

Keywords: protein–protein interaction; binding interface; interface core; interface rim; conservation;
coevolution; mutual information

Introduction
Protein–protein interactions are involved in most

cellular processes and play important roles in cell

function, both in health and disease. The interaction

interface is typically defined as the region composed

by those residues that decrease their accessible

solvent area (ASA) upon complex formation, while

interacting residues can be defined as those residues
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involved in physical contact between two or more

protein chains. Interface residues are expected to be

subject to different evolutionary pressures, as they

are heterogeneous in their roles and physicochemical

characteristics.1 The study of protein–protein inter-

actions from an evolutionary perspective is challeng-

ing, since it is difficult to distinguish evolutionary

constraints due to protein structure and function

preservation from those that arise due to protein–

protein interactions.

It has been demonstrated that residue conserva-

tion and amino acid composition only weakly distin-

guish the interacting interface from the rest of the

surface; however, differences can be found by split-

ting the interfaces into core and rim regions.2 The

core-rim model has been proposed3–5 whereby the

core is defined as being composed of buried residues

and is surrounded by a rim of residues that retain

some solvent accessibility upon complex formation

(Fig. 1).

The relevance of dissecting the protein interface

into core and rim regions has been verified via analy-

sis of human single amino acid variations in interact-

ing proteins,6 where it has been demonstrated that

disease-causing mutations are preferentially located

within the interface core rather than the rim.

Residue conservation in the core and rim regions

has been explored by Guharoy et al. using Shannon

entropy with a reduced alphabet of seven amino

acids. They concluded that the mean entropy of the

core is smaller (i.e., more conserved) than the corre-

sponding value of the rim region in 68% of biological

complexes.7 Similar results were reported using the

Voronoi description of protein–protein interfaces.8

A different kind of evolutionary information is

given by amino acid coevolution, also called covaria-

tion or correlated mutation. The idea behind molecular

coevolution is that whenever a functionally or

structurally important residue changes, a compensa-

tory mutation occurs elsewhere in the protein to pre-

serve or restore activity. In general, coevolution

analysis has proven useful in predicting 3D contact9,10

and functionally important sites such as catalytic resi-

dues,11 protein sectors,12–14 and allosteric and ligand

binding sites.15 It has been demonstrated that cata-

lytic residues have a network of residues with high

mutual information (MI) in their structural proximity

and this evolutionary signature allows its detection.11

In that study, the cumulative mutual information

(cMI) concept was introduced, a per-residue score that

measures the degree of shared mutual information.

The results suggest that other functionally important

sites, such as interacting residues, could also be part

of a given mutual information rich region.11

Molecular coevolution has never been explicitly

analyzed under the core-rim model. Lovell and Robert-

son found that the interface core is conserved and sug-

gested that, if present, coevolution must be sited in

the rim.16 This idea is to some extent supported by

the study of Kann et al., which shows that residues

spatially surrounding the binding site (binding neigh-

borhoods) of interacting proteins are subject to stron-

ger interprotein coevolution than the same number of

randomly selected residues outside the binding neigh-

borhood.17 However, intraprotein coevolution at the

interface has never before been studied. In the present

study, we analyzed conservation and coevolution under

the core-rim model using a large-scale dataset, and

focused on answering the following questions: how is

the coevolution signal distributed in the interface, and

how strong is it? And how is it compared with the con-

servation signal? To answer those questions, we com-

pared the level of coevolution with the conservation

signal in the core and rim regions.

We also evaluated conservation and coevolution

values depending on the number of interfaces in

Figure 1. Definition of the four regions in an interacting unit (PDB: 1B6C_B). Where DASA is the difference in ASA upon com-

plex formation and rASAc is the relative ASA in the complex. Residues that do not change their solvent accessibility upon com-

plex formation (DASA 5 0) are assigned to Protein Core (PC) or Protein Surface (PS) based on their rASAc. Residues that

change their ASA upon binding (DASA>0) belongs to Interface Core (IC) if are buried in the complex (rASAc�25%); or Inter-

face Rim (IR) if they retain some solvent accessibility in the complex (rASAc>25%). The four regions were colored in the chain

B of the complex depicted in surface representation. The interacting region (composed of the core and rim) is shown in a front

view (left) and side view (right) with the interaction partner in gray cartoon representation. Molecular graphics were performed

with the UCSF Chimera package.30
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which a residue is involved. We believe that our

findings provide a residue-based understanding of

evolutionary constraints at the interacting interface.

Results

Interacting residue distribution within the core

and rim regions

The interaction interface is composed of residues in

the core region that are buried within the complex,

and residues of the rim region that retain some sol-

vent accessibility after binding. However, different

solvent accessibility cut-off values have been used in

a number of studies to determine whether a residue

is buried or exposed. One way to validate the chosen

cut-off is to verify that the interacting residues

(annotated at an atomic level in PICCOLO) truly

belong to the interface.

The distribution of residues in the four regions

shows that the core and rim contain almost all the

interacting residues (99.42%), but they also contain

some residues that are not interacting (Fig. S2). In

our dataset, based on our region definition, 54,164

residues belong to the IC region, 17.09% of which are

non-interacting, whereas 40,447 residues belong to the

IR region, 41.05% of which are non-interacting. In our

dataset, an interacting unit (a PDB chain) has on

average 238 residues, of which approximately 10% are

involved in protein–protein interactions.

Comparison of conservation and coevolution

scores between regions
To compare scores between the different regions, we

calculated average scores (Conservation and cMI) per

region for each protein and calculated the differences

between the averages of the two compared regions. If

compared regions have similar average scores, the dif-

ference will be close to zero. Figure 2 shows the distri-

butions of the differences. The median and median

absolute deviation are summarized in Table S1.

We found that the distribution of cMI differences

between PS and IR (first box of Fig. 2) has a median

close to zero (–0.0116), demonstrating that the coevolu-

tionary signal at the interface rim is similar to that of

the protein surface. Conservation is comparable at the

interface rim and protein surface (the difference is

close to zero, a median of 20.0037). The comparison

between the protein and interface cores (second box of

Fig. 2) shows that the median of cMI and C are also

close to zero (–0.0032 and 0.0302, respectively). As

expected, the comparison between the protein core

and surface shows that cMI and conservation are

greater in the former (both differences are >0, being

0.0887 and 0.0742, respectively). Finally, the compari-

son between the interface core and rim (fourth box of

Fig. 2) demonstrates that the interface core has higher

cMI and conservation scores than the rim (the median

value is greater than zero, being 0.0589 and 0.0513,

respectively). In general, we found that conservation

and cMI scores show similar behavior throughout com-

parisons between regions.

It is well-known that the number of non-

redundant sequences in a MSA is critical for calculat-

ing mutual information. In particular, it has been

demonstrated that MSAs with at least 400 clusters of

62% identity perform well for contact prediction. In

our data set, approximately 50% of the MSAs fulfill

that criterion (1129 MSAs). We performed the same

analysis shown in Figure 2 with the subset of MSAs

with at least 400 clusters of sequences giving the

same tendency (summarized in Table S1 and Fig. S3).

We also investigated to what extent residues

with high conservation scores are the same as resi-

dues with high coevolution scores in the IC. First,

we investigated whether the two variables are corre-

lated over all regions. We found that the correlation

is very weak (Spearman’s rank correlation coeffi-

cient: 0.123), indicating that each variable provides

different information. Next, we analyzed the score

distributions of the interface core residues (32,934

residues in total). Figure 3 shows that 67.48% of IC

residues (22,224 residues show low cMI and conser-

vation scores (both scores< 0.5), 9.44% (3109 resi-

dues) show low cMI and high conservation (cMI

<0.5 and Cons� 0.5), and 19.97% (6577 residues)

show high cMI and low conservation (cMI�0.5 and

Cons< 0.5). Only 3.09% of residues (1018 residues)

have high cMI and conservation (cMI�0.5 and Con-

s�0.5). These results demonstrate that the majority

of residues in the interface core have low levels of

conservation and coevolution, despite being interact-

ing residues. Moreover, the probability of a given

residue having both scores�0.5 given that at least

Figure 2. Distribution of the differences of conservation and

cMI scores between regions. At the top of the boxplot are

indicated the compared regions. PS: Protein Surface; PC:

Protein Core; IC: Interface Core; IR: Interface Rim. Cons

mean conservation and cMI means cumulative Mutual Infor-

mation. A Wilcoxon rank sum test under the null hypothesis

of median is equal to 0 was performed for each comparison,

boxplot filled in gray indicate that the P value is smaller than

0.001 after a FDR correction for multiple testing.
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one score is� 0.5, is 0.095. This shows that residues

with high conservation and cMI scores are not the

same in 90.5% of the cases.

Conservation and coevolution of residues

involved in several interactions

Protein chains can have multiple interactions with

one or more partners, thus defining different inter-

acting interfaces. Either distinct binding sites may

be used for different interactions in a single protein,

or the same binding site may be used for all interac-

tions. Similarly, a particular residue can participate

in one or several interactions (illustrated in Fig. 4).

We analyzed conservation and coevolution scores

with respect to the number of interactions in which a

protein is involved in and the number of times that a

particular residue is annotated as an “interacting resi-

due” in the PICCOLO database. A subset of 322 inter-

acting units with multiple interactions contains 249

proteins that participate in two interactions and 73

involved in three interactions. The number of times a

residue was annotated as an interacting residue was

also calculated. For proteins having two interactions,

there are 5296 residues involved in only one and 6519

residues involved in both interactions. Considering

proteins involved in three interactions, there are 1613,

1371, and 1528 residues involved in one, two and

three interactions, respectively.

We found that conservation and coevolution

scores increase with the number of interactions in

which a residue is involved. All comparisons were

statistically significant after Mann–Whitney U test

(P value< 0.05; Fig. 5).

Discussion

We employed the core-rim model to study evolution-

ary signals in four protein regions and to better

define their differences. We calculated the level of

coevolution in terms of cMI score and conservation

as Kullback–Leibler divergence.

The definitions of core and rim regions used in

this study are similar to those previously used,1

where 25% rASAc is used to distinguish between the

core and rim. Levy demonstrated that a threshold of

25% rASAc most effectively segregated amino acids

in the protein core from those at the surface.3

Figure 3. Score distribution of the Interface Core residues.

Conservation (Cons) and cMI scores were normalized to fall

in the range [0–1]. The plot shows the score distribution of

Interface Core residues in the dataset (32,934 residues). We

considered 0.5 as the threshold between high and low scores

(black lines). The majority of points (67.48% residues) shows

low scores (cMI <0.5 and Cons<0.5). Only 3.09% of the res-

idues have high cMI and Conservation scores.

Figure 4. Number of interactions in which a residue is involved. Schematic representation of two possible scenarios for a pro-

tein involved in two interactions. In the first one (A) the protein P1 uses the same binding site or an overlapped binding site to

bind different partners colored in green and violet. The interactions are mutually exclusive, allowing a given residue to partici-

pate in both interactions. (B) The protein P1 has two distinct binding sites and both interactions can exist at the same time.

Even though the protein participates in two interactions, the residues are involved in only one interaction.

Teppa et al. PROTEIN SCIENCE VOL 26:2438—2444 2441
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We found that residues in the interface core

show a higher level of conservation and coevolution

than those in the rim. Higher conservation within

the core as compared to the rim has also been dem-

onstrated in prior studies.7 However, a higher level

of covariation at the interface core as compared to

the rim is a novel finding of this study. This result is
somewhat unexpected, since it has been speculated
that a coevolutionary signal should be observed in the
rim region due to the higher conservation of the
core.16 Here, we demonstrate that both signals coexist
at the interface core. This result can be explained by:
(i) highly (but not perfectly) conserved residues can
yield high levels of cumulative MI; (ii) the interface
core can be composed by some residues that are highly
conserved and others that are highly coevolved. To dis-
tinguish between these options, we calculated the cor-
relation between conservation and cMI score and
analyzed the score distribution of the interface core
region. We found a very weak correlation between
scores and that the interface core residues with high
cMI are not the same as those with high conservation
scores. These results suggest that the second option is
the more likely scenario. We also found that 83% of
residues in the interface core are interacting, the
majority of which have low levels of conservation and
coevolution. Therefore, we expect that none of these
scores, without using additional information, would
demonstrate good predictive performance for protein–
protein interacting residues. It is worth mentioning
that the use of other covariation method such as
mfDCA18 or Gremlin19 may give different results.
However the used MI-based method proved to be good
at detecting functionally important residues.11

The coevolutionary signals in the four regions

support the idea that the protein core is similar to

the interface core, and the protein surface is similar

to the interface rim. This similarity between regions

has been reported based on amino acid composition

and conservation;7 this work adds that coevolution

also follows the same trend.

It has been reported that interface residues are

more conserved than other surface residues. This

difference is more evident when the classification of

residues (between the interface and the rest of the

surface) takes into account the multiple interactions

a protein can possess.20 In this study, we demon-

strate that the increase in net conservation occurs

specifically due to the conservation of residues

involved in interactions (not to all the interface resi-

dues). Furthermore, this conservation increases with

the number of interactions in which each residue is

involved. We also demonstrate that the level of

coevolution is greater in those residues that are

involved in multiple interactions; to our knowledge,

this relationship has not been previously reported.

As a general conclusion, considering conserva-

tion and coevolution, our results demonstrate that

when more constraints are present at a given posi-

tion (a residue has to satisfy multiple interactions),

fewer sequence changes are allowed resulting in

higher residue conservation and coevolution values.

It is worth mentioning that the number of inter-

actions that a protein has can be underestimated, as

we only analyzed those complexes with solved struc-

tures. Another possible approach to estimate the

number of interactions is to extract the information

from specialized databases (i.e., String, IntAct

Molecular Interaction Database) that integrate

experimental information from different experimen-

tal systems such as co-purification, yeast two-hybrid

experiment, or genetic interaction.21,22 However, it

is not possible to identify the interacting residues

using these methods, and the distinction between

redundant and non-redundant interfaces that avoid

sampling bias would not be possible.

We believe that our findings contribute to a bet-

ter understanding of interface evolution and provide

information that can be used to develop methods for

predicting protein–protein interactions.

Figure 5. Distribution of Conservation and Coevolution according to the number of times a residue is an interacting residue in

the subset of proteins with multiple interactions. At the top of the boxplot the number of interactions in which a protein is

involved is indicated; at the bottom of the boxplot is shown the number of times a residue is an interacting residue. The

distribution were compared using Mann–Whitney U test (***P value<0.001; *P value<0.05). Sample size, median, and median

absolute deviation of conservation and cMI scores are shown in Table S2.

2442 PROTEINSCIENCE.ORG Protein--Protein Interaction Leaves Evolutionary Footprints
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Materials and Methods

Dataset of non-redundant interacting interfaces
We used the PICCOLO database23 of non-redundant

protein–protein interactions at atomic level, the ver-

sion build with PISA generated assemblies,24 which

are more likely to reflect the biologically relevant

oligomeric assembly. This database defines the inter-

action unit as the polypeptide PDB chain. All PDB

entries containing more than one polypeptide chain

were identified and every unique pair of non-

identical chains was examined, that is, for a PDB

entry with four chains A, B, C, and D, six compari-

sons are performed (AB, AC, AD, BC, BD, and CD).

The database also provides annotations of the inter-

acting residues, taking into account the physico-

chemical properties of the interaction at atomic

level. In particular, distance and angle terms were

used to distinguish 12 different interaction types,

including van der Waals contacts, hydrogen bonds

and hydrophobic contacts. It is worth noting that

this definition provides a more specific set of interac-

tions than a simple distance cut-off.

All the interfaces in PICCOLO are first grouped

by the unique combination of UniProt identifiers of

both components, then all the UniProt pairs having

>75% of residue in common at both sides of the

interfaces are clustered. The highest quality struc-

ture for each cluster was chosen as the representa-

tive complex. We leave out of the analysis the

homocomplexes as it would not be possible to distin-

guish whether the covariation between two positions

is due to intra or interprotein cause. We end up with

a set of 1792 PDBs that form binary complexes. The

corresponding set of ’sanitized’ PDB files was provided

by PICCOLO�s authors. The structures included in the

analysis cover the four CATH classes:25 29% Mainly

Alpha (four architectures), 31% Mainly Beta (eight

architectures), 37% Alpha Beta (nine architectures),

and 3% Few Secondary Structures (one architecture).

The number of different interactions in which a

protein is involved was estimated as the number of

times a UniProt accession appears in the non-

redundant PICCOLO database. We found 1336 pro-

teins involved in one interaction, 249 proteins involved

in two interactions, and 73 in three interactions.

Construction of the multiple sequence

alignments of homologous proteins

We extracted the sequences of each member of the het-

erocomplexes (representative structure) of the dataset.

For each sequence a search for homologous sequences

was carried out using phmmer (http://hmmer.org/)

against UniRef 90 database.26 Multiple sequence align-

ments (MSAs) were gap trimmed to remove positions

with gaps in the reference sequence. We discarded from

the analysis: (i) sequence with length <50 residues, (ii)

shorter than 50% of the reference sequence (cover-

age< 50%), and (iii) families with <50 sequences in the

MSA. We ended up with a dataset of 2255 MSAs con-

taining 42,284 interacting residues. Next, sequences in

each MSA were clustered at 62% identity.

The distribution of the number of clusters is

given in Figure S1.

Scores calculation

Sequence conservation was calculated for each MSA

position as the Kullback–Leibler relative entropy27

using the UniProt background frequency distribu-

tion of amino acids (http://www.uniprot.org/)

The MI score was calculated as described in Buslje

et al.,28 that includes APC correction,29 sequence weight-

ing, low count correction and Z-score permutation.

A derived Mutual Information score per residue

was calculated as the cumulative Mutual Informa-

tion (cMI) that measures the degree of shared

mutual information of a given residue.11

Shortly, the cMI score for each residue is calcu-

lated as the sum of the MI values above a certain

threshold where the particular residue appears, as

shown in the following equation:

cMIi5
X

j;MIi;j>t

MIij

Where MIi,j is the mutual information value between

the positions i and j; and t is the MI threshold. The MI

threshold was optimized for contact prediction (t 5 6.5 6

2.5) at a sensitivity of 0.4 and a specificity of 0.95.28

For each MSA, the cMI and conservation scores

were normalized so that the values fall in the range

[–1] as defined in the equation below.

Snorm5 S – Smin= Smax– Sminð Þ

where Snorm is the normalized score, S is the mea-

sured score and Smin and Smax are the lowest and

largest values in a given MSA.

Protein region definitions

We dissected each interacting unit into four non-

overlapping regions: protein core (PC), protein sur-

face (PS), interface core (IC), and interface rim (IR)

according to the relative solvent accessibility in the

complex (rASAc) and delta solvent accessibility upon

complex formation. Our definition, described below,

is based on that used by Levy and Chakrabarti.3,4

The interacting interface is formed by those resi-

dues that change their Accessible Surface Area (ASA)

upon complex formation. The interacting interface is

divided into interface core and interface rim regions.

Interface rim residues are those that have DASA> 0

upon complex formation and rASAc> 25% in the com-

plexed state (i.e., they retain certain solvent accessibil-

ity in the complex). All other interface residues were

assigned to the interface core region (DASA> 0 upon

Teppa et al. PROTEIN SCIENCE VOL 26:2438—2444 2443
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complex formation and rASAc� 25% in the complexed

state). Protein surface residues are those with

DASA 5 0 upon complex formation and rASAc> 25%.

All other residues with DASA 5 0, were assigned to the

protein core region (illustrated in Fig. 1).

For a given amino acid, DASA upon complex for-

mation and rASAc values were extracted from PIC-

COLO database. Relative accessibility represents

the accessible surface of each residue X relative to

that observed in an Alanine-X-Alanine tripeptide.
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