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Abstract

An adaptive algorithm for on-line estimation of physical coefficients of cables in viscous
environment is presented. The procedure is useful for obtaining cable characteristics, which
are needed in stability analysis and control system design for moored floating structures. It
uses measurements of position and forces from on-board instrumentation. It is also able to
track changes in the depth and to test for parameter consistency in order to confer the esti-
mation robustness with respect to dynamic perturbations. It is based on nonlinear solvers,
which can cope with transcendental functions of the model structure. The proof of asymp-
totic convergence is presented. Finally, three basic case studies are analyzed.
# 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Cables are used extensively today in offshore industry and oceanographic com-

munity for stationing floating structures, and towing of underwater vehicles from a

surface ship. The modelling of the cable response is very important for performing

stability analysis of the over-all dynamics of a moored system (Kreuzer et al., 2002;

Gottlieb and Yim, 1997; Dmitrieva and Lougovsky, 1997; Beltrán-Aguedo et al.,

2002). Other important goal is the model-based regulation of the moored structure
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about a coordinate point despite disturbances of the environment (Aamo and

Fossen, 1999; Sorensen et al., 1999).
An elastic cable submerged in a heavy fluid, such as water, combines soft trans-

verse stiffness with a strong high-frequency axial stiffness (Mavrakos and Chatji-

georgiou, 1997; Mavrakos et al., 1996). In applications when the ratio of the elastic

to the catenary stiffness is small and hydrodynamic drag loads are of low fre-

quency, the mooring line preserves basically its catenary in-plane shape. In this

case a quasi-static behavior takes place.
In stability analysis and control system design for moored floating systems, a

range-dependent polynomial approximation of the cable characteristic is generally

used. Herein a particular parameter set of the cable, constituted by mathematical

coefficients, is investigated in order to explain a diversity of nonlinear behaviors

(Gottlieb and Yim, 1997). On the other hand, using phenomenological equations

of the catenary, it is possible to directly study the incidence of parameter changes,

like initial tensions, mass and depth, maintaining a physical interpretation of the

results.
Previous and related results are presented in Beltrán-Aguedo and Jordán (2003)

for identifying mathematical parameters of the cable in moored semisubmersibles

and in Gottlieb et al. (1996) for parameter estimation of mooring systems using

Hilbert Transform. In Bhattacharyya and Selvam (2001), and Selvam and Bhatta-

charyya (2001), a procedure referred to as Reverse Multiple Inputs–Single Output

method for identification of hydrodynamic coefficients as well as linear and non-

linear stiffness parameters of a cubic approximation of the mooring lines is pre-

sented. These last works include a simplified dynamics in a single degree of

freedom with random excitation.
In the present paper, we provide a method for on-line identification of physical

coefficients of a catenary from on-board-instrumentation measures related to reg-

ular operation of a moored system. The present approach requires only a few

amount of knowledge of the mooring system configuration and of the cable itself.

As hypothesis for the application it is demanded that only low till medium fre-

quency components are present in the structure behavior, which is commonly

accomplished by floating semisubmersibles. An additional property of the pre-

sented algorithm is that it can track time-varying parameters adaptively, like the

sea depth.

2. Governing equations

In our physical configuration, the cable forms a catenary-like shape between an

upper end attached to a floating structure and a point of the sea floor. The upper

end of the cable is forced to follow an arbitrary motion including vertical and hori-

zontal displacements, which are induced by the considered floating structure inter-

acting with waves.
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2.1. Dynamic configuration

The cable is conceived as a slender rod with negligible bending stiffness sub-
mersed in the sea (see Fig. 1). Let s denote the unstretched Lagrangian coordinate
measured from the upper cable end up to some point of consideration on the cable,
v(vt, vn) its velocity with tangential and normal components u and v, m0 the mass
per unit unstretched length (mass density), T the tangential tension vector, F the
distributed drag force per unit stretched length and e the local strain. Every
material point s at the cable can be also referenced by horizontal and vertical coor-
dinates, l(s) and h(s), respectively.

Then, the equations of motion of a cable having two-dimensional shape can be
expressed along the local tangential, t, and normal, n, directions of its moving in-
plane configuration as (Mavrakos and Chatjigeorgiou, 1997; Mavrakos et al., 1996;
Papazoglou et al., 1996)

m0
@u

@t
� v

@/d

@t

� �
¼ @T

@s
� wsin /dð Þ þ Ftð1 þ eÞ ð1Þ

m0
@v

@t
þ u

@/d

@t

� �
þ ma

@vr

@t
¼ T

@/d

@s
� wcos /dð Þ þ Fnð1 þ eÞ ð2Þ

@e
@t

¼ @u

@s
� v

@/d

@s
ð3Þ

@/d

@t
ð1 þ eÞ ¼ @v

@s
þ u

@/d

@s
; ð4Þ

where ma is the two-dimensional added mass per cable unit length, which is
assumed to be equal to its potential-flow value for an infinitely long cylinder with
the same cross-section, and w is the submerged weight per cable unit length. More-
over, /d is the angle formed by the horizontal and local tangential direction at the
considered point s. This angle varies dynamically with the velocity v at any con-
sidered material point.

Additionally, the tension–strain relation is assumed to be linear according to the
Hooke’s law as

T ¼ EAet; ð5Þ

Fig. 1. Cable in dynamic configuration.

457M.A. Jordán, R. Beltrán-Aguedo / Ocean Engineering 31 (2004) 455–482



with E the Young modulus and A the cross-section of the stretched cable. The drag
forces are referred to the relative fluid-cable velocity as

Ft ¼ 0:5pqwcfd Ucos/d � uð ÞjUcos/d � uj ð6Þ
Fn ¼ �0:5pqwcdd Usin/d þ uð ÞjUsin/d þ uj; ð7Þ

where qw is the water density, cf and cd are the frictional and normal drag coeffi-
cients, respectively, d is the stretched cable diameter and U the local current velo-
city in the plane.

In the paper, we will suppose the solution of (1)–(4) to be the real evolution of
the cable and thereby the one corresponding to the set of measurements to be
apply for parameter estimation.

2.2. Static configuration

Let us meet following assumptions on the former dynamic configuration:

(a) drag forces are negligible, it is, F t ¼ Fn ¼ 0.
(b) cable inertia forces and displaced fluid acceleration are zero, it is,

m0ð@u=@tÞ ¼ m0ð@v=@tÞ ¼ 0; mað@vr=@tÞ ¼ 0.
(c) the motions of the cable and fluid are slow such that uð@/d=@tÞ and vð@v=@tÞ

are not meaningful.

Then, the partial differential Eqs. (1) and (2) get into the ordinary differential
equations

T
dl

dp
¼ H ð8Þ

T
dh

dp
¼ V � WB

s

LB
ð9Þ

dl

dp

� �2

þ dh

dp

� �2

¼ 1; ð10Þ

where p is the Lagrangian coordinate of the stretched profile under self-weight of
the cable, H and V are the horizontal and vertical components of T at p, respect-

Fig. 2. Cable in static configuration.
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ively, with /s ¼ tan�1ðV=HÞ. The variables WB and LB represent the weight of the

cable lying over the sea floor and its unstretched length, respectively (see Fig. 2).

The tension–strain relation is

T ¼ EA0
dp

ds
� 1

� �
t; ð11Þ

with A0 the uniform cross-section in the unstretched cable.
The solution of (1)–(4) with (5)–(7) is performed numerically under some other

plausible assumptions, which allow simplifications of the solution (Papazoglou et

al., 1996; Chatjigeorgiou and Mavrakos, 2000). They show that the response of the

cable is dominated by elastic stiffness (and not by catenary stiffness) for sufficiently

high frequencies. A good approximation of the solution for the cable dynamics can

however be obtained in the presence of low-frequency motions by solving (8)–(10)

with (11). Herein, conditions (a)–(c) are supposed to be achieved approximately.
This way is important for a practical identification, because it requires sensors of

forces at the upper end only. In contrast, using the structure (1)–(4), the identifi-

cation would require the information of the distributed tension T(s) along the

cable, which is difficult to implement with current force sensors.
The solution for the static configuration can be carried out analytically under the

end conditions:

l ¼ 0; h ¼ 0; p ¼ 0 at s ¼ 0
l ¼ lB; h ¼ hB; p ¼ LB þ DLB at s ¼ LB;

ð12Þ

with lB and hB the horizontal and vertical coordinates of the contact point B,

respectively, and DLB the length variation calculated with (11) as

DLB ¼
ðLB

0

dp

ds
ds � LB ¼

ðLB

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2ðsÞ þ V2ðsÞ

p
EA0

þ 1

 !
ds � LB: ð13Þ

The solution of (8)–(10) is (cf. Irvine, 1992)

TðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ V � WB

s

LB

� �2

t

s
for 0 � s � LB

Ht for LB < s � L0

8><
>: ð14Þ

lðsÞ ¼

Hs

EA0
þ HLB

WB
sinh�1 V

H

� �
� sinh�1 V � WBs=LB

H

� �� �
for 0 � s � LB

l LBð Þ þ s � LB

for LB < s � L0

ð15Þ

8>>>>><
>>>>>:
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hðsÞ¼

WBLB

EA0

V

WB
� s

2LB

� �
þHLB

WB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ V

H

� �2
s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ V �WBs=LB

H

� �2
s0

@
1
A

for 0� s�LB

h LBð Þ
for LB < s�L0

8>>>>>><
>>>>>>:

ð16Þ

with lðLBÞ¼ lB, hðLBÞ¼ hB and L0 the total unstretched length from A to C.

3. Identification

From the point of view of the identification we are interested in the on-line esti-
mation of physical coefficients of a cable attached to a floating structure in oper-
ation. So we start from a static model yet with real measurements, i.e. position and
forces of the dynamic configuration.

The presented algorithm performs two basic tasks on-line. The first task compre-
hends an adaptive parameter estimation using the model structure of the static
configuration. The second task includes a filtering of the estimates for minimizing
the energy of the parameter errors, which appear due to the dynamic measure-
ments.

3.1. Setup for measurements

Our start point is the measure of the signal set

fxðtÞ; zðtÞ; VðtÞ; HðtÞg ð17Þ

in continuous time t, where

xðtÞ ¼ l0 � lðtÞ ð18Þ
zðtÞ ¼ h0 � hðtÞ; ð19Þ

describe the position trajectory, with (l0, h0) and (l(t), h(t)) being lengths corre-
sponding to the horizontal and vertical coordinates of A in static equilibrium and
in arbitrary position of the stretched cable, respectively. The forces H and V are
the components of T at A (Fig. 3).

The set of physical coefficients to be identified is

m0; EA0; l0; h0f g: ð20Þ

One serious problem for the development of an algorithm for identification con-
stitutes the fact that the angle /s at the contact point B produces a structural
change of the mathematical structure in Eqs. (14)–(16) when its value transits from
zero to a positive angle and vice versa. This problem is evidenced in the next.
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3.2. Geometrical shapes

The angle-depending solution of the catenary equations involves two particular
geometrical shapes in the static configuration. These are referred to throughout the
paper as Case I and II.

Case I. /s > 0 This case concerns the superposition of points B and C with an
angle /s > 0. Using

maxLB ¼ L0 ð21Þ
maxWB ¼ W0 ¼ m0gL0; ð22Þ

the solution (15) and (16) turns particularly into

l L0ð Þ ¼ HL0

EA0
þ H

m0g
sinh�1 V

H

� �
� sinh�1 V � m0gL0

H

� �� �
ð23Þ

h L0ð Þ ¼ m0gL0

EA0

V

m0g
� L0

2

� �
þ H

m0g

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ V

H

� �2
s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ V �m0gL0

H

� �2
s0

@
1
A; ð24Þ

where the vertical force component results

V ¼ m0gL0 þ R; ð25Þ

with R the vertical reaction at the anchored point C.

Case II. /s ¼ 0 The second case describes a set of catenary shapes with the pro-
perty /s ¼ 0 at B. The solution is characterized by V that is only due to the self-

Fig. 3. Cable configuration with measured signals.
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weight WB. Consequently, (15) and (16) become

l L0ð Þ ¼ HLB

EA0
þ H

m0g
sinh�1 V

H

� �
þ L0 � LB ð26Þ

h L0ð Þ ¼ VLB

2EA0
þ H

m0g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ V

H

� �2
s

� 1

0
@

1
A; ð27Þ

with

V ¼ WB ¼ m0gLB ð28Þ

R ¼ 0: ð29Þ

It is clear that the equation sets (23) and (24) and (26) and (27) are structurally

different, however they show continuity for B coinciding with C and /s ¼ 0. More-

over, in Case II appears a new nonmensurable state LB, which contrasts with the

Case I where this variable becomes constant in H and V and equal to L0.
In quasi-static operation, the catenary shape may turn from one case into the

other one. For the identification it is important to recognize the real case in order

to apply the right set of equations.
The observability of one case from data (17) is not a trivial task. For instance, if

the derivative in time of LB is invoked indirectly to this goal, with (25) and (28)

and (29)

m0g
dLB

dt
¼ d

dt
ðV � RÞ; ð30Þ

then

d

dt
ðV � RÞ > 0 ) case I ð31Þ

d

dt
ðV � RÞ ¼ 0 ) case II: ð32Þ

But this method implies the measure of the reaction R, which is not in our data set.

On the other hand, the measure of R requires a sensor on cable end at the sea bot-

tom, which is unusual. A proposed way to the solution is described in the next.

3.3. Observability of Cases I and II

In order to establish the detectability of each case upon data, let us first combine

(18) and (19) with (26) and (27) in the Case II with lðtÞ ¼ lðL0Þ and hðtÞ ¼ hðL0Þ,
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so as to obtain two independent expressions for the mass density m0, it is

m0x
¼ 1

l0 � L0 � x

HV

EA0g
þ H

g
sinh�1 V

H

� �
� V

g

� �
ð33Þ

m0z
¼ 1

h0 � z

V2

2EA0g
þ H

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ V

H

� �2
s

� 1

0
@

1
A

0
@

1
A; ð34Þ

where m0x
and m0z

are the mass densities evaluated independently by measurements
of x and z, respectively.

In real operations, the approximations: EA0g4maxðHVÞ;L0 �
l04jxðtÞj and h04jzðtÞj are quite valid for all t. Taking these into account and
equaling (33) and (34) one gets

h0

l0 � L0
sin h�1 V

H

� �
� V

H

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ V

H

� �2
s

þ 1 ¼ 0; ð35Þ

which describes the linear locus in the plane H–V

V ¼ cH; ð36Þ

with c a constant obtained implicitly fromffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ c2ð Þ

p
� 1

sinh�1ðcÞ � c
¼ h0

l0 � L0
: ð37Þ

Analogously, for the Case I, we can establish a similar relation for the set (23)
and (24) under the same practical approximations like those assumed above.

Equivalently, the locus for the Case I results from (18) and (19) with (23) and
(24) with m0x

gL0 ¼ m0z
gL0 ¼ W0

h0

l0 � L0
sinh�1 V

H

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ V

H

� �2
s

¼ h0

l0 � L0
sinh�1 V � W0

H

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ V � W0

H

� �2
s

; ð38Þ

which can be solved analytically for H and V for V > W 0 achieving the expression

V ¼ aH þ b; ð39Þ

with a being obtained implicitly from

h0

l0 � L0
sinh�1 a þ ððc � aÞ=cÞW0

H1

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ a þ ððc � aÞ=cÞW0

H1

� �2
s

� h0

l0 � L0
sinh�1 a � ða=cÞW0

H1

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ a � ða=cÞW0

H1

� �2
s

¼ 0 ð40Þ
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and b directly from

b ¼ W0
c � a

c
; ð41Þ

where H1 is some value greater than W0/c.
The loci (36) and (39) in the space H–V are depicted in Fig. 4 for different ratios

h0/l0.
It is noticed that the linear loci m0x

� m0z
¼ 0 for the Cases I and II are continu-

ously connected with a break point at (W0/c, W0). Moreover, a metric between

two loci with different ratios h0/l0 is the larger the smaller these ratios h0/l0.
The main conclusion of this analysis is threefold. First, given a set of static

forces (H, V), only one case can reproduce equality of mass densities, i.e.

m0x
¼ m0z

, while simultaneously the other set of equations gives m0x
6¼ m0z

. Sec-

ondly, the detectability of a case with respect to eventual perturbations in the static

forces becomes high in the vicinity of (W0/c, W0). Finally, if some degree of uncer-

tainty is assumed in the parameters h0 and l0, then the disagreements m0x
6¼ m0z

of

the equalities in Cases I and II, respectively, with respect to a mismatch in the ratio

h0/l0 is the smaller the smaller is this ratio. This is also seen from the sensitivity

function @ðm0x
� m0z

Þ=@h0, which remains constant with respect to the depth h0,

and from the sensitivity function @ðm0x
� m0z

Þ=@l0, which decreases proportional to

l20 .

In summarize, the case observability is technically possible by this way. More

details are given in Section 4.1.

Fig. 4. Loci m0x
� m0z

¼ 0 in the plane H–V, parameterized in h0/l0 in the Cases I and II for h0 ¼
100 ½m� and L0 ¼ 540 ½m�.
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3.4. Estimation in the static configuration

The Eqs. (15) and (16) are taken as support for the estimation. However, it is
noticed that the number of parameters in (20) is greater than the only two avail-
able equations. Hence, parameter identifiability cannot be achieved by this way.

Another possibility is to create additional manifolds. To this end, let us define
the solution of the estimation problem in the following manner. First consider
manifolds of the form

fxj
Utj ; fc; hx

� �
¼ 0 ð42Þ

fzj
Utj ; fc; hz

� �
¼ 0 ð43Þ

with

Utj ¼ x tj
� �

; z tj
� �

;H tj
� �

;V tj
� �� �

; for tj � t � T ; t½ �; and j ¼ 1; . . . ; n;

T > 0; ð44Þ

fc ¼
1 for case I
0 for case II

�
; ð45Þ

where the parameter vectors hx and hz contain the unknown system coefficients
(20), Utj is a measurement set according (17), fc is a case-sensitive function, tj are
sample time points, and n describes the number of the necessary data sets.

Moreover, n1 ¼ dimðhxÞ and n2 ¼ dimðhzÞ, then

n ¼ n1 þ n2

2
: ð46Þ

Thus, by defining conveniently fxj
¼ 0 and fzj

¼ 0 together with a proper selection

of the ti’s, the intended estimation results technically viable.
Generically, the solution of the estimation problem consists hereafter in solving

the system of (n1 þ n2) Eqs. (42) and (43) iteratively upon n data sets (44) in order
to find hx and hz.

3.5. Manifolds for estimation

With s ¼ L0 and LB ¼ WB=m0g in (15) and (16) we can establish the manifolds

fxj
¼ x� l0 � 1 � fcð ÞL0ð Þ þ fc

L0H

EA0
þ 1 � fcð Þ HV

EA0m0g
þ 1

m0g

Hsinh�1 V

H

� �
� fcHsinh�1 V � L0m0g

H

� �
� 1 � fcð ÞV

� �
¼ 0 ð47Þ

fzj
¼ z� h0 þ fc

L2
0m0g

2EA0

� �
þ fc

L0V

EA0
þ 1 � fcð Þ V2

2EA0m0g
þ H

m0gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ V

H

� �2
s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ fc

V � L0m0g

H

� �2
s0

@
1
A ¼ 0: ð48Þ
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A glance at the structure of Eqs. (47) and (48) reveals that m0 relays in a non-

algebraic form as argument in transcendental functions. Moreover, there exist mul-

tilinearities between EA0 and m0, which hinder a direct identifiability of them.
In order to make the estimation of the physical coefficients (20) possible, we

redefine the coefficients to be estimated in (47) and (48) as

xþ a1 þ a2fcH þ a3 1 � fcð ÞHV

þ a4 Hsinh�1 V

H

� �
� fcHsinh�1 V � L0=a4

H

� �
� 1 1 � fcð ÞV

� �
¼ 0 ð49Þ

zþ b1 þ b2fcV þ b3V
2 1 � fcð Þ

þ b4H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ V

H

� �2
s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ fc

V � L0=b4

H

� �2
s0

@
1
A ¼ 0; ð50Þ

where the estimates are arrayed in the parameter vectors

hx ¼ a1; a2; a4½ �T for case I

a1; a3; a4½ �T for case II

�
ð51Þ

hz ¼ b1; b2; b4½ �T for case I

b1; b3; b4½ �T for case II

�
ð52Þ

for fxj
and fzj

, respectively. Consequently, according to (46), n ¼ n1 ¼ n2 ¼ 3.
The identifiability of the physical coefficients is assured by

m0 ¼

1

a4g
1

b4g

;

8>><
>>:

l0 ¼ �a1 þ 1 � fcð ÞL0;

h0 ¼ �b1 � fc
L0

2

b2

b4
;

EA0 ¼

L0=a2

L0=b2
; for fc ¼ 1

a4

a3
b4

2b3

; for fc ¼ 0

8>>>>><
>>>>>:

: ð53Þ

It is noticed in (53) the optional forms to estimate m0 and EA0. Typical values

for EA0 are generally in an order of magnitude many times larger than those for

the other parameters. Unless forces are relatively very large, a2, a3, b2 and b3 are

difficult to estimate, specially a2 and b2 for the Case II.
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4. Nonlinear estimation algorithm

The start point for designing an estimator are the definitions of fxj
and fzj

in (49)
and (50). To this goal, consider

fx1
Ut1 ; fc; hxð Þ

..

.

fx3
Ut3 ; fc; hxð Þ

2
64

3
75 ¼ fx Ut; fc; hxð Þ ¼ 0 ð54Þ

fz1
Ut1 ; fc; hzð Þ

..

.

fz3
Ut3 ; fc; hzð Þ

2
64

3
75 ¼ fz Ut; fc; hzð Þ ¼ 0; ð55Þ

where t3 < t2 < t1 ¼ t � ½t � T ; tÞ;Ut ¼ Ut1 [ Ut2 [ Ut3 and fc indicates a common
case for the tj’s.

Due to the nonalgebraicity of (49) and (50), the proposed algorithm have to be
designed in such a way that the solution results iteratively. Let the symbol ð̂��Þ indi-

cate an estimated variable. Then fx Ut; fc; ĥhx

� �
and fz Ut; fc; ĥhz

� �
are generally

unequal to zero.
Now let us define

fx Ut; fc; ĥhx

� �
fz Ut; fc; ĥhz

� �
2
4

3
5¼def

gx Ut; fc; ĥhx

� �
gz Ut; fc; ĥhz

� �
2
4

3
5�

hx Ut; fc; ĥhx

� �
hz Ut; fc; ĥhz

� �
2
4

3
5; ð56Þ

with a particular selection of gx, gz, hx and hz as

gx Ut; fc; ĥhx

� �
gz Ut; fc; ĥhx

� �
2
4

3
5¼def ĥhx

ĥhz

� �
ð57Þ

hx Ut; fc; ĥhx

� �
hz Ut; fc; ĥhz

� �
2
4

3
5¼def ĥhx

ĥhz

� �
� K�1

t

fx Ut; fc; ĥhx

� �
fz Ut; fc; ĥhz

� �
2
4

3
5� ð58Þ

Then, for an initial vector ĥhð0ÞTx ; ĥhð0ÞTz

h iT
the following series is generated

ĥhðmÞ
x

ĥhðmÞ
z

� �
¼ ĥhðm�1Þ

x

ĥhðm�1Þ
z

� �
� K�1

t

fx Ut; fc; ĥh
ðm�1Þ
x

� �
fz Ut; fc; ĥh

ðm�1Þ
z

� �
2
4

3
5 ð59Þ

with the Jacobian

Kt ¼

@fTx

@ĥhx

""""
ðUt;fc;ĥh

ðm�1Þ
x Þ

0

0
@fTz

@ĥhz

""""
ðUt;fc;ĥh

ðm�1Þ
z Þ

2
6664

3
7775 ð60Þ
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and elements kij ¼ @fxj
Utj ; fc; ĥhx

� �
=@ĥhxi

for the upper diagonal submatrix, and kij

¼ @fzj
Utj ; fc; ĥhz

� �
=@ĥhzi

for the lower diagonal submatrix, where ĥhxi
and ĥhzi

are ele-

ments of ĥhx and ĥhz, respectively. More precisely

@fxj
Utj ; fc; ĥhx

� �.
@âa1 ¼ 1

@fxj
Utj ; 1; ĥhx

� �.
@âa2 ¼ Hj

@fxj
Utj ; 0; ĥhx

� �.
@âa3 ¼ HjVj

@fxj
Utj ; fc; ĥhx

� �.
@âa4 ¼ � 1 � fcð ÞV � fcL0=âa4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ Vj � L0=âa4

Hj

� �2
s

þHj sinh�1 Vj

Hj

� �
� fcsinh�1 Vj � L0=âa4

Hj

� �� �
@fzj

Utj ; fc; ĥhx

� �.
@b̂b1 ¼ 1

@fzj
Utj ; 1; ĥhx

� �.
@b̂b2 ¼ Vj

@fzj
Utj ; 0; ĥhx

� �.
@b̂b3 ¼ V2

j

@fzj
Utj ; fc; ĥhx

� �.
@b̂b4 ¼ �

fcL0 Vj � L0=b̂b4

� �

b̂b4H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ fc

Vj � L0=b̂b4

Hj

 !2
vuut

þHj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Vj

Hj

� �2
s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ fc

Vj � L0=b̂b4

Hj

 !2
vuut

0
@

1
A;

ð61Þ

with Hj ¼ HðtjÞ and Vj ¼ VðtjÞ.

4.1. The case-sensitive function fc

As seen in (53) there are multiple ways to estimate m0 and EA0. They may be

used properly for the detectability of Cases I and II, i.e. by implementing matching

equations m0x
¼ m0z

or EA0x
¼ EA0z

. However, it is remarkable that the parameter

EA0 is generally difficult to estimate unless the forces are very large. From these

reason, the more proper way to detect case is through m0.
To implement fc we formulate a hypothesis that requires the estimation of hx

and hz for both cases independently. Accordingly, we define f c ¼ 1 and verify if for

some small positive real number e, the inequality

âa4 � b̂b4

""" """ � e for
fx Ut; 1; hxð Þ ¼ 0
fz Ut; 1; hzð Þ ¼ 0

�
ð62Þ
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is satisfied, where â4 and b̂b4 are related to m0x
and m0z

, respectively, by the expres-
sions given in (53). If not, we change the hypothesis f c ¼ 0 and test the next
inequality

âa4 � b̂b4

""" """ � e for
fx Ut; 0; hxð Þ ¼ 0
fz Ut; 0; hzð Þ ¼ 0

:

�
ð63Þ

If the data are not perturbed, one of the hypotheses is correct, it is fc is determined.
Otherwise, e plays a role of a tolerance for uncertainty in the measures or a confi-
dence bound in the estimation under perturbed data.

Since there are no way to established fc a priori other than to test for consistency
for both, f c ¼ 1 and f c ¼ 0, then one must calculate (59) in both cases as explained
in the next.

4.2. Using the algorithm

The estimation algorithm is finally established as described in the following.

Starting with an initial vector ½ĥhð0ÞTx ; ĥhð0ÞTz

iT
one iterates (59) for f c ¼ 1 and f c ¼ 0

independently. The estimation will be finished when in one of the cases it results in

jĥhðmÞ
x3 � ĥhðmÞ

z3

""" < e, for some specified small tolerance e > 0, with

ĥhðmÞ
x3 ¼ âa4 ¼ 1=m̂m0x

g and ĥhðmÞ
z3 ¼ b̂b4 ¼ 1=m̂m0z

g. That one successful case will provide
the parameters.

4.3. Convergence

The convergence of the algorithm is proved for monochromatic excitation in the
following theorem.

Theorem 1. (Convergence of the estimates)If the cable is excited by xðtÞ ¼
Ax sinðx0tÞ and zðtÞ ¼ Az sinðx0t þ uÞ in the static configuration, the asymptotic

convergence of ĥhðmÞ
x and ĥhðmÞ

x generated by (59) to the true values is guaranteed pro-
vided that

1. for f c ¼ 0 (i.e. in Case II): ½âað0Þ1 ; âa
ð0Þ
3 ; âa

ð0Þ
4

iT
; b̂b

ð0Þ
1 ; b̂b

ð0Þ
3 ; b̂b

ð0Þ
4

h iT
2 R3

2. for f c ¼ 1 (i.e. in Case I): generated parameters ĥhðmÞ
x and ĥhðmÞ

z accomplish

X3

j¼1

@�kk3j

@âa4
fxj

(((((
((((( < 1 ð64Þ

X6

j¼4

@�kk6j

@b̂b4

fzj

(((((
((((( < 1 ð65Þ

for m ¼ 0; 1, 2,..., where �kkij are elements of K�1
t .
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Proof. A sufficient condition for the parameter errors ĥhðmÞ
x � ĥhðm�1Þ

x

� �
and

ĥhðmÞ
z � ĥhðm�1Þ

z

� �
generated by (59) to asymptotically converge to zero is that the

continuous functions defined in (57) and (58) satisfy in some neighborhood of hx
and hz (Bronstein and Semendjayew, 1987)

@gT
x

@ĥhx

((((
(((( >

@hT
x

@ĥhx

((((
(((( and

@gT
z

@ĥhz

((((
(((( >

@hT
z

@ĥhz

((((
((((; ð66Þ

where k.k is some induced matrix norm. As gx¼def ĥhx and gz¼def ĥhz, thus

@hT
x

@ĥhx

((((
(((( < 1 and

@hT
z

@ĥhz

((((
(((( < 1: ð67Þ

Bearing (67) in mind, let us prove part (a). A glance at (61), for f c ¼ 1, reveals that

the Jacobians @fTx=@ĥhx

� �
ĥhx

� �
and @fTz =@ĥhz

� �
ĥhz

� �
are not parametric, i.e. they

depend exclusively on data Hj and Vj. Hence, the roots of fx and fz at ĥhx ¼ hx and

ĥhz ¼ hz are simple, respectively. Taking the derivative of (58) it holds

@hT
x

@ĥhx

@hT
z

@ĥhz

� �
¼ I � KtK

�1
t � @Ax 0

0 @Az

� �
K�1

t

fx
fz

� �
¼ 0; ð68Þ

where

@Ax ¼ @

@ĥhx

� �
;

@

@ĥhx

� �
;

@

@ĥhx

� �� �
ð69Þ

@Az ¼
@

@ĥhz

� �
;

@

@ĥhz

� �
;

@

@ĥhz

� �� �
; ð70Þ

@

@ĥhx

� �T

¼ @

@ĥhx1

;
@

@ĥhx2

;
@

@ĥhx3

" #

and

@

@ĥhz

� �T

¼ @

@ĥhz1

;
@

@ĥhz2

;
@

@ĥhz3

" #
:

Consequently, the only condition for @hT
x=@ĥhx

((( ((( ¼ @hT
z =@ĥhz

((( ((( ¼ 0 is that for all t,

@fTx=@ĥhx and @fTz =@ĥhz be uniformly regular in time with this condition fulfilled, the
convergence for f c ¼ 0 is ensured. This is proved in the next.

The columns @fxj
=@âai for j ¼ 1, 2, 3, are generated by the functional basis (see

(61))

nfc¼0 ¼ 1; HðtÞVðtÞ; HðtÞsinh�1 VðtÞ
HðtÞ

� �
� VðtÞ

� +
: ð71Þ
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In order for @fTx=@ĥhx to be regular, its columns 1; HjVj; Hj sinh�1ðVj=HjÞ � Vj

, -T
must be linear independent. This is achieved if the data pairs Hj ;Vj

� �
do not

satisfy for all j the three conditions: Vj ¼ c=Hj; Vj ¼ Hj sinhððc þ VjÞ=HjÞ and Vj

¼ Hj sinhððcVjHj þ VjÞ=HjÞ; with c an arbitrary constant in each case. Now we

analyze if xðtÞ ¼ Ax sinðx0tÞ and zðtÞ ¼ Az sinðx0t þ uÞ generate function pairs
ðHðtÞ;VðtÞÞ; which do not satisfy the above conditions.

From (49) and (50), for fc ¼ 0; and the condition VðtÞ ¼ c=ðHðtÞÞ it holds

sin x0tð Þ ¼ c0 þ
c1

HxðtÞ
þ c2HxðtÞsinh�1 c3

H2
xðtÞ

� �
ð72Þ

sin x0t þ uð Þ ¼ c4 þ
c5

H2
z ðtÞ

þ c6HzðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ c7

H4
z ðtÞ

r
� 1

� �
ð73Þ

with ci real constants and Hx : Rþ ! R and Hz : Rþ ! R time assignments. If
there would exist some assignment HxðtÞ and HzðtÞ that satisfy (72) and (73) simul-
taneously for all t, respectively, then it would be valid HzðtÞ ¼ Hxðt þ ðu=x0ÞÞ. But
this is contradictory because both right sides at (72) and (73) are analytically differ-
ent. Then the monochromatic signals x(t) and z(t) do not generate pairs
ðHðtÞ; c=HðtÞÞ. The same argumentation can be easily extended to ðHðtÞ;HðtÞ sinh
ððc þ VðtÞÞ=ðHðtÞÞÞÞ and ðHðtÞ;HðtÞ sinhððcVðtÞHðtÞ þ VðtÞÞ=ðHðtÞÞÞÞ, and con-
clude that these pairs cannot be generated by such signals. So, the columns

1;HjVj;Hj sinh�1ðVj=HjÞ � Vj

, -T
of @fTx=@ĥhx result linear independent for har-

monic signals x(t) and z(t).
Analogously, it can be proved the uniform regularity for @fTz =@ĥhz using the same

arguments to generate the columns @fzj
=@b̂bi for j ¼ 1, 2, 3 by the functional basis

(see (61))

ffc¼0 ¼ 1;V2ðtÞ;HðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ VðtÞ

HðtÞ

� �2
s

� 1

0
@

1
A

8<
:

9=
;: ð74Þ

Therefore, the convergence of the parameter errors ĥhðmÞ
x � ĥhðm�1Þ

x

� �
and

ĥhðmÞ
z � ĥhðm�1Þ

z

� �
asymptotically to zero is ensured for any initial conditions

âa
ð0Þ
1 ; âa

ð0Þ
3 ; âa

ð0Þ
4

h iT
; b̂b

ð0Þ
1 ; b̂b

ð0Þ
3 ; b̂b

ð0Þ
4

h iT
2 R3.

Part (b) of the Theorem 1 involves the case f c ¼ 1. As the Jacobians @fTx=@ĥhx

� �
� ĥhx

� �
and @fTz =@ĥhz

� �
ĥhz

� �
are parametric, they depend not only on data but also
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on parameters. Hence, the roots of fx and fz at ĥhx ¼ hx and ĥhz ¼ hz are both not

simple. Taking the derivative of (58) for f c ¼ 1 and considering (67), it holds

@hT
x

@ĥhx

((((
(((( ¼ @Ax

@fTx

@ĥhx

� ��1

fx

(((((
((((( < 1 ð75Þ

@hT
z

@ĥhz

((((
(((( ¼ @Az

@fTz

@ĥhz

� ��1

fz

(((((
((((( < 1: ð76Þ

From the above it is concluded that the Jacobians @fTx=@ĥhx and @fTz =@ĥhz must be

regular for the given harmonic signals. To evidence this property we note that the

columns @fxj
=@âai, for j ¼ 1, 2, 3, are created by the functional basis (see (61))

nfc¼1 ¼ 1;HðtÞ; �L0

âa4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ VðtÞ � L0=âa4

HðtÞ

� �2
s

8>>>><
>>>>:
þHðtÞ sinh�1 VðtÞ

HðtÞ

� �
� sinh�1 VðtÞ � L0=âa4

HðtÞ

� �� �+
:

The columns

1;Hj;
�L0

âa4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ Vj � L0=âa4

Hj

� �2
s þ Hj sinh�1 Vj

Hj

� �
� sinh�1 Vj � L0=âa4

Hj

� �� �
2
66664

3
77775

T

are linear independent if ðHj ;VjÞ do not satisfy for all j the condition Fn ¼ cFm

with n; m ¼ 1, 2, 3, n 6¼ m; Fn and Fm being two different functions of the basis

(77).
Again, using the same argumentation, we can ascertain that the harmonic signals

x(t) and z(t) generate function pairs (H(t), V(t)), which do not satisfy the above

conditions. So, linear independent columns of @fTx=@ĥhx are generated.
The extension of these results to @fTz =@ĥhz technically similar as done for @fTx=@ĥhx.

The function basis for generation of the columns @fzj
=@b̂bi, for j ¼ 1, 2, 3, is
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(see (61))

ffc¼1 ¼ 1;VðtÞ;
�L0 VðtÞ � L0=b̂b4

� �

b̂b4H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ VðtÞ � L0=b̂b4

HðtÞ

 !2
vuut

8>>>>>><
>>>>>>:

þHðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ VðtÞ

HðtÞ

� �2
s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ VðtÞ � L0=b̂b4

HðtÞ

 !2
vuut

0
B@

1
CA
9>=
>;: ð78Þ

It is direct to deduce conditions for Hj and Vj that are not satisfied by the gener-
ated signals H(t) and V(t) through the harmonic excitation. In this way, linear

independent columns of @fTz =@ĥhz are created. Consequently Kt is also uniform reg-

ular in time for f c ¼ 1.
Finally, it is straightforward to see that conditions (75) and (76) can be trans-

formed into (64) and (65). Thus for every ĥhðmÞ
x and ĥhðmÞ

z generated by the algorithm,
from m ¼ 0 in advanced, (64) and (65) must be satisfied in order to guarantee con-
vergence. This concludes the proof of Theorem 1.

4.4. Estimation in the quasi-static dynamics

In comparison with the static behavior, the dynamic one introduces super-
harmonics in the frequency response of the forces. These components are the more
intense the larger is the velocity of the upper end of the cable. The extension of the
proposed method for these responses is feasible when the motions are slow. We
assume furthermore that the moored structure has a large inertia so that it imposes
low-frequency motions to the cables.

From the construction of manifolds in time it is inferred that the algorithm is
sensible to the first and second derivatives of the forces. The reason reclines in the
fact that if the sample points t1, t2, t3 are taken sufficiently close each other, every
mismatch between the dynamic force with respect to the static one will influence
the estimates. This effect can be reduced by taking a smaller number of significative
parameters and by using filtering of on-line estimates.

In control of moored structures it is important to know the mass density m0 and
the depth h0. Additionally, this last one may vary slowly in time changing the
force–position characteristics significantly. Other parameters like the lengths L0

and l0 are usually known in the set-up of the configuration of the catenaries. From
this point of view, a smaller parameter set like {h0, m0} will be less sensible to the
derivatives of the forces.

A crucial point in the evaluation of the estimates is the definition of a ‘‘success–
fail’’-function, which determines how large is the confidence of the estimates. Such
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a function may be implemented in the same manner as the function fc. Thus, for
some confidence bound e

rðtÞ ¼
1 if âa4 � b̂b4

""" """ � e

0 if âa4 � b̂b4

""" """ > e

8<
: ð79Þ

describes a binary function, which evaluates the accuracy of the estimates. So, only
estimates for rðtÞ ¼ 1 are considered.

The time evolution of the estimation under perturbed data can be nonsmooth,
mainly for high-frequency excitation. As usually the excitation has zero mean, the
estimation errors will fluctuate with the fundamental period of the motion. In
order to capture the mean value of the estimate trajectories, a low-pass filtering is
recommended. For this purpose �hhxðtÞ and �hhzðtÞ from

s _�hh�hhxðtÞ ¼ ��hhxðtÞ þ ĥhxðtÞ ð80Þ

s _�hh�hhzðtÞ ¼ ��hhzðtÞ þ ĥhzðtÞ; ð81Þ

are taken as the estimates instead of ĥhxðtÞ and ĥhzðtÞ. The filter time constant s is
defined according to the fundamental frequency of the excitation.

5. Simulations

The simulations are prepared on the basis of the dynamic and static configur-
ation described in Section 2. The proposed algorithm runs on-line with a fixed
parameter uncertainty bound e ¼ 0:01 and s ¼ 40 ½s� for all experiments. Let us
consider a cable with coefficients L0 ¼ 287:79 ½m�, l0 ¼ 250 ½m�, h0 ¼ 100 ½m�,
m0 ¼ 22:3 ½kg�, EA0 ¼ 1010 ½N�.

5.1. Case-study 1: monochromatic excitation

We excite the upper end of the cable with

xðtÞ ¼ 16sin x0tð Þ; zðtÞ ¼ 16

3
sin x0tð Þ; ð82Þ

where the excitation frequency x0 will take different values. Let us now apply the
algorithm on-line in the simulations as explained before.

First we consider the static configuration subject to Eqs. (14)–(16). The static
forces V and H are depicted in Fig. 5 for x0 ¼ 0:15 ½rad=s�, whose evolutions show
a typical sharp crest and flat valley. In Fig. 6, one sees the distortion suffered by
the forces due to hydrodynamic drag effects. This distortion affects the symmetry
(specially of the V(t)) as well as the intensity. Consequently, their Fourier trans-
form functions embrace a wider frequency band as well as nonzero real and
imaginary components.
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In the successive figures, the dynamic configuration is tested for x0 ¼ 0:05 and

x0 ¼ 0:15 ½rad=s�, which are considered to lie in the range of the frequency

response of floating structures.
Figs. 7 and 9 show the estimation of the mass density in the test frequencies, and

Figs. 8 and 10 portray the corresponding evolutions of the estimated depth,

respectively. Clearly, the lower is the excitation frequency the more precise is the

estimation. Nevertheless, the estimations for the highest frequency x0 ¼
0:15 ½rad=s� are sufficiently exact for control purposes, having a mean error under

5% with respect to the true values.

Fig. 5. Time evolution of static cable forces at the upper end for x0 ¼ 0:15 ½rad=s�.

Fig. 6. Time evolution of dynamic cable forces at the upper end for x0 ¼ 0:15 ½rad=s�.
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5.2. Case-study 2: dominant resonance frequency

This case study pretends to depict the mooring line dynamics subject to a typical

motion of semisubmersibles having a slight-damped and slow movement in the

surge direction with a resonance frequency of xr ¼ 0:012 ½rad=s� and an induced

displacement due to a wave with x0 ¼ 0:43 ½rad=s�.
The evolution of the forces and estimates is reproduced in the Figs. 11, 13 and

14. Fig. 12 shows the progress of the function fc. It has a stable course at one and

Fig. 7. Time evolution of the estimated cable mass density for x0 ¼ 0:05 ½rad=s�.

Fig. 8. Time evolution of the estimated depth for x0 ¼ 0:05 ½rad=s�.
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zero values, except for short periods accounting for the case transition due to the

uncertainty in the data.
It is remarkable that the high-frequency motion induced by a wave, influences

the forces much more significantly for the case f c ¼ 1 (i.e. /s > 0) than for the case

f c ¼ 0 (i.e. /s ¼ 0).
Even when the high frequency of the wave produces a great distortion of the

forces with respect to the static case, the estimates develop with high accuracy

mainly far away from transition periods of fc.

Fig. 9. Time evolution of the estimated cable mass density for x0 ¼ 0:15 ½rad=s�.

Fig. 10. Time evolution of the estimated depth for x0 ¼ 0:15 ½rad=s�.
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5.3. Case-study 3: time-varying depth

This case concerns the ability of the algorithm to adaptively tracking of para-
meter variations. To simulate the depth variation of h0 we choose a law according
to

h0ðtÞ ¼ h0 þ 10sinð0:001tÞ; ð83Þ

where the mean value h0 remains at the former value 100 [m]. The coordinates x(t)
and z(t) behave also harmonic with x0 ¼ 0:1 ½rad=s�. The evolution of forces is
depicted in Fig. 15, which shows a variation of their amplitudes of about 50%

Fig. 11. Time evolution of dynamic cable forces and upper end position for the case-study 2.

Fig. 12. Time evolution of the case-sensitive function fc.
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against 10% of change in the depth. The mass density m0 is estimated with high
accuracy as shown in Fig. 16. Fig. 17 exemplifies the tracking of the time-varying
depth. The maximal error for this estimation was below 3% with respect to the true
value of the parameter.

6. Conclusions

In this paper, an adaptive algorithm for on-line estimation of physical coeffi-
cients of cables in viscous environment is presented. The procedure is useful for

Fig. 13. Time evolution of the estimated cable mass density for case-study 2.

Fig. 14. Time evolution of the estimated depth for case-study 2.
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obtaining cable characteristics, which are needed in stability analysis and control

system design for moored floating structures. It uses measurements of position and

forces, which usually are available from on-board instrumentation. The algorithm

is also able to track changes in the depth. It is based on nonlinear solvers, which

can cope with transcendental functions that are present in the model structure of

the static configuration. Additionally it tests consistency of parameters in order to

confer the estimation robustness with respect to dynamic perturbations in the data.

Fig. 15. Time evolution of dynamic cable forces for the case-study 3.

Fig. 16. Time evolution of the estimated cable mass for case-study 3.
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The proof of asymptotic convergence of the estimates in the static configuration is

an important part of the paper.
The influences of drag forces and hydrodynamic high-frequency effects in the

estimation are taken into account as perturbations and constitute, consequently,

the uncertainty of the system. These effects are tested by simulations. There were

analyzed three basic case studies, concerning a monochromatic excitation, domi-

nant resonance motion together with high-frequency waves, and finally slow time-

varying depth. The results show that physical coefficients like depth and cable mass

density can be estimated at the worst case with a mean error smaller than 5% of

the exact value.
The proposed algorithm of this paper can be straightforwardly be extended to

systems of catenaries with different parameters attached to a moored floating struc-

ture.
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