A Block Solver for the Exponentially Fitted IIPG-0 method

Blanca Ayuso de Dios* Ariel Lombardi ${ }^{\dagger}$ Paola Pietra ${ }^{\ddagger}$

Ludmil Zikatanov ${ }^{\S}$

Abstract

We consider an exponentially fitted discontinuous Galerkin method and propose a robust block solver for the resulting linear systems.

1 Introduction

Let $\Omega \subset \mathbb{R}^{2}$ be a convex polygon, $f \in L^{2}(\Omega), g \in H^{1 / 2}(\partial \Omega)$ and let $\epsilon>0$ be constant. We consider the advection-diffusion problem

$$
\begin{equation*}
-\operatorname{div}(\epsilon \nabla u-\beta u)=f \quad \text { in } \Omega, \quad u=g \quad \text { on } \partial \Omega, \tag{1.1}
\end{equation*}
$$

where $\beta \in W^{1, \infty}(\Omega)$ derives from a potential $\beta=\nabla \psi$. In applications to semiconductor devices, u represents the concentration of positive charges, ψ the electrostatic potential and the electric field $|\nabla \psi|$ might be fairly large in some parts of Ω, so that (1.1) becomes advection dominated. Its robust numerical approximation and the design of efficient solvers, are still nowdays a challenge. Exponential fitting [2] and discontinuous Galerkin (DG) are two different approaches that have proved their usefulness for the approximation of (1.1). Both methodologies have been combined in [3] to develop a new family of exponentially fitted DG methods (in primal and mixed formulation). In this note, we consider a variant of these schemes, based on the use of the Incomplete Interior Penalty IIPG-0 method and propose also an efficient block solver for the resulting linear systems.

By introducing the change of variable

$$
\begin{equation*}
\rho:=e^{-\frac{\psi}{\epsilon}} u \tag{1.2}
\end{equation*}
$$

[^0]problem (1.1) can be rewritten as the following second order problem
\[

$$
\begin{equation*}
-\nabla \cdot(\kappa \nabla \rho)=f \text { in } \Omega, \quad \rho=\chi \text { on } \partial \Omega \tag{1.3}
\end{equation*}
$$

\]

where $\kappa:=\epsilon e^{\frac{\psi}{\epsilon}}$ and $\chi:=e^{-\frac{\psi}{\epsilon}} g$. An IIPG-0 approximation to (1.3) combined with a suitable local approximation to (1.2), gives rise to the EF-IIPG-0 scheme for (1.1). We propose a block solver that uses ideas from [1] to reduce the cost to that of a CrouziexRaviart (CR) (exponentially fitted) discretization. By using Tarjan's algorithm, the associated matrix is further reduced to block lower triangular form, and a block GaussSiedel algorithm results in an exact solver.

To give a neat presentation, we focus on the case $\beta=\nabla \psi$ piecewise constant; ψ piecewise linear continuous, although we include some numerical results for a much more general case (cf. Test 2). Due to space restrictions, we describe the method and the solver and show some numerical results; further extensions of the method (allowing ψ to be discontinuous) and the convergence analysis of the proposed solvers will be consider somewhere else.

2 The Exponentially Fitted IIPG-0 method

Let \mathcal{T}_{h} be a shape-regular family of partitions of Ω into triangles T and let $h=\max _{T \in \mathcal{T}_{h}} h_{T}$ with h_{T} denoting the diameter of T for each $T \in \mathcal{T}_{h}$. We assume \mathcal{T}_{h} does not contain hanging nodes. We denote by \mathcal{E}_{h}^{o} and $\mathcal{E}_{h}^{\partial}$ the sets of all interior and boundary edges, respectively, and we set $\mathcal{E}_{h}=\mathcal{E}_{h}^{o} \cup \mathcal{E}_{h}^{\partial}$.
Average and jump trace operators: Let T^{+}and T^{-}be two neighboring elements, and $\mathbf{n}^{+}, \mathbf{n}^{-}$be their outward normal unit vectors, respectively ($\mathbf{n}^{ \pm}=\mathbf{n}_{T^{ \pm}}$). Let $\zeta^{ \pm}$and $\boldsymbol{\tau}^{ \pm}$be the restriction of ζ and $\boldsymbol{\tau}$ to $T^{ \pm}$. We set:

$$
\begin{array}{rlrl}
2\{\zeta\} & =\left(\zeta^{+}+\zeta^{-}\right), & \llbracket \zeta \rrbracket=\zeta^{+} \mathbf{n}^{+}+\zeta^{-} \mathbf{n}^{-} & \\
\text {on } E \in \mathcal{E}_{h}^{o}, \\
2\{\boldsymbol{\tau}\} & =\left(\boldsymbol{\tau}^{+}+\boldsymbol{\tau}^{-}\right), & \llbracket \boldsymbol{\tau} \rrbracket=\boldsymbol{\tau}^{+} \cdot \mathbf{n}^{+}+\boldsymbol{\tau}^{-} \cdot \mathbf{n}^{-} & \text {on } E \in \mathcal{E}_{h}^{o},
\end{array}
$$

and on $e \in \mathcal{E}_{h}^{\partial}$ we set $\llbracket \zeta \rrbracket=\zeta \mathbf{n}$ and $\{\boldsymbol{\tau}\}=\boldsymbol{\tau}$. We will also use the notation

$$
(u, w)_{\mathcal{T}_{h}}=\sum_{T \in \mathcal{T}_{h}} \int_{T} u w d x \quad\langle u, w\rangle_{\mathcal{E}_{h}}=\sum_{e \in \mathcal{E}_{h}} \int_{e} u w d s \quad \forall u, w, \in V^{D G},
$$

where $V^{D G}$ is the discontinuous linear finite element space defined by:

$$
V^{D G}=\left\{u \in L^{2}(\Omega): u_{\left.\right|_{T}} \in \mathbb{P}^{1}(T) \forall T \in \mathcal{T}_{h}\right\}
$$

$\mathbb{P}^{1}(T)$ being the space of linear polynomials on T. Similarly, $\mathbb{P}^{0}(T)$ and $\mathbb{P}^{0}(e)$ are the spaces of constant polynomials on T and e, respectively. For each $e \in \mathcal{E}_{h}$ (resp. for each $T \in \mathcal{T}_{h}$), let $\mathcal{P}_{e}^{0}: L^{2}(e) \longrightarrow \mathbb{P}^{0}(e)$ (resp. $\left.\mathcal{P}_{T}^{0}: L^{2}(T) \longrightarrow \mathbb{P}^{0}(T)\right)$ be the L^{2}-orthogonal projection defined by

$$
\mathcal{P}_{e}^{0}(u):=\frac{1}{|e|} \int_{e} u, \quad \forall u \in L^{2}(e), \quad \mathcal{P}_{T}^{0}(v):=\frac{1}{|T|} \int_{T} v, \quad \forall v \in L^{2}(T) .
$$

We denote by $V^{C R}$ the classical Crouziex-Raviart (CR) space:

$$
V^{C R}=\left\{v \in L^{2}(\Omega): v_{\left.\right|_{T}} \in \mathbb{P}^{1}(T) \forall T \in \mathcal{T}_{h} \text { and } \mathcal{P}_{e}^{0} \llbracket v \rrbracket=0 \forall e \in \mathcal{E}_{h}\right\} .
$$

Note that $v=0$ at the midpoint m_{e} of each $e \in \mathcal{E}_{h}^{\partial}$. To represent the functions in $V^{D G}$ we use the basis $\left\{\varphi_{e, T}\right\}_{T \in \mathcal{T}_{h}, e \in \mathcal{E}_{h}}$, defined by

$$
\begin{equation*}
\forall T \in \mathcal{T}_{h} \quad \varphi_{e, T}(x) \in \mathbb{P}^{1}(T) \quad e \subset \partial T \quad \varphi_{e, T}\left(m_{e^{\prime}}\right)=\delta_{e, e^{\prime}} \quad \forall e^{\prime} \in \mathcal{E}_{h} \tag{2.1}
\end{equation*}
$$

In particular, any $w \in \mathbb{P}^{1}(T)$ can be written as $w=\sum_{e \subset \partial T} w\left(m_{e}\right) \varphi_{e, T}$.
The Exponentially fitted IIPG-0 method We first consider the IIPG-0 approximation to the solution of (1.3): Find $\rho \in V^{D G}$ such that $\mathcal{A}(\rho, w)=(f, w)_{\mathcal{T}_{h}}$ forall $w \in V^{D G}$ with

$$
\begin{equation*}
\mathcal{A}(\rho, w)=\left(\kappa_{T}^{*} \nabla \rho, \nabla w\right)_{\mathcal{T}_{h}}-\left\langle\left\{\kappa_{T}^{*} \nabla \rho\right\}, \llbracket w \rrbracket\right\rangle_{\mathcal{E}_{h}}+\left\langle S_{e}\{\llbracket \rho \rrbracket\}, \mathcal{P}^{0}(\llbracket w \rrbracket)\right\rangle_{\mathcal{E}_{h}} . \tag{2.2}
\end{equation*}
$$

Here, S_{e} is the penalty parameter and $\kappa_{T}^{*} \in \mathbb{P}^{0}(T)$ the harmonic average approximation to $\kappa=\epsilon e^{\psi / \epsilon}$ both defined by [3]:

$$
\begin{equation*}
\kappa_{T}^{*}:=\frac{1}{\mathcal{P}_{T}^{0}\left(\kappa^{-1}\right)}=\frac{\epsilon}{\mathcal{P}_{T}^{0}\left(e^{-\frac{\psi}{\epsilon}}\right)}, \quad S_{e}:=\alpha_{e} h_{e}^{-1}\left\{\kappa_{T}^{*}\right\}_{e} \tag{2.3}
\end{equation*}
$$

Next, following [3] we introduce the local operator $\mathfrak{T}: V^{D G} \longrightarrow V^{D G}$ that approximates the change of variable (1.2):

$$
\begin{equation*}
\mathfrak{T} w:=\left.\sum_{T \in \mathcal{T}_{h}}(\mathfrak{T} w)\right|_{T}=\sum_{T \in \mathcal{T}_{h}} \sum_{e \subset \partial T} \mathcal{P}_{e}^{0}\left(e^{-\frac{\psi}{\epsilon}}\right) w\left(m_{e}\right) \varphi_{e, T} \quad \forall w \in V^{D G} \tag{2.4}
\end{equation*}
$$

By setting $\rho:=\mathfrak{T} u$ in (2.2), we finally get the EF-IIPG-0 approximation to (1.1):
Find $u_{h} \in V^{D G}$ s.t. $\mathcal{B}\left(u_{h}, w\right):=\mathcal{A}\left(\mathfrak{T} u_{h}, w\right)=(f, w)_{\mathcal{T}_{h}} \forall w \in V^{D G}$ with

$$
\begin{equation*}
\mathcal{B}(u, w)=\left(\kappa_{T}^{*} \nabla \mathfrak{T} u, \nabla w\right)_{\mathcal{T}_{h}}-\left\langle\left\{\kappa_{T}^{*} \nabla \mathfrak{T} u\right\}, \llbracket w \rrbracket\right\rangle_{\mathcal{E}_{h}}+\left\langle S_{e}\{\llbracket \mathfrak{T} u \rrbracket\}, \mathcal{P}^{0} \llbracket w \rrbracket\right\rangle_{\mathcal{E}_{h}} . \tag{2.5}
\end{equation*}
$$

It is important to emphasize that the use of harmonic average to approximate $\kappa=\epsilon e^{\psi / \epsilon}$ as defined in (2.3) together with the definition of the local approximation of the change of variables prevents possible overflows in the computations when ψ is large and ϵ is small. (See [3] for further discussion). Also, these two ingredients are essential to ensure that the resulting method has an automatic upwind mechanism built-in that allows for an accurate approximation of the solution of (1.1) in the advection dominated regime. We will discuss this in more detail in Section 3

Prior to close this section, we define for each $e \in \mathcal{E}_{h}$ and $T \in \mathcal{T}_{h}$:

$$
\psi_{m, e}:=\min _{x \in e} \psi(x) \quad \psi_{m, T}:=\min _{x \in T} \psi(x) ; \quad \psi_{m, T} \leq \psi_{m, e} \text { for } e \subset \partial T
$$

In the advection dominated regime $\epsilon \ll|\beta| h=|\nabla \psi| h$

$$
\begin{equation*}
\mathcal{P}_{T}^{0}\left(e^{-(\psi / \epsilon)}\right) \simeq \epsilon^{2} e^{-\frac{\psi_{m, T}}{\epsilon}} \quad \mathcal{P}_{e_{i}}^{0}\left(e^{-\psi / \epsilon}\right) \simeq \epsilon e^{-\frac{\psi_{m, e}}{\epsilon}} \tag{2.6}
\end{equation*}
$$

The first of the above scalings together with the definitions in (2.3) implies

$$
\begin{equation*}
\kappa_{T}^{*} \simeq \frac{1}{\epsilon} e^{\frac{\psi_{m, T}}{\epsilon}}, \quad S_{e} \simeq \frac{\alpha}{2 \epsilon}|e|^{-1} e^{\frac{\left(\psi_{\left.m, T_{1}+\psi_{m, T_{2}}\right)}^{\epsilon}\right.}{\epsilon}} \quad e=\partial T_{1} \cap \partial T_{2} . \tag{2.7}
\end{equation*}
$$

3 Algebraic System \& Properties

Let A and B be the operators associated to the bilinear forms $\mathcal{A}(\cdot, \cdot) 2.2$ and $\mathcal{B}(\cdot, \cdot)$ (2.5), respectively. We denote by \mathbb{A} and \mathbb{B} their matrix representation in the basis $\left\{\varphi_{e, T}\right\}_{T \in \mathcal{T}_{h}, e \in \mathcal{E}_{h}}$ (2.1). In this basis, the operator \mathfrak{T} defined in (2.4) is represented as a diagonal matrix, \mathbb{D}, and $\mathbb{B}=\mathbb{A} \mathbb{D}$. Thus, the approximation to (1.3) and (1.1) amounts to solve the linear systems (of dimension $2 n_{e}-n_{b}$; with n_{e} and n_{b} being the cardinality of \mathcal{E}_{h} and $\mathcal{E}_{h}^{\partial}$, respectively):

$$
\begin{equation*}
\mathbb{A} \boldsymbol{\rho}=\boldsymbol{F}, \quad \text { and } \quad \mathbb{D} \boldsymbol{u}=\boldsymbol{\rho} \quad \text { or } \quad \mathbb{B} \boldsymbol{u}=\widetilde{\boldsymbol{F}} \tag{3.1}
\end{equation*}
$$

where $\boldsymbol{\rho}, \boldsymbol{u}, \boldsymbol{F}$ and $\widetilde{\boldsymbol{F}}$ are the vector representations of ρ, u and the rhs of the approximate problems. From the definition (2.4) of \mathfrak{T} it is easy to deduce the scaling of the entries of the diagonal matrix $\mathbb{D}=\left(d_{i, i}\right)_{i=1}^{2 n_{e}-n_{b}}$.

$$
\mathbb{D}=\left(d_{i, j}\right)_{i, j=1}^{2 n_{e}-n_{b}} \quad d_{i, i}=\mathcal{P}_{e_{i}}^{0}\left(e^{-\psi / \epsilon}\right) \simeq \epsilon e^{-\frac{\psi_{m, e}}{\epsilon}}, \quad d_{i, j} \equiv 0 \quad i \neq j
$$

We now revise a result from [1]:
Proposition 3.1 Let $\mathcal{Z} \subset V^{D G}$ be the space defined by

$$
\mathcal{Z}=\left\{z \in L^{2}(\Omega): z_{\left.\right|_{T}} \in \mathbb{P}^{1}(T) \forall T \in \mathcal{T}_{h} \text { and } \mathcal{P}_{e}^{0}\{v\}=0 \forall e \in \mathcal{E}_{h}^{o}\right\}
$$

Then, for any $w \in V^{D G}$ there exists a unique $w^{c r} \in V^{C R}$ and a unique $w^{z} \in \mathcal{Z}$ such that $w=w^{c r}+w^{z}$, that is: $V^{D G}=V^{C R} \oplus \mathcal{Z}$. Moreover, $\mathcal{A}\left(w^{c r}, w^{z}\right)=0 \forall w^{c r} \in V^{C R}$, and $\forall w^{z} \in \mathcal{Z}$.

Proposition 3.1 provides a simple change of basis from $\left\{\varphi_{e, T}\right\}$ to canonical basis in $V^{C R}$ and \mathcal{Z} that results in the following algebraic structure for (3.1):

$$
\rho=\left[\begin{array}{c}
\rho^{z} \tag{3.2}\\
\rho^{c r}
\end{array}\right], \quad \mathbb{A}=\left[\begin{array}{cc}
\mathbb{A}^{z z} & 0 \\
\mathbb{A}^{v z} & \mathbb{A}^{v v}
\end{array}\right], \quad \mathbb{B}=\left[\begin{array}{cc}
\mathbb{B}^{z z} & 0 \\
\mathbb{B}^{v z} & \mathbb{B}^{v v}
\end{array}\right] .
$$

Due to the assumed continuity of ψ, \mathbb{D} is still diagonal in this basis. The algebraic structure (3.2) suggests the following exact solver:

Algorithm 3.2 Let u_{0} be a given initial guess. For $k \geq 0$, and given $u_{k}=z_{k}+v_{k}$, the next iterate $u_{k+1}=z_{k+1}+v_{k+1}$ is defined via the two steps:

1. Solve $\mathcal{B}\left(u_{k+1}^{z}, w^{z}\right)=\left(f, w^{z}\right)_{\mathcal{T}_{h}} \quad \forall w^{z} \in \mathcal{Z}$.
2. Solve $\mathcal{B}\left(u_{k+1}^{c r}, w^{c r}\right)=\left(f, w^{c r}\right)_{\mathcal{T}_{h}}-\mathcal{B}\left(u_{k+1}^{z}, w^{c r}\right) \quad \forall w^{c r} \in V^{C R}$.

Next, wet discuss how to solve efficiently each of the above steps:

Step 2: Solution in $V^{C R}$. In [1] it was shown that the block $\mathbb{A}^{v v}$ coincides with the stiffness matrix of a CR discretization of (1.3), and so it is an s.p.d. matrix. However, this is no longer true for $\mathbb{B}^{v v}$ which is positive definite but non-symmetric.

$$
\mathcal{B}\left(u^{c r}, w^{c r}\right)=\left(\kappa_{T}^{*} \nabla \mathfrak{T} u^{c r}, \nabla w^{c r}\right)_{\mathcal{T}_{h}} \quad \forall u^{c r}, w^{c r} \in V^{C R}
$$

In principle, the sparsity pattern of $\mathbb{B}^{v v}$ is that of a symmetric matrix. Using (2.6) and (2.3), we find that the entries of the matrix scale as:

$$
\begin{equation*}
\mathbb{B}^{v v}=\left(b_{i, j}^{c r}\right)_{i, j}^{n_{c r}:=n_{e}-n_{b}} \quad b_{i, j}^{c r}:=\kappa_{T}^{*} \frac{\left|e_{i}\right|\left|e_{j}\right|}{|T|} \mathbf{n}_{e_{i}} \cdot \mathbf{n}_{e_{j}} d_{j} \simeq e^{-\frac{\left(\psi_{m, e}-\psi_{m, T}\right)}{\epsilon}} \tag{3.3}
\end{equation*}
$$

Since ψ is assumed to be piecewise linear, for each T, it attains its minimum (and also its maximum) at a vertex of T, say $\boldsymbol{x}_{\mathbf{0}}$ and $\psi_{m, e}$ is attained at one of the vertex of the edge e, say $\boldsymbol{x}_{\boldsymbol{e}}$. In particular, this implies that

$$
\psi_{m, e}-\psi_{m, T} \approx \nabla \psi \cdot\left(\boldsymbol{x}_{\boldsymbol{e}}-\boldsymbol{x}_{\mathbf{0}}\right)=\beta \cdot\left(\boldsymbol{x}_{\boldsymbol{e}}-\boldsymbol{x}_{\mathbf{0}}\right)=\left\{\begin{array}{cl}
0 & \boldsymbol{x}_{\boldsymbol{e}}=\boldsymbol{x}_{\mathbf{0}} \\
|\beta| h & \boldsymbol{x}_{\boldsymbol{e}} \neq \boldsymbol{x}_{\mathbf{0}}
\end{array}\right.
$$

Hence, in the advection dominated case $\epsilon \ll|\beta| h$ some of the entries in (3.3) vanish (up to machine precision) for ϵ small; this is the automatic upwind mechanism intrinsic of the method. As a consequence, the sparsity pattern of $\mathbb{B}^{v v}$ is no longer symmetric and this can be exploited to re-order the unknowns so that $\mathbb{B}^{v v}$ can be reduced to block lower triangular form.
Notice also that for \mathcal{T}_{h} acute, the block $\mathbb{A}^{v v}$ being the stiffness matrix of the CrouziexRaviart approximation to (1.3), is an M-matrix. Hence, since the block $\mathbb{B}^{v v}$ is the product of a positive diagonal matrix and $\mathbb{A}^{v v}$, it will also be an M-matrix if the triangulation is acute (see [2]).

Step 1: Solution in the \mathcal{Z}-space. In [1] it was shown that $A^{z z}$ is a diagonal p.d. matrix. This is also true for $\mathbb{B}^{z z}$ since it is the product of two diagonal matrices. The continuity of ψ implies

$$
\begin{equation*}
\mathcal{B}\left(u^{z}, w^{z}\right)=\left\langle S_{e} \mathfrak{T} \llbracket u^{z} \rrbracket, \mathcal{P}_{e}^{0}\left(\llbracket w^{z} \rrbracket\right)\right\rangle_{\mathcal{E}_{h}} \quad \forall u^{z}, w^{z} \in \mathcal{Z} . \tag{3.4}
\end{equation*}
$$

Using (2.6) and (2.3) we observe that the entries of $\mathbb{B}^{z z}$ scale as:

$$
\mathbb{B}^{z z}=\left(b_{i, j}\right)_{i=1}^{n_{e}} \quad b_{i, j}=S_{e_{i}}\left|e_{i}\right| d_{j} \delta_{i, j} \simeq \delta_{i, j} \frac{\alpha}{2} e^{-\left(\psi_{m, e}-\psi_{m, T_{1}}-\psi_{m, T_{2}}\right) / \epsilon}
$$

which are always positive, so in particular $\mathbb{B}^{z z}$ it is also an M-matrix.

4 Block Gauss-Siedel solver for $V^{C R}$-block

We now consider re-orderings of the unknowns (dofs), which reduce $\mathbb{B}^{v v}$ to block lower triangular form. For such reduction, we use the algorithm from [4] which roughly amounts
to partitioning the set of dofs into non-overlapping blocks. In the strongly advection dominated case the size of the resulting blocks is small and a block Gauss-Seidel method is an efficient solver. Such techniques have been studied in [5] for conforming methods. The idea is to consider the directed graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ associated with $\mathbb{B}^{v v} \in \mathbb{R}^{n_{c r} \times n_{c r}}$; \boldsymbol{G} has $n_{c r}$ vertices labeled $\boldsymbol{V}=\left\{1, \ldots, n_{c r}\right\}$ and its set of edges edges \boldsymbol{E} has cardinality equal to the number of nonzero entries $\}^{1}$ of $\mathbb{B}^{v v}$. By definition, $(i, j) \in \boldsymbol{E}$ iff $b_{i j}^{c r} \neq 0$. Note that in the advection dominated case, due to the nonsymmetric pattern of $\mathbb{B}^{v v}$ (caused by the built-in upwind mechanism), we may have $(i, j) \in \boldsymbol{E}$, while $(j, i) \notin \boldsymbol{E}$. Then, the problem of reducing $\mathbb{B}^{v v}$ to block lower triangular form of $\mathbb{B}^{v v}$ is equivalent to partitioning \boldsymbol{G} as a union of strongly connected components. Such partitioning induces non-overlapping partitioning of the set of dofs, $\boldsymbol{V}=\cup_{i=1}^{N_{b}} \omega_{i}$. For $i=1, \ldots, N_{b}$, let m_{i} denote the cardinality of ω_{i}; let $\mathbb{I}_{i} \in \mathbb{R}^{n_{c r} \times m_{i}}$ be the matrix that is identity on dofs in ω_{i} and zero otherwise; and $\mathbb{B}_{i}^{v v}=\mathbb{I}_{i}^{T} \mathbb{B}^{v v} \mathbb{I}_{i}$ is the block corresponding to the dofs in ω_{i}. The block Gauss-Seidel algorithm reads: Let $\boldsymbol{u}_{0}^{c r}$ be given, and assume $\boldsymbol{u}_{k}^{c r}$ has been obtained. Then $\boldsymbol{u}_{k+1}^{c r}$ is computed via: For $i=1, \ldots N_{b}$

$$
\begin{equation*}
\boldsymbol{u}_{k+i / N_{b}}^{c r}=\boldsymbol{u}_{k+(i-1) / N_{b}}^{c r}+\mathbb{I}_{i}\left(\mathbb{B}_{i}^{v v}\right)^{-1} \mathbb{I}_{i}^{T}\left(\boldsymbol{F}-\mathbb{B}^{v v} \boldsymbol{u}_{k+(i-1) / N_{b}}^{c r}\right) \tag{4.1}
\end{equation*}
$$

As we report in Section 5, in the advection dominated regime the action of $\left(\mathbb{B}_{i}^{v v}\right)^{-1}$ can be computed exactly since the size of the blocks $\mathbb{B}_{i}^{v v}$ is small.

5 Numerical Results

Figure 5.1: Plot of the connected components (blocks) of $\mathbb{B}^{v v}$ created during Tarjan's algorithm.

We present a set of numerical experiments to assess the performance of the proposed block solver. The tests refer to problem (1.3) with $\epsilon=10^{-3}, 10^{-5}, 10^{-7}$, and Ω is triangulated with a family of unstructured triangulations \mathcal{T}_{h}. In the tables given below $J=1$

[^1]corresponds to the coarsest grid and each refined triangulation on level $J, J=2,3,4$ is obtained by subdividing each of the $T \in \mathcal{T}_{h}$ on level $(J-1)$ into four congruent triangles. From the number of triangles n_{T} the total number of dofs for the DG approximation is $3 n_{T}$ and $n_{e}-n_{b}$ for the CR part of the solution.

Test 1. Boundary Layer: $\Omega=(-1,1)^{2}, \beta=[1,1]^{t}, n_{T}=112$ for the coarsest mesh and f is such that the exact solution is given by

$$
u(x, y)=\left(x+\frac{1+e^{-2 / \epsilon}-2 e^{(x-1) / \epsilon}}{1-e^{-2 / \epsilon}}\right)\left(y+\frac{1+e^{-2 / \epsilon}-2 e^{(y-1) / \epsilon}}{1-e^{-2 / \epsilon}}\right) .
$$

Test 2. Rotating Flow: $\Omega=(-1,1)^{\times}(0,1), f=0$ and $\operatorname{curl} \beta \neq 0$,

$$
\beta=\left[\begin{array}{rl}
2 y\left(1-x^{2}\right) \\
-2 x\left(1-y^{2}\right)
\end{array}\right]^{t} g(x, y)= \begin{cases}1+\tanh (10(2 x+1)) & x \leq 0, y=0 \\
0 & \text { elsewhere }\end{cases}
$$

We stress that this test does not fit in the simple description given here, and special care is required (see [3]). For the approximation, for each $T \in \mathcal{T}_{h}$, with barycenter $\left(x_{T}, y_{T}\right)$, we use the approximation $\left.\left.\beta\right|_{T} \approx \nabla \psi\right|_{T}$ with $\left.\psi\right|_{T}=2 y_{T}\left(1-x_{T}^{2}\right) x-2 x_{T}\left(1-2 y_{T}^{2}\right) y$ (and so ψ discontinuous). The coarsest grid has $n_{T}=224$ triangles.

In Figure 5.1 the plot of the connected components of the graph depicting the blocks for $\mathbb{B}^{v v}$ created during Tarjan's algorithm, on the coarsest meshes is shown; for Test 1 with $\epsilon=10^{-5}$ and for Test 2 with $\epsilon=10^{-7}$. In Tables 5.1 are given, the number of blocks N_{b} created during Tarjan's algorithm. We also report in this table the size of the largest block created (M_{b} maximum size) and the average size of the blocks $n_{a v}$. Observe that in the advection dominated regime the largest block has a very small size compared to the total size of the system. After Tarjan's algorithm is used to re-order the matrix $\mathbb{B}^{v v}$, we use the block Gauss-Seidel algorithm (4.1) where each small block is solved exactly.

Acknowledgments

This work started while the first two authors were visiting the IMATI-CNR, Pavia in October 2010. Thanks go to the IMATI for the hospitality and support. The first author was partially supported by MEC grant MTM2008-03541, the second author was supported by CONICET and the fourth author is supported in part by the National Science Foundation nsf-dms 0810982 .

References

[1] Blanca Ayuso de Dios and Ludmil Zikatanov. Uniformly convergent iterative methods for discontinuous Galerkin discretizations. J. Sci. Comput., 40(1-3):4-36, 2009.
[2] F. Brezzi, L. D. Marini, S. Micheletti, P. Pietra, R. Sacco, and S. Wang. Discretization of semiconductor device problems. I. In Handbook of numerical analysis. Vol. XIII, pages 317-441. North-Holland, Amsterdam, 2005.

		1	2	3	4			1	2	3	4
	N_{b}	44	150	484	1182		N_{b}	31	1	1	1
10^{-3}	M_{b}	23	47	95	191	10^{-3}	M_{b}	211	1304	5296	21344
	$n_{a v}$	3.55	4.32	5.45	9.02		$n a v$	10.19	1304	5296	21344
10^{-5}	N_{b}	50	210	866	3474	10^{-5}	N_{b}	122	468	1822	7106
	M_{b}	23	47	95	191		M_{b}	4	4	7	37
	$n_{a v}$	3.12	3.08	3.05	3.07		$n_{a v}$	2.59	2.78	2.91	3.00
10^{-7}	N_{b}	50	210	866	3522	10^{-7}	N_{b}	122	468	1832	7247
	M_{b}	23	47	95	191		M_{b}	4	4	4	6
	$n_{a v}$	3.12	3.08	3.05	3.03		$n_{a v}$	2.59	2.78	2.89	2.95

(a) Test 1
(b) Test 2

Table 5.1: Number of blocks $\left(N_{b}\right)$ created during the Tarjan's ordering algorithm, size of largest block $\left(M_{b}\right)$ and average size of blocks $\left(n_{a v}\right)$.
[3] Ariel Lombardi and P. Pietra. Exponentially fitted discontinuous galerkin schemes for singularly perturbed problems. Technical report, IMATI-CNR, Pavia, 2010. submitted.
[4] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2):146-160, 1972.
[5] Feng Wang and Jinchao Xu. A crosswind block iterative method for convectiondominated problems. SIAM J. Sci. Comput., 21(2):620-645, 1999.

[^0]: *Centre de Recerca Matemàtica, Barcelona, Spain. bayuso@crm.cat
 ${ }^{\dagger}$ Departamento de Matemática, Universidad de Buenos Aires \& CONICET, Argentina. aldoc7@dm.uba.ar
 ${ }^{\ddagger}$ IMATI-CNR, Pavia, Italy, pietra@imati.cnr.it
 ${ }^{\S}$ Department of Mathematics, Penn State University, USA ltz@math.psu.edu

[^1]: ${ }^{1}$ Each dof corresponds to a vertex in the graph; each nonzero entry to an edge.

