RSC Advances

c

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

$78 \times 17 \mathrm{~mm}(300 \times 300$ DPI)

Diels-Alder Reactions of Pinacol Alkenylboronates: An experimental and theoretical study

Margarita M. Vallejos, Nicolás Grimblat and Silvina C. Pellegrinet*

5

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/b000000x

Abstract

We have studied the Diels-Alder reactions of pinacol alkenylboronates with cyclopentadiene under two different conditions: thermal heating at $170^{\circ} \mathrm{C}$ in a pressure tube and with catalytic TFA ($5 \mathrm{~mol} \%$) at 80 $10^{\circ} \mathrm{C}$. Yields varied significantly from system to system and also for the uncatalyzed and catalyzed methodologies. Moderate to excellent exo-stereoselectivities were obtained in all cases. The theoretical study of the thermal reactions shed some light into the intriguing substituent effects observed experimentally. A variety of substituted 5 -norbornen- 2 -ols were easily generated by subsequent in-situ oxidation of the cycloadducts with alkaline hydrogen peroxide.

Introduction

The Diels-Alder (DA) reactions of boron-activated dienophiles were first described more than five decades ago. In the last years, a renewed interest in such processes arouse, both from the experimental and theoretical viewpoints. ${ }^{1-32}$ We have recently 20 shown that the Diels-Alder reactions of vinylboronates can be easily performed using microwave irradiation giving excellent yields of the cycloadducts. Vinylboronic acid pinacol ester showed good stability towards hydrolysis, operational simplicity and yields of Diels-Alder products. The [4+2] cycloadditions of ${ }_{25}$ pinacol vinylboronate with a variety of cyclic and acyclic dienes under microwave irradiation generated the boronate cycloadducts in excellent yields in short reaction times (1-6 h) (Scheme 1). ${ }^{32}$ For example, the reaction with cyclopentadiene was complete in 1 h at $150^{\circ} \mathrm{C}$, affording the products in quantitative yield with a ${ }_{30} 38: 62$ endolexo ratio. Subsequent in-situ oxidation of the cycloadducts with alkaline hydrogen peroxide yielded the alcohols efficiently, demonstrating the utility of these intermediates for direct C-O bond-forming reactions.
As part of our continuing work in the field, we have now studied 35 the Diels-Alder reactions of cyclopentadiene with pinacol alkenylboronates with different substitution patterns under different reaction conditions with the aims of developing new methodologies, gaining additional knowledge about the reactivity of boron-substituted dienophiles and analyzing their possible use 40 as synthetic equivalents of substituted enols.

Results and discussion

To carry out this study we have used cyclopentadiene, which was chosen for being a reactive cyclic 1,3-diene and also for the

45

Table 1 Diels-Alder reaction of pinacol vinylboronate (1a) with cyclopentadiene

Entry	Conditions	Yield (\%) endolexo ${ }^{a}$
1	Toluene, $150{ }^{\circ} \mathrm{C}, \mathrm{MW}, 1 \mathrm{~h}^{32}$	$\begin{gathered} 100 \\ 38: 62 \end{gathered}$
2	Xylenes, reflux, 1 h	$\begin{gathered} 54 \\ 35: 65 \end{gathered}$
3	Toluene, reflux, 5 h	$\begin{gathered} 96 \\ 35: 65 \end{gathered}$
4	Toluene, $150^{\circ} \mathrm{C}, 1 \mathrm{~h}$, pressure tube	$\begin{gathered} 79 \\ 32: 68 \end{gathered}$
5	Toluene, $150^{\circ} \mathrm{C}, 2 \mathrm{~h}$, pressure tube	$\begin{gathered} 86 \\ 37: 63 \end{gathered}$
6	Toluene, $170^{\circ} \mathrm{C}, 5 \mathrm{~h}$, pressure tube, BHT ($5 \mathrm{~mol} \%$)	$\begin{gathered} 92 \\ 40: 60 \end{gathered}$
7	Toluene, $170^{\circ} \mathrm{C}, 1 \mathrm{~h}$, pressure tube, BHT ($5 \mathrm{~mol} \%$)	$\begin{gathered} 96 \\ 35: 65 \end{gathered}$

${ }^{a}$ Determined by ${ }^{1} \mathrm{H}$ NMR.
interesting structural and synthetic properties of the ${ }_{50}$ bicyclo[2.2.1]heptane products. ${ }^{33}$ To investigate the substituent
effect on the outcome of the thermal Diels-Alder reaction, we tested a range of commercially available alkenylboronates with alkyl or aryl groups with different substitution patterns in the 1and 2-positions of the carbon-carbon double bond. Initial ${ }_{5}$ screening reactions under microwave heating with the pinacol esters of trans-1-penten-1-ylboronic acid and trans-2phenylvinylboronic acid suggested that the presence of substituents in the double bond of the substrates retarded the cycloaddition process considerably. Therefore, the use of 10 microwave irradiation proved impractical. We then reinvestigated the Diels-Alder reaction of pinacol vinylboronate with cyclopentadiene under a large number of thermal conditions using conventional heating. Table 1 summarizes the outcome of some descriptive experiments. Entry 1 shows the result ${ }_{15}$ previously obtained in our laboratories at $150{ }^{\circ} \mathrm{C}$ under microwave irradiation for $1 \mathrm{~h}^{32}$ When the reaction was performed in refluxing xylenes under conventional heating, a
54% yield was obtained (Entry 2). We managed to get a 96% yield in refluxing toluene with a longer reaction time (Entry 3). 20 As an alternative, use of a pressure tube at $150^{\circ} \mathrm{C}$ in 1 h gave the cycloadduct in 79% yield (Entry 4), while increasing the time to 2 h raised the yield to 86% (Entry 5). If the bath temperature was set to $170{ }^{\circ} \mathrm{C}$, a 92% yield was generated in 5 h , and a nearly quantitative yield was obtained in 1 h (Entries 6 and 7). BHT (5 ${ }_{25} \mathrm{~mol} \%$) was added to prevent undesired radical side reactions. The endo/exo ratios varied slightly around 38:62 for all reactions.
Having optimized the conditions for the thermal reaction of pinacol vinylboronate under conventional heating, we next turned our attention to the $[4+2]$ cycloadditions of the substituted 30 substrates (Table 2). All the reactions were optimized to yield the greatest amount of products. Lower temperatures or shorter reaction times afforded poorer yields while higher temperatures or longer reaction times either did not increase the yield or led to some decomposition.

35 Table 2 Thermal Diels-Alder reaction of alkenylboronates with cyclopentadiene

Entry

6		24	$\begin{gathered} 20(70) \\ 40: 60 \end{gathered}$		
7		24	$\begin{gathered} 19(48) \\ 37: 63 \end{gathered}$		
8		1	$\begin{gathered} 25(91) \\ 10: 90 \end{gathered}$		 2h-X
9	 $1 i$	24	$\begin{gathered} 72(80) \\ 9: 91 \end{gathered}$		$2 \mathrm{i}-\mathrm{X}$
10		12	Traces ${ }^{\text {c }}$		 2j-X

${ }^{a}$ Yields based on recovered starting materials (BRSM) in parenthesis. ${ }^{b}$ Relative to the pinacol boronate moiety, determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{c}$ The starting material was recovered.

As found in our initial experiments with microwave heating, longer reactions times than for the parent dienophile (1a) were 5 needed in all cases, excluding $\mathbf{1 h}$ (Entry 8). However, for the latter the yield was very low and did not increase by extending the reaction time (25% in 1 h endolexo $10: 90,21 \%$ in 12 h endo/exo 41:59). Alkyl-substituted substrates performed much better than the aromatic analogues, giving yields in the range 72$1089 \%$ (Entries 2-4 and 9). We reasoned that the conjugated aromatic ring donated electron density to the carbon-carbon double bond. However, the introduction of electron-withdrawing substituents on the phenyl ring did not improve the reactivity of such systems (Entries 5-8 and 10). Regarding the 15 stereoselectivities, the exo cycloadduct predominated in all reactions. The highest exo-stereoselectivity was observed for isopropenylboronic acid pinacol ester (1i) (endo/exo 9:91, Entry 9), while alkenylboronates with alkyl groups in the 2-position exhibited endo/exo ratios higher than 20:80 (Entries 2-4). The

20 aromatic compounds showed moderate exo-selectivities, similar to the one obtained with the unsubstituted system (endo/exo ~ 40:60).
In the next stage, we aimed to determine whether milder conditions could be used so we embarked in the development of 25 the acid-catalyzed version of the reaction under study (Table 3). ${ }^{34-37}$ Many experiments were run for the Diels-Alder reactions of pinacol esters of vinylboronic acid (1a), trans-1-penten-1ylboronic acid (1b) and trans-2-phenylvinylboronic acid (1e) to determine the optimal conditions. Brønsted acids gave better ${ }_{30}$ results than Lewis acids, due to the greater polymerization of the diene in the presence of the latter. Among the Brønsted acids, we tried acetic acid, trifluoroacetic acid (TFA) and triflic acid. We tested up to 2 equivalents of Brønsted acids and 10 equivalents of cyclopentadiene, solvents like toluene, dichloromethane and ${ }_{35}$ water, and temperatures ranging from room temperature to

Table 3 TFA-catalyzed Diels-Alder reaction of alkenylboronates with cyclopentadiene

Entry	Dienophile	Time (h)	Yield (\%) endo/exo	Products

1	 1a	5	$\begin{gathered} 88 \\ 36: 64 \end{gathered}$		 2a-X
2		24	traces ${ }^{\text {c }}$		
3		24	traces ${ }^{\text {c }}$		
4		24 72	$\begin{gathered} 17(75) \\ 14: 86 \\ \\ 26(68) \\ 10: 90 \\ \hline \end{gathered}$		
5		24 72	$\begin{gathered} 32(92) \\ 17: 83 \end{gathered}$ 38 (98) 17:83		
6		24 72	$\begin{gathered} 20(70) \\ 36: 64 \\ \\ 31(70) \\ 29: 71 \\ \hline \end{gathered}$	2f-N	
7		24 72	$\begin{gathered} 24(78) \\ 10: 90 \end{gathered}$ 45 (73) 10:90		
8		12	$\begin{gathered} 83 \\ 6: 94 \end{gathered}$		$2 \mathrm{~h}-\mathrm{X}$
9	 $1 i$	24	$\begin{gathered} 15(24) \\ 9: 91 \end{gathered}$		 2i-X
10		12	Traces ${ }^{\text {c }}$		 $\mathbf{2 j - X}$

${ }^{a}$ Yields based on recovered starting materials (BRSM) in parenthesis. ${ }^{b}$ Relative to the pinacol boronate moiety, determined by ${ }^{1} \mathrm{H}$ NMR. ${ }^{c}$ The starting material was recovered.

Scheme 2
$150{ }^{\circ} \mathrm{C}$. For the reaction of $\mathbf{1 a}$, we determined that best yields of the cycloadducts were obtained in 5 h at $80^{\circ} \mathrm{C}$ with $5 \mathrm{~mol} \%$ of 5 TFA (Entry 1, 88\%, endo/exo 36:64). When we run the reaction in the absence of TFA, a 20% yield was generated, with the same endo/exo ratio. Use of a pressure tube, though not necessary in toluene at $80^{\circ} \mathrm{C}$, was preferred to avoid evaporation of the small loading of the catalyst (Bp $72.4^{\circ} \mathrm{C}$). Quite unexpectedly, under 10 catalyzed conditions only 1-phenylvinylboronic acid pinacol ester (1h) performed well (Entry 8, 83\%, endo/exo 6:94). The other dienophiles gave yields below 45%. However, it is interesting to note that in this case aromatic alkenylboronates afforded better yields than the aliphatic compounds. Also, considerably higher 15 exo-selectivities than for the uncatalyzed reactions were observed. Possibly, the acid catalyst interacts with the π electrons of the aromatic ring and therefore withdraws electron density from the conjugated unsaturated system leading to the activation of the double bond. Within the aliphatic alkenylboronates, 1d, ${ }_{20}$ having a possible site for protonation (oxygen atom) gave better results than $\mathbf{1 b}$ and $\mathbf{1 c}$
We were surprised to note that the background reaction of dienophile $\mathbf{1 h}$ afforded a very high yield of the corresponding boronate cycloadduct (91\%) with excellent exo-selectivity 25 (endo/exo 5:95) (Scheme 2). Under the same conditions,
vinylboronic acid pinacol ester (1a) gave a lower yield (45\%), which was a bit unexpected since previous experiments at higher temperatures suggested that the parent compound was more reactive than $\mathbf{1 h}$ (Table 2).
${ }_{30}$ We tested whether we could perform the catalyzed reaction of alkenylboronate $\mathbf{1 h}$ at room temperature using the same amount of diene, catalyst, and BHT, but we only obtained a 17% yield with a 3:97 endo/exo ratio (96% BRSM) after 12 h .
Since, as commented above, prolonged exposure to the reaction ${ }_{35}$ conditions did not increase the yields of the products we figured that thermodynamic equilibria had been reached. Also, dienophile 1h gave a 25% (91% BRSM) in 1 h at $170{ }^{\circ} \mathrm{C}$ (Entry 8, Table 2), while the yield was much better after 12 h at $80^{\circ} \mathrm{C}(91 \%$, Scheme 2), so we suspected that under the initial thermal conditions the
40 energy barrier of the Diels-Alder reaction has been surpassed and that some retro Diels-Alder might have taken place. For that reason, we submitted cycloadduct $\mathbf{2 g}$ (endo/exo 10:90) to the conditions of the uncatalyzed thermal reaction (Scheme 3). Indeed, the retro Diels-Alder reaction occurred, giving 76\% of ${ }_{45}$ alkenylboronate $\mathbf{1 g}$ and 15% of recovered cycloadduct $\mathbf{2 g}$ (a mixture with a very similar composition to the one obtained when submitting the direct reaction).
Finally, we studied the tandem Diels-Alder reaction of

Scheme 3
alkenylboronates with cyclopentadiene-oxidation (Table 4).

Table4 Tandem Diels-Alder reaction of alkenylboronates with cyclopentadiene-oxidation

Entry

3		$\begin{gathered} 82^{b} \\ 14: 86 \end{gathered}$	 $3 \mathrm{c}-\mathrm{N}$ $3 \mathrm{c}-\mathrm{X}$
4		$\begin{gathered} 82^{b} \\ 12: 88 \end{gathered}$	 3d-N 3d-X
5		$\begin{gathered} 37^{c} \\ 13: 87 \end{gathered}$	 $3 \mathrm{e}-\mathrm{N}$
6		$\begin{gathered} 28^{\mathrm{c}} \\ 13: 87 \end{gathered}$	 3f-N 3f-X
7		$\begin{gathered} 44^{\mathrm{c}} \\ 9: 91 \end{gathered}$	
8		$\begin{gathered} 88^{d} \\ 3: 97 \end{gathered}$	
9		$\begin{gathered} 66^{b} \\ 9: 91 \end{gathered}$	

${ }^{a}$ Determined by NMR integration. ${ }^{b}$ Non TFA-catalyzed thermal conditions were used. ${ }^{c}$ TFA-catalyzed conditions were used. ${ }^{d}$ Conditions shown in

Scheme 2 were used..
Except for the compounds with aryl groups at the 2-position (Entries 5-7), we coupled the non-catalyzed thermal conditions ${ }_{5}$ shown in Table 2 for the cycloaddition step with the final oxidation with alkaline hydrogen peroxide in one-pot. Overall yields for the two-step sequence were very similar to the ones obtained in the Diels-Alder reactions, which suggests that in situ transformation of the boronate cycloadducts to the corresponding 10 alcohols occurs very efficiently. In general, the substituted 5-norbornen-2-ols were obtained with acceptable to very good yields, which demonstrated that alkenylboronic esters can be used as synthetic equivalents of substituted enols. Due to their high functionalization, the alcohol products can be foreseen as
15 valuable synthetic intermediates towards a variety of chemical structures. We anticipate that other transformations of the cycloadduct intermediates could be developed for further elaboration of $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{N}$ bonds.

${ }_{20}$ Computational study

To gain a deeper insight into the mechanism of the Diels-Alder reactions of the dienophiles under study we performed a
theoretical study. In particular, we intended to examine the reversibility of such processes and whether the starting 25 material/products distribution was determined by thermodynamic or kinetic control. Therefore, we optimized the geometries in toluene of the reactants, the transition structures and the products to compute the activation and reaction energies at $170{ }^{\circ} \mathrm{C}$. In addition, we analyzed the geometries and the properties of the 30 dienophiles and the transition structures with the aim of rationalizing the reactivity and selectivity trends.
Computational methods. All calculations were performed with the Gaussian 09 package. ${ }^{38}$ We carried out thorough conformational analyses to locate the lowest energy geometry for 35 all the structures under study. Final geometry optimizations were carried out using MPWB1K global-hybrid meta-GGA functional ${ }^{39}$ together with $6-311 \mathrm{G}^{*}$ basis. Solvent effects of toluene were taken into account through full optimizations using the polarizable continuum model (PCM) as developed by
${ }_{40}$ Tomasi's group ${ }^{40}$ in the framework of self-consistent reaction field (SCRF). ${ }^{41-43}$ The vibrational frequencies were calculated to determine the nature of the stationary points and to evaluate zero-

Fig. 1 MPWB1K/6-311G* free energy profiles for the Diels-Alder reactions of pinacol alkenylboronates $\mathbf{1 a}$ (top left), $\mathbf{1 b}$ (top right), $\mathbf{1 e}$ (bottom left) and $5 \mathbf{1 h}$ (bottom right) with cyclopentadiene (free activation energies in toluene at $170{ }^{\circ} \mathrm{C}$ for the direct and reverse reaction, in $\mathrm{kcal} / \mathrm{mol}$). The optimized geometries in toluene for the transition structures with selected distances in \AA and Wiberg bond indexes in parentheses are also shown.
with the same method. Intrinsic Reaction Coordinate (IRC) calculations were run to verify if the transition structures were directly connected to the reactants and the products.
${ }_{10}$ Fig. 1 shows the free energy profiles for the Diels-Alder reactions of selected dienophiles with cyclopentadiene as a means to compare the reaction channels (for all the energy profiles see the ESI). Also, the optimized geometries for the corresponding transition structures with selected distances and Wiberg bond indexes are shown. Table 5 gathers the computed free energies of activation, reaction free energies and endo/exo selectivities at 170 ${ }^{\circ} \mathrm{C}$ in toluene for all the Diels-Alder reactions under study. All transition structures exhibit classical [4+2] geometries and are asynchronic. However, the ones corresponding to the dienophiles
20 with aromatic substituents in $\mathrm{C}-2(\mathbf{1} \mathbf{-} \mathbf{1 g})$ are less asynchronic and the asynchronicity is reversed, i.e. the carbon atom directly attached to boron ($\mathrm{C}-1$) is closer to the diene carbon than $\mathrm{C}-2$. Carbon-carbon distances for the other systems are in line with previous results: the presence of the boron atom makes C-2 more
25 electron deficient, so it becomes closer to the corresponding carbon atom in the diene than C-1. ${ }^{44}$ Analysis of FMOs indicates that the reactions under study are normal electron-demand DielsAlder reactions. From the atomic coefficients for the LUMOs of
the dienophiles, it appears that the computed reversal of ${ }_{30}$ asynchonicity is caused by electronic effects since compounds $\mathbf{1 e} \mathbf{- 1 g}$ have larger coefficients at $\mathrm{C}-1$ than at $\mathrm{C}-2$, in contrast to the rest of the dienophiles. However, we do not discard the contribution of steric effects. In addition, the transition structures of alkenylboronates with aromatic susbtituents in $\mathrm{C}-1(\mathbf{1} \mathbf{h}$ and $\mathbf{1 j})$ ${ }_{35}$ are extremely asynchronic, with asynchronicities as high as 0.66 \AA. Nonetheless, IRC calculations connected the transition structures with the reactants and the products, therefore all reactions were computed to be concerted. In this case, comparison of the atomic coefficients corresponding to the ${ }_{40}$ LUMOs of the dienophiles suggests that the higher asynchronicity is determined by steric effects rather than electronic effects. The non-classical [4+3] carbon-boron interactions are weak (C-B distances 2.70-3.15 Å, WBI 0.04-002) and very similar for the endo and exo approaches. Consequently, 45 the observed moderate to high exo-selectivities seems to be a consequence of unfavorable van der Waals interactions in the endo transition structures.
Also, the short distance ($c a .2 .4 \AA$) between one of the methylene hydrogens of the cyclopentadiene moiety and one of the oxygens so of the pinacol boronate in the exo transition structures suggests
the possibility that hydrogen bond interactions contribute to
Table 5 MPWB1K/6-311G* free energies of activation, reaction energies and endo/exo selectivities at $170{ }^{\circ} \mathrm{C}$ in toluene for the Diels-Alder reactions of pinacol alkenylboronates $\mathbf{1 a - 1} \mathbf{j}$ with cyclopentadiene ${ }^{a}$

Dienophile	TS	$\Delta G^{\#}{ }_{\text {Tol }}$	endolexo	$\Delta G_{\text {Tol }}$	endolexo
1a	endo	36.04	68:32	-5.62	37:63
	exo	36.71		-6.11	
1b	endo	41.71	18:82	0.28	34:66
	exo	40.36		-0.31	
1c	endo	41.25	17:83	-1.09	61:39
	exo	39.81		-0.70	
1d	endo	39.44	10:90	-3.99	46:54
	exo	37.53		-4.15	
1 e	endo	42.37	2:98	2.34	41:59
	exo	39.01		2.03	
1f	endo	40.75	29:71	1.36	79:21
	exo	39.97		2.53	
1 g	endo	40.72	22:78	2.16	51:49
	exo	39.59		2.19	
1h	endo	38.77	8:92	0.84	3:97
	exo	36.65		-2.15	
1 i	endo	40.25	8:92	-1.30	51:49
	Exo	38.13		-1.24	
1j	endo	41.92	24:76	1.47	79:21
	exo	40.91		2.65	

$5{ }^{\text {a }}$ Energies in $\mathrm{kcal} / \mathrm{mol}$.
determine the diastereoselectivity. NBO calculations indicate that this accounts for a stabilization of $0.30-0.75 \mathrm{kcal} / \mathrm{mol}$ of the exo transition structures relative to their endo counterparts.
The lowest energy barriers correspond to the reactions of ${ }_{10}$ substrates $\mathbf{1 a}$ and $\mathbf{1 h}$, while the one for analogue $\mathbf{1} \mathbf{j}$ is the highest one, in accordance with the experimental reactivities. However, the free energies of activation for the other reactions do not match the reactivity trend accurately. For that reason, we optimized the geometries of the products and computed the reaction energies.
${ }_{15}$ By analyzing the barriers for the direct reactions (Diels-Alder reaction) and the reverse reaction (retro Diels-Alder reaction) we propose that the low product yields for the reactions of dienophiles $\mathbf{1 e}-\mathbf{1 g}$ at $170{ }^{\circ} \mathrm{C}$, might be related to the higher reversibility of the reactions as a result of the higher energies of
20 the products and the resulting lower energy barriers for the retro Diels-Alder reactions. The higher energies of the products corresponding to the reactions of aromatic alkenylboronates $\mathbf{1 e}$ $\mathbf{1 g}$ appear to be originated from steric clashes between the aromatic ring and the [2.2.1] backbone.
${ }_{25}$ For $\mathbf{1 b} \mathbf{- 1 d}$ and 1i, the endo/exo selectivities calculated from activation free energies are in agreement with the experimental values. For the more reactive dienophiles $\mathbf{1 a}$ and $\mathbf{1 h}$ the calculated endo/exo selectivities from the reaction energies are in excellent accordance with the experimental outcome, indicating ${ }_{30}$ the dominio of the termodinamical control in these reactions. The endolexo ratios for $\mathbf{1 e} \mathbf{- 1 g}$ are closer to the figures obtained from reaction energies, which supports that in these cases the starting material/products distribution is a consequence of thermodynamic equilibration. On the other hand, free reaction energies of the ${ }_{35}$ products predict that the reactions with the $\mathbf{1 a} \mathbf{- 1 d}$ and $\mathbf{1 h} \mathbf{- 1 i}$ should be exergonic and therefore, the boronate cycloadducts should predominate while that the reactions with $\mathbf{1 e - 1 g}$ and $\mathbf{1 j}$ should be endergonic and the starting alkenylboronates should be the major components of the reaction mixtures. Therefore, free
${ }_{40}$ energy trends, gave us a hint to better understand the reaction mechanism.
Another point that deserves to be remarked is the high reactivity of substrate $\mathbf{1 h}$. Inspection of the geometry of the corresponding transition structures reveals that a non-classical hydrogen bond 45 (NCHB) between an aromatic proton at the ortho position and one of the oxygens of the pinacol boronate might be responsible for the peculiar reactivity. Such interaction is much stronger in the exo transition structure than in its endo counterpart (exo: 2.17 $\AA, 1.25 \mathrm{kcal} / \mathrm{mol}$, endo: $2.38 \AA, 0.28 \mathrm{kcal} / \mathrm{mol}$), and also than in ${ }_{50}$ the starting dienophile ($2.55 \AA, 0.15 \mathrm{kcal} / \mathrm{mol}$). The unexpected lack of reactivity of structurally related analogue $\mathbf{1 j}$ is reflected in a higher free energy barrier obtained from the calculations, which might result from geometric constraints imposed by the bulky chlorine atom. The dihedral angle between the aromatic ring and 55 the double bond in the optimized geometry of the reactant is 54 degrees, making the approach of the diene more difficult. The aforementioned dihedral angle is reduced to roughly 26 degrees in the transition structures, in contrast to the planar geometries corresponding to 1-phenylvinylboronic acid pinacol ester (1h).

60

Conclusions

We have investigated the Diels-Alder reactions of pinacol alkenylboronates with cyclopentadiene. The outcome of the studied transformation was shown to be very sensitive to the ${ }_{65}$ substitution of the dienophile both under thermal and TFAcatalyzed conditions. Theoretical calculations disclosed some interesting substituent effects for these [4+2] cycloadditions. We have found that the thermal Diels-Alder reactions of alkenylboronates with aryl groups in the 2-position give low 70 yields because they are highly reversible. The high reactivity of 1-phenylvinylboronic acid pinacol ester (1h) was explained in terms of a stabilizing non-classical hydrogen bond between an aromatic proton and the boronate moiety. We have also synthesized a range of substituted 5-norbornen-2-ols in one-pot 75 by performing the tandem Diels-Alder reactions - alkaline hydrogen peroxide oxidation, demonstrating the versatility of alkenylboronic esters as synthetic equivalents of substituted enols.

${ }_{80}$ Experimental section

General experimental procedures. All reagents and solvents were used directly as purchased or purified according to standard procedures. Analytical thin layer chromatography was carried out using commercial silica gel plates (Merck, Silica Gel 60 F254) 85 and visualization was effected with short wavelength UV light $(254 \mathrm{~nm})$ and a p-anisaldehyde solution $(2.5 \mathrm{~mL}$ of p anisaldehyde +2.5 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}+0.25 \mathrm{~mL}$ of $\mathrm{AcOH}+95 \mathrm{~mL}$ of EtOH). Column chromatography was performed with silica gel 60 H (Merck), slurry packed, run under low pressure of nitrogen. ${ }_{90}$ The Diels-Alder reactions were monitored using TLC and ${ }^{11} \mathrm{~B}$ NMR analysis in CDCl_{3}. NMR spectra were recorded at 300 MHz for ${ }^{1} \mathrm{H}, 75 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}, 96 \mathrm{MHz}$ for ${ }^{11} \mathrm{~B}$ and 282 MHz for ${ }^{19}$ F NMR on a Bruker Avance-300 DPX spectrometer with CDCl_{3} as solvent and $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}\left({ }^{1} \mathrm{H}\right)$ and $\mathrm{CDCl}_{3}\left({ }^{13} \mathrm{C}, 76.9 \mathrm{ppm}\right)$ 95 as internal standards. ${ }^{11} \mathrm{~B}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were externally
referenced to $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}$ and CFCl_{3}, respectively. Chemical shifts are reported in delta (δ) units in parts per million (ppm) and splitting patterns are designated as s , singlet; d , doublet; t , triplet; q , quartet; m, multiplet and br, broad. Coupling constants are recorded in Hertz (Hz). Isomeric ratios were determined by ${ }^{1} \mathrm{H}$ NMR integration. Infrared spectra were recorded on a Shimadzu IR Prestige-21 spectrometer using sodium chloride plates or potassium bromide pellets. Absorbance frequencies are recorded in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$. The high resolution mass spectra (HRMS) were obtained with a Bruker MicroTOF-Q II instrument (Bruker Daltonics, Billerica, MA). Detection of the ions was performed with electrospray ionization (ESI), positive ion mode and Atmospheric Pressure Chemical Ionization (APCI). The structure of the products were determined by a combination of 15 spectroscopic methods such as IR, 1D and 2D NMR (including NOE, DEPT, COSY, HSQC and HMBC experiments) and HRMS. In some cases, NMR calculations were also performed to corroborate the stereochemistry and the assignment. In addition, we confirmed the structure of the Diels-Alder products by 20 oxidation of the boronates to the alcohols, some of which were described in the literature.

Diels-Alder reactions of alkenylboronates: synthesis of boronates 2a-2i

${ }_{25}$ General procedure A: To a pressure tube equipped with a stirring bar were added dry toluene (1.5 mL), vinylboronate $\mathbf{1}$ (typically 0.25 mmol), 2,6-di-tert-butyl-4-methylphenol (BHT, 5 $\mathrm{mol} \%$) and cyclopentadiene (0.75 mmol) under nitrogen atmosphere. The resulting reaction mixture was stirred at $170{ }^{\circ} \mathrm{C}$
${ }_{30}$ for the reported time (1-24 h). The solvent was removed under reduced pressure, and the crude was purified by column chromatography (hexane/AcOEt) to afford the corresponding boronate.
General procedure B: To a pressure tube equipped with a ${ }_{35}$ stirring bar were added dry toluene (1.5 mL), vinylboronate $\mathbf{1}$ (typically 0.28 mmol), 2,6-di-tert-butyl-4-methylphenol (BHT, 5 $\mathrm{mol} \%$), cyclopentadiene (0.84 mmol) and trifluoroacetic acid (TFA, $5 \mathrm{~mol} \%$) under nitrogen atmosphere. The resulting reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for the reported time (5-72 40 h). The solvent was removed under reduced pressure, and the crude was purified by column chromatography (hexane/AcOEt) to afford the corresponding boronate.
2-Bicyclo[2.2.1]hept-5-en-2-yl-4,4,5,5-tetramethyl-
[1,3,2]dioxaborolane (2a). ${ }^{32}$ Boronate 2 a was obtained as a ${ }_{45}$ mixture of diastereomers according to the general procedures A and B using vinylboronate $1 \mathrm{a}(0.28 \mathrm{mmol})$ and cyclopentadiene $(0.84 \mathrm{mmol})$. A small fraction of each diastereomer could be separated and characterized.
a) Procedure A: Reaction time: 1 h . Yield: $96 \%(59.1 \mathrm{mg})$, so endolexo 36:65.
b) Procedure B: Reaction time: 5 h . Yield: 88% (54.2 mg), endolexo 36:64.
4,4,5,5-Tetramethyl-2-(3-propyl-bicyclo[2.2.1]hept-5-en-2-yl)[1,3,2]dioxaborolane (2b). Boronate 2b was obtained as a ${ }_{55}$ mixture of diastereomers according to the general procedure A, using alkenylboronate $\mathbf{1 b}(0.22 \mathrm{mmol})$ and cyclopentadiene (0.66 mmol). A small fraction of the exo diastereomer could be separated and characterized. Reaction time: 24 h . Yield: 78%
$(45.0 \mathrm{mg})$, endolexo 17:83. Boronate 2b-X (major compound, 60 yellowish oil) IR (film) $v_{\max } 2956,2926,2870,2359,2344,1371$, 1312, 1146, 978, 853, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 6.17 (dd, $\left.J_{5,6}=5.6, J_{1,6}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 5.87\left(\mathrm{dd}, J_{5,6}=5.6\right.$, $\left.J_{4,5}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 2.77$ (br s, $1 \mathrm{H}, \mathrm{H}-4$), 2.74 (br s, $1 \mathrm{H}, \mathrm{H}-1$), 2.15-2.04 (m, 1H, H-3), 1.36-1.26 (m, 4H, H-7 and H-11), 1.24
${ }_{65}(\mathrm{br} \mathrm{s}, 12 \mathrm{H}, \mathrm{H}-9), 1.10-0.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-10), 0.85\left(\mathrm{t}, J_{11,12}=7.3 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{H}-12$), 0.16 (dd, $\left.J_{2,3}=5.3, J_{1,2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.3(\mathrm{CH}, \mathrm{C}-6), 131.5(\mathrm{CH}, \mathrm{C}-5), 82.8(2 \mathrm{C}$, $\mathrm{C}-8), 48.5\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 46.1(\mathrm{CH}, \mathrm{C}-4), 45.0(\mathrm{CH}, \mathrm{C}-1), 42.2(\mathrm{CH}$, $\mathrm{C}-3), 37.6\left(\mathrm{CH}_{2}, \mathrm{C}-10\right), 24.7\left(2 \mathrm{CH}_{3}, \mathrm{C}-9\right), 24.6\left(2 \mathrm{CH}_{3}, \mathrm{C}-9\right), 21.8$ $70\left(\mathrm{CH}_{2}, \mathrm{C}-11\right), 14.4\left(\mathrm{CH}_{3}, \mathrm{C}-12\right), \mathrm{C}-2$ signal missing. ${ }^{11} \mathrm{~B}$ NMR (96 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 34.2. Boronates 2b-X and 2b-N (yellowish oil) IR (film) $v_{\text {max }} 2957,2926,2870,2359,2342,1371,1312,1244$, 1146, 968, 853, $692 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.17$ (dd, $\left.J_{5,6}=5.6, J_{1,6}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{X}\right), 6.10\left(\mathrm{dd}, J_{5,6}=5.5, J_{4,5}=\right.$ $\left.{ }_{5} 3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{~N}\right), 5.98\left(\mathrm{dd}, J_{5,6}=5.5, J_{4,5}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~N}\right)$, 5.87 (dd, $\left.J_{5,6}=5.6, J_{4,5}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{X}\right), 2.92$ (br s, $1 \mathrm{H}, \mathrm{H}-$ 1 N), 2.77 (br s, 1H, H-4X), 2.74 (br s, 1H, H-1X), 2.50 (br s, 1H, $\mathrm{H}-4 \mathrm{~N})$, 2.15-2.04 (m, 1H, H-3X), 1.40-1.26 (m, 11H, H-7X, H$11 \mathrm{X}, \mathrm{H}-3 \mathrm{~N}, \mathrm{H}-7 \mathrm{~N}, \mathrm{H}-10 \mathrm{~N}$ and $\mathrm{H}-11 \mathrm{~N}$), 1.24 (s, 12H, H-9X), 1.18 ${ }_{80}(\mathrm{~s}, 12 \mathrm{H}, \mathrm{H}-9 \mathrm{~N}), 1.10-0.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-10 \mathrm{X}), 0.92-0.78(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-$ 2 N and $\mathrm{H}-12 \mathrm{~N}), 0.85\left(\mathrm{t}, J_{11,12}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-12 \mathrm{X}\right), 0.16(\mathrm{dd}$, $\left.J_{2,3}=5.3, J_{1,2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{X}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 138.3 (CH, C-6X), $137.2(\mathrm{CH}, \mathrm{C}-5 \mathrm{~N}), 135.1(\mathrm{CH}, \mathrm{C}-6 \mathrm{~N}), 131.5$ (CH, C-5X), $82.7(2 \mathrm{C}, \mathrm{C}-8 \mathrm{~N}), 82.2(2 \mathrm{C}, \mathrm{C}-8 \mathrm{X}), 48.5\left(\mathrm{CH}_{2}, \mathrm{C}-\right.$
$\left.{ }_{85} 7 \mathrm{X}\right), 47.2\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{~N}\right), 47.1(\mathrm{CH}, \mathrm{C}-4 \mathrm{~N}), 46.1(\mathrm{CH}, \mathrm{C}-4 \mathrm{X}), 45.0$ (CH, C-1X), $44.7(\mathrm{CH}, \mathrm{C}-1 \mathrm{~N}), 42.2(\mathrm{CH}, \mathrm{C}-3 \mathrm{X}), 42.0(\mathrm{CH}, \mathrm{C}-$ $3 \mathrm{~N}), 39.6\left(\mathrm{CH}_{2}, \mathrm{C}-10 \mathrm{~N}\right), 37.6\left(\mathrm{CH}_{2}, \mathrm{C}-10 \mathrm{X}\right), 24.8\left(2 \mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{~N}\right)$, $24.7\left(2 \mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{X}\right), 24.6\left(2 \mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{X}\right), 24.5\left(2 \mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{~N}\right), 21.9$ $\left(\mathrm{CH}_{2}, \mathrm{C}-11 \mathrm{~N}\right), 21.8\left(\mathrm{CH}_{2}, \mathrm{C}-11 \mathrm{X}\right), 14.4\left(2 \mathrm{CH}_{3}, \mathrm{C}-12 \mathrm{X}\right.$ and $\mathrm{C}-$
9012 N), $\mathrm{C}-2$ signals missing. ${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.1$. HRMS (APCI) calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{BO}_{2}(\mathrm{M}+\mathrm{H})^{+}$263.2177, found 263.2178. 2-[3-(3-Chloro-propyl)-bicyclo[2.2.1]hept-5-en-2-yl]-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane (2c). Boronate 2c was obtained as a mixture of diastereomers according to the ${ }_{95}$ general procedure A , using alkenylboronate $\mathbf{1 c}(0.21 \mathrm{mmol})$ and cyclopentadiene (0.63 mmol). A small fraction of exo diastereomer could be separated and characterized. Reaction time: 24 h . Yield: 89\% (55.5 mg), endolexo 20:80. Boronate 2cX (major compound, yellowish oil) IR (film) $v_{\max } 2965$, 2926, ${ }_{100} 2358,2341,1373,1314,1144,852,669,430,411 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.20\left(\mathrm{dd}, J_{5,6}=5.3, J_{1,6}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right)$, $5.88\left(\mathrm{dd}, J_{5,6}=5.3, J_{4,5}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.51\left(\mathrm{t}, J_{11,12}=6.9 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{H}-12$), 2.78 (br s, 2H, H-1 and H-4), 2.14-2.04 (m, 1H, H-3), 1.75 (quintet, $\left.J_{10,11}=J_{11,12}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11\right), 1.34-1.27(\mathrm{~m}, 2 \mathrm{H}$, ${ }_{105} \mathrm{H}-7$), 1.24 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{H}-9$), 1.16-1.02 (m, 2H, H-10), 0.18 (br d, $J_{2,3}$ $=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.6(\mathrm{CH}, \mathrm{C}-$ 6), 131.2 (CH, C-5), 83.0 (2C, C-8), $48.6\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 46.2$ (CH, $\mathrm{C}-1), 45.3\left(\mathrm{CH}_{2}, \mathrm{C}-12\right), 45.0(\mathrm{CH}, \mathrm{C}-4), 41.6(\mathrm{CH}, \mathrm{C}-3), 32.5$ $\left(\mathrm{CH}_{2}, \mathrm{C}-10\right), 31.8(\mathrm{CH}, \mathrm{C}-11), 24.7\left(4 \mathrm{CH}_{3}, \mathrm{C}-9\right), \mathrm{C}-2$ signal ${ }_{110}$ missing. ${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33.8$. Boronates $2 \mathrm{c}-\mathrm{X}$ and $\mathbf{2 c - N}$ (yellowish oil) IR (film) $v_{\text {max }} 2965,2930,2358,2342$, $1373,1144,852,717,546,411,401 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.20\left(\mathrm{dd}, J_{5,6}=5.3, J_{1,6}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{X}\right), 6.17(\mathrm{dd}$, $\left.J_{5,6}=5.6, J_{4,5}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{~N}\right), 6.00\left(\mathrm{dd}, J_{5,6}=5.6, J_{1,6}=2.8\right.$ $115 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~N}$), 5.88 (dd, $\left.J_{5,6}=5.3, J_{4,5}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{X}\right), 3.58$ $\left(\mathrm{t}, J_{11,12}=6.8,1 \mathrm{H}, \mathrm{H}-12 \mathrm{~N}\right), 3.57\left(\mathrm{t}, J_{11,12}=6.9,1 \mathrm{H}, \mathrm{H}-12 \mathrm{~N}\right), 3.51$
($\mathrm{t}, J_{11,12}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-12 \mathrm{X}$), $2.95(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~N}), 2.78(\mathrm{br} \mathrm{s}$, $2 \mathrm{H}, \mathrm{H}-1 \mathrm{X}$ and $\mathrm{H}-4 \mathrm{X}$), 2.51 (br s, 1H, H-4N), 2.14-2.04 (m, 1H, $\mathrm{H}-3 \mathrm{X}$), 1.84 (quintet, $J_{10,11}=J_{11,12}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11 \mathrm{~N}$), 1.75 (quintet, $J_{10,11}=J_{11,12}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11 \mathrm{X}$), $1.44-1.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ $\left.{ }_{5} 3 \mathrm{~N}\right), 1.38-1.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7 \mathrm{~N}), 1.34-1.27$ (m, 2H, H-7X), 1.24 (s, $12 \mathrm{H}, \mathrm{H}-9 \mathrm{X}$), 1.18 (br s, 12H, H-9N), 1.16-1.02 (m, 4H, H-10X and H-10N), 0.84-0.79 (m, $1 \mathrm{H}, \mathrm{H}-2 \mathrm{~N}), 0.18$ (br d, $J_{2,3}=5.2 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-2 \mathrm{X}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.7$ (CH, C-6X), 137.1 (CH, C-5N), 135.4 (CH, C-6N), 131.2 (CH, C-5X), 83.0 $10(2 \mathrm{C}, \mathrm{C}-8 \mathrm{X}), 82.8(2 \mathrm{C}, \mathrm{C}-8 \mathrm{~N}), 48.6\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{X}\right), 47.2\left(\mathrm{CH}_{2}, \mathrm{C}-\right.$ 7 N and $\mathrm{CH}, \mathrm{C}-4 \mathrm{~N}), 46.2(\mathrm{CH}, \mathrm{C}-4 \mathrm{X}), 45.3\left(2 \mathrm{CH}_{2}, \mathrm{C}-12 \mathrm{X}\right.$ and $\mathrm{C}-$ $12 \mathrm{~N}), 45.0(\mathrm{CH}, \mathrm{C}-1 \mathrm{X}), 44.6(\mathrm{CH}, \mathrm{C}-1 \mathrm{~N}) 41.6(\mathrm{CH}, \mathrm{C}-3 \mathrm{X}), 41.0$ $(\mathrm{CH}, \mathrm{C}-3 \mathrm{~N}), 32.5\left(2 \mathrm{CH}_{2}, \mathrm{C}-10 \mathrm{X}\right.$ and $\left.\mathrm{C}-10 \mathrm{~N}\right), 31.8\left(2 \mathrm{CH}_{2}, \mathrm{C}-11 \mathrm{X}\right.$ and $\mathrm{C}-11 \mathrm{~N}), 24.8\left(2 \mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{~N}\right), 24.7\left(4 \mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{X}\right), 24.5\left(2 \mathrm{CH}_{3}\right.$, ${ }_{15} \mathrm{C}-9 \mathrm{~N}$), C-2 signals missing. ${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34,0$. HRMS (APCI) calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{BClO}_{2}(\mathrm{M}+\mathrm{H})^{+}$297.1787, found 297.1822.2-(3-Methoxymethylbicyclo[2.2.1]hept-5-en-2-yl)-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane (2d). Boronate 2d was obtained as a mixture of diastereomers according to the general ${ }_{20}$ procedures A and B , using alkenylboronate $\mathbf{1 d}(0.22 \mathrm{mmol})$ and cyclopentadiene (0.66 mmol). A small fraction of exo diastereomer could be separated and characterized.
a) Procedure A: Reaction time: 24 h . Yield: 88% (51.1 mg), endolexo 15:85.
${ }_{25}$ b) Procedure B: Reaction time: 72 h . Yield: 26% (15.1 mg), endolexo 10:90.
Boronate 2d-X (major compound, yellowish oil) IR (film) $v_{\max }$ 3055, 2976, 2926, 2868, 1406, 1369, 1313, 1145, 1109, 852, 723 cm^{-1}. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.18\left(\mathrm{dd}, J_{5,6}=5.6, J_{1,6}=3.0\right.$ $\left.{ }_{30} \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 5.90\left(\mathrm{dd}, J_{5,6}=5.6, J_{4,5}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 3.29(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{H}-11), 3.14\left(\mathrm{dd}, J_{10 \mathrm{a}, 10 \mathrm{~b}}=9.5, J_{3,10 \mathrm{a}}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{a}\right), 2.93$ (br s, 1H, H-4), $2.84\left(\mathrm{t}, J_{10 \mathrm{a}, 10 \mathrm{~b}}=J_{3,10 \mathrm{~b}}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{~b}\right.$), 2.79 (br s, $1 \mathrm{H}, \mathrm{H}-1$), $2.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 1.33$ (br s, 2H, H-7), 1.23 (s, $12 \mathrm{H}, \mathrm{H}-9$), 0.08 (br d, $J_{2,3}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$). ${ }^{13} \mathrm{C}$ NMR (75 $\left.{ }_{35} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.4(\mathrm{CH}, \mathrm{C}-6), 131.5(\mathrm{CH}, \mathrm{C}-5), 83.0(2 \mathrm{C}, \mathrm{C}-$ 8), $76.5\left(\mathrm{CH}_{2}, \mathrm{C}-10\right), 58.6\left(\mathrm{CH}_{3}, \mathrm{C}-11\right), 48.4\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 44.4$ $(\mathrm{CH}, \mathrm{C}-1), 44.2(\mathrm{CH}, \mathrm{C}-4), 41.9(\mathrm{CH}, \mathrm{C}-3), 24.7\left(4 \mathrm{CH}_{3}, \mathrm{C}-9\right), \mathrm{C}-$ 2 signal missing. ${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 34.0$. HRMS (APCI) calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{BO}_{3}(\mathrm{M}+\mathrm{H})^{+}$265.1970, found 265.1967.
${ }_{40}$ Boronates 2d-X and 2d-N (yellowish oil) IR (film) $v_{\max } 3055$, 2976, 2927, 2889, 2868, 1371, 1313, 1145, 1107, 974, 852, 723 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.18\left(\mathrm{dd}, J_{5,6}=5.6, J_{1,6}=3.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{X}$), 6.10 (dd, $J_{5,6}=5.6, J_{4,5}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{~N}$), 6.04 (dd, $J_{5,6}=5.5, J_{1,6}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~N}$), 5.90 (dd, $J_{5,6}=5.6, J_{4,5}=$ $\left.{ }_{45} 3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{X}\right), 3.49\left(\mathrm{dd}, J_{10 \mathrm{a}, 10 \mathrm{~b}}=9.4, J_{3,10 \mathrm{a}}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ 10 aN), $3.34(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-11 \mathrm{~N}), 3.29(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-11 \mathrm{X}), 3.22\left(\mathrm{t}, J_{3,10 \mathrm{~b}}=\right.$ $\left.J_{10 \mathrm{a}, 10 \mathrm{~b}}=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{bN}\right), 3.14\left(\mathrm{dd}, J_{10 \mathrm{a}, 10 \mathrm{~b}}=9.5, J_{3,10 \mathrm{a}}=5.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{aX}$), 2.93 (br s, $2 \mathrm{H}, \mathrm{H}-4 \mathrm{X}$ and H-1N), 2.84 (t, $J_{3,10 \mathrm{~b}}$ $=J_{10 \mathrm{a}, 10 \mathrm{~b}}=9.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-10 \mathrm{bX}$), 2.79 (br s, $\left.1 \mathrm{H}, \mathrm{H}-1 \mathrm{X}\right), 2.75$ (br s, $\left.{ }_{50} 1 \mathrm{H}, \mathrm{H}-4 \mathrm{~N}\right), 2.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{X}), 1.81\left(\mathrm{dt}, J_{3,10 \mathrm{~b}}=9.4, J_{3,10 \mathrm{a}}=J_{2,3}=\right.$ $5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{~N}$), 1.33 (br s, $4 \mathrm{H}, \mathrm{H}-7 \mathrm{X}$ and $\mathrm{H}-7 \mathrm{~N}$), 1.23 (s, $12 \mathrm{H}, \mathrm{H}-9 \mathrm{X}), 1.17(\mathrm{~s}, 12 \mathrm{H}, \mathrm{H}-9 \mathrm{~N}), 0.78\left(\mathrm{dd}, J_{2,3}=5.2, J_{1,2}=3.3\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~N}$), 0.08 (br d, $\left.J_{2,3}=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{X}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.4(\mathrm{CH}, \mathrm{C}-6 \mathrm{X}), 136.9(\mathrm{CH}, \mathrm{C}-5 \mathrm{~N}), 135.9$ $55(\mathrm{CH}, \mathrm{C}-6 \mathrm{~N}), 131.5(\mathrm{CH}, \mathrm{C}-5 \mathrm{X}), 83.0$ (2C, C-8X), 82.9 (2C, C$8 \mathrm{~N}), 77.5\left(\mathrm{CH}_{2}, \mathrm{C}-10 \mathrm{~N}\right), 76.5\left(\mathrm{CH}_{2}, \mathrm{C}-10 \mathrm{X}\right), 58.6\left(2 \mathrm{CH}_{3}, \mathrm{C}-11 \mathrm{X}\right.$ and $\mathrm{C}-11 \mathrm{~N}), 48.4\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{X}\right), 46.7\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{~N}\right), 44.4(\mathrm{CH}, \mathrm{C}-$ 1X), 44.2 (CH, C-4X), $44.1(\mathrm{CH}, \mathrm{C}-4 \mathrm{~N}), 44.0(\mathrm{CH}, \mathrm{C}-1 \mathrm{~N}), 42.3$
$(\mathrm{CH}, \mathrm{C}-3 \mathrm{~N}), 41.9(\mathrm{CH}, \mathrm{C}-3 \mathrm{X}), 24.7\left(4 \mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{X}\right), 24.6\left(4 \mathrm{CH}_{3}\right.$, ${ }_{60} \mathrm{C}-9 \mathrm{~N}$), C-2 signals missing. ${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 33,8$.
4,4,5,5-Tetramethyl-2-(3-phenylbicyclo[2.2.1]hept-5-en-2-yl)-
[1,3,2]-dioxaborolane (2e). Boronate 2e was obtained as a mixture of diastereomers according to the general procedures A and B, using alkenylboronate $\mathbf{1 e}(0.20 \mathrm{mmol})$ and ${ }_{65}$ cyclopentadiene (0.60 mmol).
a) Procedure A: Reaction time: 24 h . Yield: 29% (17.3 mg), endolexo 35:65.
b) Procedure B: Reaction time: 24 h . Yield: 32% (19 mg), endolexo 17:83. Reaction time: 72 h . Yield: $38 \%(22.5 \mathrm{mg}$), 70 endo/exo 17:83.
Boronates $2 \mathrm{e}-\mathrm{X}$ and $\mathbf{2 e - N}$ (yellowish oil) IR (film) $\nu_{\text {max }} 2957$, 2928, 2870, 1468, 1454, 1404, 1371, 1146, 853, $679 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.08(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}-\mathrm{X}$ and ArHN), $6.30\left(\mathrm{dd}, J_{5,6}=5.6, J_{1,6}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{X}\right), 6.26(\mathrm{dd}$, $\left.{ }_{75} J_{5,6}=5.6, J_{4,5}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{~N}\right), 6.15\left(\mathrm{dd}, J_{5,6}=5.6, J_{1,2}=2.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H}-6 \mathrm{~N}), 5.79\left(\mathrm{dd}, J_{5,6}=5.6, J_{4,5}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{X}\right), 3.51(\mathrm{dd}$, $J_{2,3}=5.8, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{X}$), 3.16 (br s, $1 \mathrm{H}, \mathrm{H}-4 \mathrm{X}$), 3.11 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~N}), 2.95(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{H}-1 \mathrm{X}$ and $\mathrm{H}-4 \mathrm{~N}), 2.86\left(\mathrm{br} \mathrm{d}, J_{2,3}=\right.$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{~N}$), 1.63 (br d, $J_{7 \mathrm{a}, 7 \mathrm{~b}}=8.6,1 \mathrm{H}, \mathrm{H}-7 \mathrm{aN}$), 1.56 (br d, $\left.{ }_{80} J_{7 \mathrm{a}, 7 \mathrm{~b}}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{aX}\right), 1.49-1.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{bN}), 1.42-1.36$ (m, 2H, H-7bX and H-2N), 1.25 (s, $12 \mathrm{H}, \mathrm{H}-9 \mathrm{X}$), 1.22 (s, $12 \mathrm{H}, \mathrm{H}-$ 9 N), 1.02 (dd, $\left.J_{2,3}=5.9, J=1.8,1 \mathrm{H}, \mathrm{H}-2 \mathrm{X}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 146.7(\mathrm{C}, \mathrm{Ar}-\mathrm{N}), 145.1(\mathrm{C}, \mathrm{Ar}-\mathrm{X}), 138.6(\mathrm{CH}, \mathrm{C}-6 \mathrm{X})$, $137.6(\mathrm{CH}, \mathrm{C}-5 \mathrm{~N}), 136.5(\mathrm{CH}, \mathrm{C}-6 \mathrm{~N}), 132.1(\mathrm{CH}, \mathrm{C}-5 \mathrm{X}), 128.2$
${ }_{85}(2 \mathrm{CH}, \mathrm{Ar}-\mathrm{N}), 128.1(2 \mathrm{CH}, \mathrm{Ar}-\mathrm{X}), 127.7(2 \mathrm{CH}, \mathrm{Ar}-\mathrm{X}), 127.5$ (2CH, Ar-N), $125.5(\mathrm{CH}, \mathrm{Ar}-\mathrm{X}), 125.3$ (CH, Ar-N), 83.2 (2C, C$8 \mathrm{X}), 83.1(2 \mathrm{C}, \mathrm{C}-8 \mathrm{~N}), 49.0\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{X}\right), 48.9(\mathrm{CH}, \mathrm{C}-4 \mathrm{X}), 48.0$ $\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{~N}\right), 47.9(\mathrm{CH}, \mathrm{C}-4 \mathrm{~N}), 46.5(2 \mathrm{CH}, \mathrm{C}-3 \mathrm{X}$ and $\mathrm{C}-3 \mathrm{~N}), 45.9$ $(\mathrm{CH}, \mathrm{C}-1 \mathrm{X}), 45.2(\mathrm{CH}, \mathrm{C}-1 \mathrm{~N}), 24.9\left(2 \mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{~N}\right), 24.8\left(2 \mathrm{CH}_{3}\right.$, $\left.{ }_{90} \mathrm{C}-9 \mathrm{X}\right), 24.7\left(2 \mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{X}\right), 24.6\left(2 \mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{~N}\right), \mathrm{C}-2$ signals missing. ${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 33.3. HRMS (APCI) calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{BO}_{2}(\mathrm{M}+\mathrm{H})^{+}$297.2020, found 297.2033.
4,4,5,5-tetramethyl-2-[3-(4-chlorophenyl)bicyclo[2.2.1]hept-5-en-2-yl]-[1,3,2]-dioxaborolane (2f). Boronate $2 f$ was obtained as 95 a mixture of diastereomers according to the general procedures A and B, using alkenylboronate $1 f(0.17 \mathrm{mmol})$ and cyclopentadiene $(0.51 \mathrm{mmol})$.
a) Procedure A: Reaction time: 24 h . Yield: $20 \%(11.2 \mathrm{mg})$, endolexo 40:60.
${ }_{100}$ b) Procedure B: Reaction time: 24 h . Yield: 20% (11.2 mg), endolexo 36:64. Reaction time: 72 h . Yield: 31% (17.4 mg), endolexo 29:71.
Boronates 2f-X and 2f-N (yellowish oil) IR (film) $v_{\text {max }} 3059$, 2974, 2931, 2870, 1492, 1371, 1315, 1143, 1091, 1014, 972, 848, $105798,729 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}-11 \mathrm{~N}$ and $\mathrm{H}-12 \mathrm{~N}$), 7.17 (br d, $J_{11,12}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-11 \mathrm{X}$), 7.07 (br d, $J_{12,11}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-12 \mathrm{X}$), $6.31\left(\mathrm{dd}, J_{5,6}=5.6, J_{1,6}=3.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-6 \mathrm{X}), 6.25\left(\mathrm{dd}, J_{5,6}=5.7, J_{4,5}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{~N}\right), 6.15(\mathrm{dd}$, $\left.J_{5,6}=5.7, J_{1,6}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~N}\right), 5.76\left(\mathrm{dd}, J_{5,6}=5.6, J_{4,5}=2.8\right.$ ${ }_{110} \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{X}$), 3.45 (dd, $J_{2,3}=6.0, J_{3,4}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{X}$), 3.11 (br s, $2 \mathrm{H}, \mathrm{H}-4 \mathrm{X}$ and $\mathrm{H}-1 \mathrm{~N}$), 2.94 (br s, $2 \mathrm{H}, \mathrm{H}-1 \mathrm{X}$ and $\mathrm{H}-4 \mathrm{~N}$), $2.80\left(\mathrm{br} \mathrm{d}, J_{2,3}=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{~N}\right), 1.58-1.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7 \mathrm{X}$ and $\mathrm{H}-7 \mathrm{~N}), 1.47$ (br d, $\left.J_{7 \mathrm{a}, 7 \mathrm{~b}}=8.3,1 \mathrm{H}, \mathrm{H}-7 \mathrm{~N}\right), 1.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{X})$, $1.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~N}), 1.25(\mathrm{~s}, 12 \mathrm{H}, \mathrm{H}-9 \mathrm{X}), 1.22(\mathrm{~s}, 12 \mathrm{H}, \mathrm{H}-9 \mathrm{~N})$, 1150.95 (dd, $\left.J_{2,3}=6.0, J_{1,2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{X}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 145.2(\mathrm{C}, \mathrm{C}-10 \mathrm{~N}), 143.6(\mathrm{C}, \mathrm{C}-10 \mathrm{X}), 138.9(\mathrm{CH}, \mathrm{C}-$

6X), 137.4 (CH, C-5N), 136.7 (CH, C-6N), 131.8 (CH, C-5X), 131.2 (C, C-13X), 129.4 ($2 \mathrm{CH}, \mathrm{C}-11 \mathrm{X}$), $128.8(2 \mathrm{CH}, \mathrm{C}-11 \mathrm{~N})$, 128.2 (2CH, C-12N), 127.8 (2CH, C-12X), 83.3 (2C, C-8X), 83.2 (2C, C-8N), 49.1 ($\left.\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{X}\right), 48.9(\mathrm{CH}, \mathrm{C}-4 \mathrm{X}), 47.9(\mathrm{CH}, \mathrm{C}-4 \mathrm{~N}$ and $\left.\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{~N}\right), 46.1(2 \mathrm{CH}, \mathrm{C}-3 \mathrm{~N}$ and $\mathrm{C}-3 \mathrm{X}), 45.8(\mathrm{CH}, \mathrm{C}-1 \mathrm{X})$, $45.1(\mathrm{CH}, \mathrm{C}-1 \mathrm{~N}), 24.9\left(2 \mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{~N}\right), 24.8\left(2 \mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{X}\right), 24.7$ $\left(2 \mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{X}\right), 24.6\left(2 \mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{~N}\right), \mathrm{C}-2$ and $\mathrm{C}-13 \mathrm{~N}$ signals missing. ${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 33.3. HRMS (APCI) calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{BClO}_{2}(\mathrm{M}+\mathrm{H})^{+} 331.1631$, found 331.1628 .
4,4,5,5-Tetramethyl-2-[3-(3-
trifluoromethylphenyl)bicyclo[2.2.1]hept-5-en-2-yl]-
[1,3,2]dioxaborolane (2g) Boronate 2 g was obtained as a mixture of diastereomers according to the general procedures A and B , using alkenylboronate $\mathbf{1 g}(0.27 \mathrm{mmol})$ and cyclopentadiene 15 (0.81 mmol).
a) Procedure A: Reaction time: 24 h . Yield: 19% (18.7 mg), endolexo 37:63.
b) Procedure B: Reaction time: 24 h . Yield: 24% (23.6 mg), endolexo 10:90. Reaction time: 72 h . Yield: 45% (44.3 mg), 20 endolexo 10:90.

Boronates 2g-X and 2g-N (yellowish oil) IR (film) $\nu_{\max } 3045$, 2926, 1715, 1445, 1354, 1265, 1080, 737, 664, $600 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-7.26$ (m, 8H, ArH-X and ArHN) $6.34\left(\mathrm{dd}, J_{5,6}=5.6, J_{1,6}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{X}\right), 6.27\left(\mathrm{dd}, J_{5,6}=\right.$ ${ }_{25} 5.5, J_{4,5}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{~N}$), 6.17 (dd, $J_{5,6}=5.5, J_{1.6}=2.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-6 \mathrm{~N}$), $5.76\left(\mathrm{dd}, J_{5.6}=5.6, J_{4.5}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{X}\right), 3.53(\mathrm{dd}$, $J_{2,3}=5.8, J_{3,4}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{X}$), 3.15 (br s, $2 \mathrm{H}, \mathrm{H}-4 \mathrm{X}$ and $\mathrm{H}-$ 1 N), 2.98 (br s, $2 \mathrm{H}, \mathrm{H}-1 \mathrm{X}$ and $\mathrm{H}-4 \mathrm{~N}$), 2.89 (br d, $J_{2,3}=5.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}-3 \mathrm{~N}$), 1.60-1.45 (m, 3H, H-7aX, and H-7N), 1.44-1.34 (m, ${ }_{30} 2 \mathrm{H}, \mathrm{H}-7 \mathrm{bX}$ and $\mathrm{H}-2 \mathrm{~N}$), 1.26 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{H}-9 \mathrm{X}$), 1.23 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{H}-9 \mathrm{~N}$), 1.02 (dd, $\left.J_{2,3}=5.8, J_{1,2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{X}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 147.7(\mathrm{C}, \mathrm{Ar}-\mathrm{N}), 146.1$ (C, Ar-X), 139.1 (CH, C-6X), 137.4 (CH, C-5N), 136.7 (CH, C-6N), 131.7 (CH, C-5X), 131.4 (CH, Ar-X), 130.6 (CH, Ar-N), 130.4 (C, $\left.J_{\mathrm{C}, \mathrm{F}}=29.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{X}\right)$,
${ }_{35} 128.6$ (CH, Ar-N), 128.1 (CH, Ar-X), 125.0 (CH, Ar-N), 124.8 (CH, $\left.J_{\mathrm{C}, \mathrm{F}}=3.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{X}\right), 122.6(\mathrm{CH}, \mathrm{Ar}-\mathrm{N}), 122.5(\mathrm{CH}, \mathrm{Ar}-\mathrm{N})$, $122.4\left(\mathrm{CH}, J_{\mathrm{C}, \mathrm{F}}=3.7 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{X}\right), 83.3$ (2C, C-8X), 83.2 (2C, C$8 \mathrm{~N}), 49.2\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{X}\right), 48.9(\mathrm{CH}, \mathrm{C}-4 \mathrm{X}), 48.0\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{~N}\right), 47.5$ $(\mathrm{CH}, \mathrm{C}-4 \mathrm{~N}), 46.5(2 \mathrm{CH}, \mathrm{C}-3 \mathrm{X}$ and $\mathrm{C}-3 \mathrm{~N}), 45.9(\mathrm{CH}, \mathrm{C}-1 \mathrm{X}), 45.2$
$40(\mathrm{CH}, \mathrm{C}-1 \mathrm{~N}), 24.9\left(2 \mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{~N}\right), 24.8\left(2 \mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{X}\right), 24.7\left(2 \mathrm{CH}_{3}\right.$, $\mathrm{C}-9 \mathrm{X}), 24.6\left(2 \mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{~N}\right), \mathrm{C}-12 \mathrm{~N}, \mathrm{C}-2$ and CF_{3} signals missing. ${ }^{11} \mathrm{~B}$ NMR $\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 33.6$. ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.5. HRMS (APCI) calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{BF}_{3} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$365.1894, found 365.1879 .
${ }_{45}$ 4,4,5,5-Tetramethyl-2-(2-phenylbicyclo[2.2.1]hept-5-en-2-yl)-[1,3,2]-dioxaborolane (2h). Boronate 2h was obtained as a mixture of diastereomers according to the general procedures A and B, using alkenylboronate $\mathbf{1 h}(0.17 \mathrm{mmol})$ and cyclopentadiene (0.51 mmol).
${ }_{50}$ a) Procedure A: Reaction conditions: 12 h at $170^{\circ} \mathrm{C}$. Yield: 21% $(10.6 \mathrm{mg})$, endolexo $41: 59$. Reaction conditions: 12 h at $80^{\circ} \mathrm{C}$. Yield: 91\% (45.8 mg), endo/exo 5:95.
b) Procedure B: Reaction time: 12 h . Yield: 83% (41.8 mg), endolexo 6:94.
${ }_{55}$ Boronates 2h-X and 2h-N (white solid, mp 81.5-83.3 ${ }^{\circ} \mathrm{C}$) IR $(\mathrm{KBr}) v_{\text {max }} 3065,2976,2864,1371,1327,1314,1215,1138$, $1051,856,698,611 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-$ $7.00(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}-\mathrm{X}$ and ArH-N$), 6.25\left(\mathrm{dd}, J_{5,6}=5.4, J_{1,6}=2.9\right.$
$\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~N}$), 6.21 (dd, $J_{5,6}=5.4, J_{4,5}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{~N}$), 6.03 ${ }_{60}\left(\mathrm{dd}, J_{5,6}=5.6, J_{4,5}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{X}\right), 5.90\left(\mathrm{dd}, J_{5,6}=5.6, J_{1,6}=\right.$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{X}$), 3.58 (br s, 1H, H-1X), 3.48 (br s, $1 \mathrm{H}, \mathrm{H}-1 \mathrm{~N}$), $2.88(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{H}-4 \mathrm{X}$ and $\mathrm{H}-4 \mathrm{~N}), 2.48\left(\mathrm{dd}, J_{3 \mathrm{n}, 3 \mathrm{x}}=11.5, J_{3 \mathrm{x}, 4}=3.9\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3_{x} \mathrm{X}\right), 2.05\left(\mathrm{brd}, J_{3 \mathrm{n}, 3 \mathrm{x}}=11.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{n} \mathrm{~N}\right), 1.93(\mathrm{dd}$, $\left.J_{3 \mathrm{n}, 3 \mathrm{x}}=11.2, J_{3 \mathrm{x}, 4}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{x} \mathrm{~N}\right), 1.51-1.39\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-3_{n} \mathrm{X}\right.$,
${ }_{65} \mathrm{H}-7 \mathrm{aX}$, and $\mathrm{H}-7 \mathrm{~N}$), 1.31 (br d, $J_{7 \mathrm{a}, 7 \mathrm{~b}}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{bX}$), 1.11 (s, 6H, H-9X), 1.10 (s, 12H, H-9X and H-9N), 1.08 (s, 6H, H9 N). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.4$ (C, Ar-X), 138.8 (CH, C-5N), 136.4 (CH, C-6X), 136.0 (CH, C-6N), 134.9 (CH, C-5X), 128.1 ($2 \mathrm{CH}, \mathrm{Ar}-\mathrm{X}$), 127.8 ($2 \mathrm{CH}, \mathrm{Ar}-\mathrm{X}$), 127.6 ($2 \mathrm{CH}, \mathrm{Ar}-\mathrm{N}$), 125.2 (2CH, Ar-N), 124.5 (CH, Ar-X), 83.3 (2C, C-8X), 83.2 (2C, C-8N), $49.0\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{X}\right), 47.8(\mathrm{CH}, \mathrm{C}-1 \mathrm{X}), 47.3(\mathrm{CH}, \mathrm{C}-$ $1 \mathrm{~N}), 47.2\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{~N}\right), 43.4(\mathrm{CH}, \mathrm{C}-4 \mathrm{~N}), 42.4(\mathrm{CH}, \mathrm{C}-4 \mathrm{X}), 39.0$ $\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{~N}\right) 35.6\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{X}\right), 24.5\left(2 \mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{~N}\right) 24.3\left(2 \mathrm{CH}_{3}\right.$, $\mathrm{C}-9 \mathrm{X}), 24.2\left(4 \mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{X}\right.$ and $\left.\mathrm{C}-9 \mathrm{X}\right), \mathrm{C}-2, \mathrm{C}-10 \mathrm{~N}$ and $\mathrm{C}-13 \mathrm{~N}$ 75 signals missing. ${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 33.3. HRMS (APCI) calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{BO}_{2}(\mathrm{M}+\mathrm{H})^{+}$297.1010, found 297.2016.
4,4,5,5-Tetramethyl-2-(2-methylbicyclo[2.2.1]hept-5-en-2-yl)-[1,3,2]-dioxaborolane (2i). Boronate $2 \mathbf{i}$ was obtained as a mixture of diastereomers according to the general procedures A ${ }_{30}$ and B , using alkenylboronate $\mathbf{1 i}(0.5 \mathrm{mmol})$ and cyclopentadiene (1.5 mmol). A small fraction of exo diastereomer could be separated and characterized.
a) Procedure A: Reaction time: 24 h . Yield: 72% (84.3 mg), endolexo 9:91.
${ }_{85}$ b) Procedure B: Reaction time: 24 h . Yield: 15% (17.6 mg), endolexo 9:91.
Boronate 2i-X (major compound, yellowish liquid) IR (film) $v_{\text {max }} 3055,2958,2927,2866,1456,1371,1354,1303,1145,719$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.12\left(\mathrm{dd}, J_{5,6}=5.6, J_{1,6}=3.1\right.$
$\left.{ }_{90} \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 6.00\left(\mathrm{dd}, J_{5,6}=5.6, J_{4,5}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 2.75$ (br s, 2H, H-1 and H-4), 2.03 (dd, $J_{3 \mathrm{nn}, 3 \mathrm{x}}=11.3, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 3_{x}), 1.28-1.12 (m, 2H, H-7), 1.24 (s, 12H, H-9), 0.81 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-$ 10), $0.53\left(\mathrm{dd}, J_{3 \mathrm{n}, 3 \mathrm{x}}=11.3, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{n}}\right) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.3(\mathrm{CH}, \mathrm{C}-6), 133.8(\mathrm{CH}, \mathrm{C}-5), 83.0(2 \mathrm{C}, \mathrm{C}-$ 95 8), $49.7\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 48.9(\mathrm{CH}, \mathrm{C}-4), 43.4(\mathrm{CH}, \mathrm{C}-1), 36.6\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-3)$, $24.6\left(4 \mathrm{CH}_{3}, \mathrm{C}-9\right), 22.1\left(\mathrm{CH}_{3}, \mathrm{C}-10\right), \mathrm{C}-2$ signal missing. ${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 35.0$. Boronates $2 \mathrm{i}-\mathrm{X}$ and $2 \mathrm{i}-\mathrm{N}$ (yellow liquid) IR (film) $v_{\max } 2954,2924,2852,1604,1463$, 1446, 1435, 1359, 1303, 1145, 1022, $746 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 $\left.{ }_{100} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.14\left(\mathrm{dd}, J_{5,6}=5.6, J_{1,6}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~N}\right), 6.12$ (dd, $\left.J_{5,6}=5.6, J_{1,6}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{X}\right), 6.00\left(\mathrm{dd}, J_{5,6}=\right.$ $5.6, J_{4,5}=2.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-5 \mathrm{X}$ and $\mathrm{H}-5 \mathrm{~N}$), 2.76 (br s, 3H, H-1X, H4 X and $\mathrm{H}-4 \mathrm{~N}$), 2.53 (br s, $1 \mathrm{H}, \mathrm{H}-1 \mathrm{~N}$), 2.03 (dd, $J_{3 \mathrm{n}, 3 \mathrm{x}}=11.3, J=$ $3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{x}} \mathrm{X}$), 1.52-1.12 (m, 6H, H-7X, H-3N and H-7N), $1051.24(\mathrm{~s}, 12 \mathrm{H}, \mathrm{H}-9 \mathrm{X}), 1.19$ (s, 12H, H-9N), 1.13 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-10 \mathrm{~N}$), $0.81(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-10 \mathrm{X}), 0.53\left(\mathrm{dd}, J_{3 \mathrm{n}, 3 \mathrm{x}}=11.3, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\right.$ $3_{\mathrm{n}} \mathrm{X}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.0(\mathrm{CH}, \mathrm{C}-6 \mathrm{~N}), 136.6$ (CH, C-5N), 136.3 (CH, C-6X), 133.8 (CH, C-5X), 83.0 (2C, C$8 \mathrm{X}), 82.8(2 \mathrm{C}, \mathrm{C}-8 \mathrm{~N}), 50.0(\mathrm{CH}, \mathrm{C}-1 \mathrm{~N}), 49.7\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{X}\right), 48.9$ $110(\mathrm{CH}, \mathrm{C}-4 \mathrm{X}), 45.6\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{~N}\right), 43.4(\mathrm{CH}, \mathrm{C}-1 \mathrm{X}), 42.9(\mathrm{CH}, \mathrm{C}-$ $4 \mathrm{~N}), 37.9\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{~N}\right), 36.6\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{X}\right), 24.6\left(8 \mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{X}\right.$ and $\mathrm{C}-9 \mathrm{~N}), 24.2\left(\mathrm{CH}_{3}, \mathrm{C}-10 \mathrm{~N}\right), 22.1\left(\mathrm{CH}_{3}, \mathrm{C}-10 \mathrm{X}\right), \mathrm{C}-2$ signals missing. ${ }^{11} \mathrm{~B}$ NMR ($96 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 34.3. HRMS (APCI) calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{BO}_{2}(\mathrm{M}+\mathrm{H})^{+}$235.1864, found 235.1770.
115
Tandem Diels-Alder reaction of alkenylboronates - oxidation: synthesis of alcohols

General procedure C: To a pressure tube equipped with a stirring bar were added dry toluene (1.5 mL), vinylboronate $\mathbf{1}$ (typically 0.27 mmol$)$, cyclopentadiene $(0.81 \mathrm{mmol})$ and BHT (5 $\mathrm{mol} \%$) under nitrogen atmosphere. Trifluoroacetic acid ($5 \mathrm{~mol} \%$) was also added to the reactions of alkenylboronates $\mathbf{1 e}, \mathbf{1 f}$ and $\mathbf{1 g}$. The resulting reaction mixture was stirred at the reported temperature $\left(170 / 80{ }^{\circ} \mathrm{C}\right)$ for the reported time $(5-72 \mathrm{~h})$, then diluted with THF (3 mL) and transferred to a 25 mL roundbottom flask. After the addition of $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ the solution was 10 cooled to $0{ }^{\circ} \mathrm{C}$, treated alternately with $3 \mathrm{~N} \mathrm{NaOH}(3 \mathrm{~mL})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(3 \mathrm{~mL})$ under nitrogen atmosphere, and then allowed to warm to room temperature and stirred overnight. The reaction mixture was diluted with water $(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 15 mL). The combined organic layers were washed with ${ }_{15} \mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and brine (15 mL) and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure at 0 ${ }^{\circ} \mathrm{C}$, and the crude was purified by column chromatography (pentane $/ \mathrm{Et}_{2} \mathrm{O}$ for alcohols 3a and $\mathbf{3 i}$ and hexane/AcOEt for alcohols $\mathbf{3 b - 3 h}$) to afford the corresponding alcohol (3a-i).
${ }_{20}$ Bicyclo[2.2.1]hept-5-en-2-ol (3a). Alcohol 3a was obtained as a mixture of diastereomers according to the general procedure C , using vinylboronate $\mathbf{1 a}(0.28 \mathrm{mmol})$ and cyclopentadiene (0.84 $\mathrm{mmol})$. Diels-Alder reaction step conditions: 1 h at $170{ }^{\circ} \mathrm{C}$. Overall 1 yield: 93% (28.6 mg), endo/exo 39:61.
${ }_{25}$ 3-Propyl-bicyclo[2.2.1]hept-5-en-2-ol (3b). Alcohol 3b was obtained as a mixture of diastereomers according to the general procedure C , using alkenylboronate $\mathbf{1 b}(0.22 \mathrm{mmol})$ and cyclopentadiene (0.66 mmol). Diels-Alder reaction step conditions: 24 h at $170{ }^{\circ} \mathrm{C}$. Overall yield: 79% (26.1 mg), ${ }_{30}$ endo/exo $15: 85$. Alcohols $\mathbf{3 b}-\mathbf{X}$ and $\mathbf{3 b - N}$ (yellowish oil) IR (film) $v_{\max } 3404,2957,2922,2851,2358,1717,1024,849,667$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.48\left(\mathrm{dd}, J_{5,6}=5.6, J_{4,5}=3.1\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{~N}$), 6.11 (dd, $\left.J_{5,6}=5.7, J_{4,5}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{X}\right), 6.09$ $(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~N}), 6.02\left(\mathrm{dd}, J_{5,6}=5.7, J_{1,6}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{X}\right), 3.91$ 35 (br s, 1H, H-2N), 3.33 (br s, 1H, H-2X), 2.89 (br s, $1 \mathrm{H}, \mathrm{H}-1 \mathrm{~N}$), 2.67 (br s, 1H, H-1X), 2.65 (br s, 1H, H-4X), 2.50 (br s, $1 \mathrm{H}, \mathrm{H}-$ $4 \mathrm{~N}), 1.79\left(\mathrm{~d}, J_{7 \mathrm{a}, 7 \mathrm{~b}}=8.5,1 \mathrm{H}, \mathrm{H}-7 \mathrm{aX}\right), 1.66-1.56(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3 \mathrm{X}$ and H-7bX), 1.54-1.07 (m, 10H, H-8X, H-9X, H-7N, H-8N and $\mathrm{H}-9 \mathrm{~N}), 1.02-0.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{~N}), 0.93\left(\mathrm{t}, J_{9,10}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-\right.$ $\left.{ }_{40} 10 \mathrm{~N}\right), 0.90\left(\mathrm{t}, J_{9,10}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-10 \mathrm{X}\right) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 141.2(\mathrm{CH}, \mathrm{C}-5 \mathrm{~N}), 137.3(\mathrm{CH}, \mathrm{C}-5 \mathrm{X}), 133.8(\mathrm{CH}, \mathrm{C}-$ $6 \mathrm{X}), 131.6(\mathrm{CH}, \mathrm{C}-6 \mathrm{~N}), 79.9(\mathrm{CH}, \mathrm{C}-2 \mathrm{~N}), 79.0(\mathrm{CH}, \mathrm{C}-2 \mathrm{X}), 50.9$ (CH, C-4X), $50.8(\mathrm{CH}, \mathrm{C}-3 \mathrm{~N}), 50.5(\mathrm{CH}, \mathrm{C}-3 \mathrm{X}), 48.3(\mathrm{CH}, \mathrm{C}-$ $1 \mathrm{~N}), 47.3(\mathrm{CH}, \mathrm{C}-4 \mathrm{~N}), 46.6\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{X}\right), 45.2\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{~N}\right), 44.5$ $45(\mathrm{CH}, \mathrm{C}-1 \mathrm{X}), 36.9\left(\mathrm{CH}_{2}, \mathrm{C}-8 \mathrm{~N}\right), 35.8\left(\mathrm{CH}_{2}, \mathrm{C}-8 \mathrm{X}\right), 21.7\left(\mathrm{CH}_{2}, \mathrm{C}-\right.$ $9 \mathrm{~N}), 21.6\left(\mathrm{CH}_{2}, \mathrm{C}-9 \mathrm{X}\right), 14.2\left(2 \mathrm{CH}_{3}, \mathrm{C}-10 \mathrm{X}\right.$ and $\left.\mathrm{C}-10 \mathrm{~N}\right)$. HRMS (APCI) calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$153.1274, found 153.1277. 3-(3-Chloro-propyl)-bicyclo[2.2.1]hept-5-en-2-ol (3c). Alcohol 3c was obtained as a mixture of diastereomers according to the ${ }_{50}$ general procedure C, using alkenylboronate $\mathbf{1 c}(0.21 \mathrm{mmol})$ and cyclopentadiene (0.63 mmol). A small fraction of exo diastereomer could be separated and characterized. Diels-Alder reaction step conditions: 24 h at $170^{\circ} \mathrm{C}$. Overall yield: 82% (32.1 mg), endo/exo 14:86. Alcohol 3c-X (major compound, yellowish ${ }_{55}$ oil) IR (film) $v_{\max } 3362,2963,2868,2359,2344,2322,1558$, 1541, 1489, 1456, 1373, 1339, 1214, 995, 849, $718 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.13\left(\mathrm{dd}, J_{5,6}=5.7, J_{1,6}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-5), 6.05\left(\mathrm{dd}, J_{5,6}=5.7, J_{4,5}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right), 3.54\left(\mathrm{t}, J_{9,10}=6.3\right.$
$\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}-10$), 3.36 (br s, 1H, H-2), 2.68 (br s, 1H, H-1), 2.66 (br $\left.{ }_{60} \mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4\right), 1.89-1.77(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-7 \mathrm{a}$ and H-9), 1.68-1.59 (m, 2H, $\mathrm{H}-3$ and $\mathrm{H}-7 \mathrm{~b}$), 1.52 (br s, $1 \mathrm{H}, \mathrm{OH}$), 1.47-1.28 (m, 2H, H-8). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.0(\mathrm{CH}, \mathrm{C}-5), 134.2(\mathrm{CH}, \mathrm{C}-6)$, 78.8 (CH, C-2), $51.0(\mathrm{CH}, \mathrm{C}-4), 49.8(\mathrm{CH}, \mathrm{C}-3), 46.6\left(\mathrm{CH}_{2}, \mathrm{C}-7\right)$, $45.1\left(\mathrm{CH}_{2}, \mathrm{C}-10\right), 44.5(\mathrm{CH}, \mathrm{C}-1), 31.5\left(\mathrm{CH}_{2}, \mathrm{C}-9\right), 30.7\left(\mathrm{CH}_{2}, \mathrm{C}-\right.$ ${ }_{65} 8$). Alcohols 3c-X and 3c-N (yellowish oil) IR (film) $v_{\text {max }} 3345$, 3327, 3059, 2964, 2935, 2870, 1456, 1339, 1028, 849, 717, 648 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.49\left(\mathrm{dd}, J_{5,6}=5.8, J_{4,5}=3.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{~N}$), 6.13 (dd, $\left.J_{5,6}=5.7, J_{4,5}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{X}\right), 6.11$ (m, 1H, H-6N), 6.05 (dd, $\left.J_{5,6}=5.7, J_{1,6}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{X}\right), 3.93$ $70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2 \mathrm{~N}), 3.58\left(\mathrm{t}, J_{9,10}=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10 \mathrm{~N}\right), 3.54\left(\mathrm{t}, J_{9,10}=\right.$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-10 \mathrm{X}$), 3.36 (br s, 1H, H-2X), 2.91 (br s, $1 \mathrm{H}, \mathrm{H}-1 \mathrm{~N}$), 2.68 (br s, 1H, H-1X), 2.66 (br s, 1H, H-4X), 2.51 (br s, 1H, H4 N), 1.98-1.77 (m, 7H, H-7aX, H-9X, H-8N and H-9N), 1.68$1.49(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-3 \mathrm{X}, \mathrm{H}-7 \mathrm{bX}, \mathrm{OH}-\mathrm{X}$ and $\mathrm{H}-7 \mathrm{~N}), 1.47-1.28(\mathrm{~m}, 2 \mathrm{H}$, $75 \mathrm{H}-8 \mathrm{X}), 1.04-0.96(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{~N}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $141.1(\mathrm{CH}, \mathrm{C}-5 \mathrm{~N}), 137.0(\mathrm{CH}, \mathrm{C}-5 \mathrm{X}), 134.2(\mathrm{CH}, \mathrm{C}-6 \mathrm{X}), 131.8$ (CH, C-6N); $79.6(\mathrm{CH}, \mathrm{C}-2 \mathrm{~N}), 78.8(\mathrm{CH}, \mathrm{C}-2 \mathrm{X}), 51.0(\mathrm{CH}, \mathrm{C}-$ 4X), $50.2(\mathrm{CH}, \mathrm{C}-3 \mathrm{~N}), 49.8(\mathrm{CH}, \mathrm{C}-3 \mathrm{X}), 48.3(\mathrm{CH}, \mathrm{C}-1 \mathrm{~N}), 47.4$ $(\mathrm{CH}, \mathrm{C}-4 \mathrm{~N}), 46.6\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{X}\right), 45.2\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{~N}\right), 45.1\left(2 \mathrm{CH}_{2}\right.$, ${ }_{80} \mathrm{C}-10 \mathrm{X}$ and $\left.\mathrm{C}-10 \mathrm{~N}\right), 44.5(\mathrm{CH}, \mathrm{C}-1 \mathrm{X}), 31.8\left(\mathrm{CH}_{2}, \mathrm{C}-8 \mathrm{~N}\right), 31.5$ $\left(2 \mathrm{CH}_{2}, \mathrm{C}-9 \mathrm{X}\right.$ and $\left.\mathrm{C}-9 \mathrm{~N}\right), 30.7\left(\mathrm{CH}_{2}, \mathrm{C}-8 \mathrm{X}\right)$. HRMS (APCI) calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{ClO} \quad\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right)^{+} \quad 169.0779$, found 169.0810 . Methoxymethyl-bicyclo[2.2.1]hept-5-en-2-ol (3d). Alcohol 3d was obtained as a mixture of diastereomers according to the ${ }_{85}$ general procedure C, using alkenylboronate $\mathbf{1 d}(0.22 \mathrm{mmol})$ and cyclopentadiene (0.66 mmol). A small fraction of exo diastereomer could be separated and characterized. Diels-Alder reaction step conditions: 24 h at $170^{\circ} \mathrm{C}$. Overall yield: $82 \%(27.8$ mg), endolexo 12:88. Alcohol 3d-X (major compound, yellowish ${ }_{90}$ oil) IR (film) $v_{\max } 3400,2970,2920,2891,2872,2850,1109$, $1033,717 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.11\left(\mathrm{dd}, J_{5,6}=5.7\right.$, $\left.J_{1,6}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 6.06\left(\mathrm{dd}, J_{5,6}=5.5, J_{4,5}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6\right)$, 3.43 (br s, $1 \mathrm{H}, \mathrm{H}-2$), $3.33(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-9), 3.22\left(\mathrm{dd}, J_{\mathrm{gem}}=14.4, J_{3,8}=\right.$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8), 3.19$ (dd, $\left.J_{\mathrm{gem}}=14.4, J_{3,8}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8\right)$, 952.78 (br s, 1H, H-4), 2.71 (br s, 1H, H-1), 1.90 (m, 1H, H-3), 1.85 (br d, $\left.J_{7 \mathrm{a}, 7 \mathrm{~b}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}\right), 1.75$ (br s, $1 \mathrm{H}, \mathrm{OH}$), 1.66 (dd, $\left.J_{7 \mathrm{a}, 7 \mathrm{~b}}=8.5, J_{2,7 \mathrm{a}}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{a}\right) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 137.1(\mathrm{CH}, \mathrm{C}-5), 134.4(\mathrm{CH}, \mathrm{C}-6), 76.2(\mathrm{CH}, \mathrm{C}-2), 75.8\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-8), 58.8\left(\mathrm{CH}_{3}, \mathrm{C}-9\right), 50.7(\mathrm{CH}, \mathrm{C}-3), 50.5(\mathrm{CH}, \mathrm{C}-1), 46.7$ $100\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 43.1(\mathrm{CH}, \mathrm{C}-4)$. Alcohols 3d-X and 3d-N (yellowish oil) IR (film) $v_{\max } 3415,3059,2970,2922,2872,2827,1134$, 1111, 1083, 1035, 985, 918, $717 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.47\left(\mathrm{dd}, J_{5,6}=5.7, J_{1,6}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{~N}\right), 6.13(\mathrm{dd}$, $\left.J_{5,6}=5.7, J_{4,5}=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~N}\right), 6.11\left(\mathrm{dd}, J_{5,6}=5.7, J_{1,6}=2.7\right.$ $\left.{ }_{105} \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{X}\right), 6.06\left(\mathrm{dd}, J_{5,6}=5.5, J_{4,5}=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{X}\right), 4.00$ (br s, $1 \mathrm{H}, \mathrm{H}-2 \mathrm{~N}$), 3.56-3.49 (m, 1H, H-8N), 3.43 (br s, $1 \mathrm{H}, \mathrm{H}-$ 2X), 3.36 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-9 \mathrm{~N}$), $3.40-3.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{~N}), 3.33(\mathrm{~s}, 3 \mathrm{H}$, H-9X), 3.21 (dd, $J_{\mathrm{gem}}=17.0, J_{3,8}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{X}$), 3.18 (dd, $\left.J_{\mathrm{gem}}=17.1, J_{3,8}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-8 \mathrm{X}\right), 2.93(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{~N}), 2.78$ 110 (br s, 1H, H-4X), 2.71 (br s, $1 \mathrm{H}, \mathrm{H}-1 \mathrm{X}$), 2.65 (br s, $1 \mathrm{H}, \mathrm{H}-4 \mathrm{~N}$), 1.9 (m, 1H, H-3X), 1.85 (br d, $\left.J_{7 \mathrm{a}, 7 \mathrm{~b}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{X}\right), 1.76$ (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}-\mathrm{X}), \quad 1.66\left(\mathrm{dd}, J_{7 \mathrm{a}, 7 \mathrm{~b}}=8.5, J_{3,7 \mathrm{a}}=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{X}\right)$, $1.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7 \mathrm{~N}), 1.43-1.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{~N}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.5(\mathrm{CH}, \mathrm{C}-5 \mathrm{~N}), 137.1(\mathrm{CH}, \mathrm{C}-5 \mathrm{X}), 134.4$ $115(\mathrm{CH}, \mathrm{C}-6 \mathrm{X}), 132.4(\mathrm{CH}, \mathrm{C}-6 \mathrm{~N}), 76.7(\mathrm{CH}, \mathrm{C}-2 \mathrm{~N}), 76.2(\mathrm{CH}, \mathrm{C}-$ 2X), $75.8\left(\mathrm{CH}_{2}, \mathrm{C}-8 \mathrm{X}\right), 75.7\left(\mathrm{CH}_{2}, \mathrm{C}-8 \mathrm{~N}\right), 58.9\left(\mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{~N}\right)$,
$58.8\left(\mathrm{CH}_{3}, \mathrm{C}-9 \mathrm{X}\right), 50.8(\mathrm{CH}, \mathrm{C}-3 \mathrm{~N}), 50.7(\mathrm{CH}, \mathrm{C}-3 \mathrm{X}), 50.5(\mathrm{CH}$, $\mathrm{C}-1 \mathrm{X}), 48.0(\mathrm{CH}, \mathrm{C}-1 \mathrm{~N}), 46.7\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{X}\right), 45.2\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{~N}\right)$, $44.9(\mathrm{CH}, \mathrm{C}-4 \mathrm{~N}), 43.1$ (CH, C-4X). HRMS (APCI) calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}\left(\mathrm{M}+\mathrm{H}_{-} \mathrm{H}_{2} \mathrm{O}\right)^{+}$137.0961, found 137.0938.
${ }_{5}$ 3-Phenylbicyclo[2.2.1]hept-5-en-2-ol (3e). Alcohol 3e was obtained as a mixture of diastereomers according to the general procedure C, using alkenylboronate $\mathbf{1 e}(0.20 \mathrm{mmol})$ and cyclopentadiene (0.60 mmol$)$. Diels-Alder reaction step conditions: TFA ($5 \mathrm{~mol} \%$), 72 h at $80^{\circ} \mathrm{C}$. Overall 1 yield: 37% ${ }_{10}(13.8 \mathrm{mg}$), endolexo 13:87. Alcohols $\mathbf{3 e - X}$ and $\mathbf{3 e - N}$ (yellowish oil) IR (film) $v_{\max } 3061,3323,2968,2939,2922,1033,746,717$, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 7.39-7.14(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}-\mathrm{X}$ and ArH-N), $6.64\left(\mathrm{dd}, J_{5,6}=5.7, J_{4,5}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{~N}\right), 6.25(\mathrm{dd}$, $\left.J_{5,6}=5.7, J_{1,6}=2.9 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~N}\right), 6.20\left(\mathrm{dd}, J_{5,6}=5.7, J_{5,4}=3.3 \mathrm{~Hz}\right.$,
${ }_{15} 1 \mathrm{H}, \mathrm{H}-5 \mathrm{X}$), 6.07 (br d, $\left.J_{5,6}=5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{X}\right), 4.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-$ 2 N), 4.04 (br s, 1H, H-2X), 3.02 (br s, 4H, H-3X, H-4X, H-1N and H-4N), 2.83 (br s, $1 \mathrm{H}, \mathrm{H}-1 \mathrm{X}$), 2.36 (t, $J_{2,3}=J_{3,4}=3.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3 \mathrm{~N}$), $2.05\left(\mathrm{brd}\right.$ d $\left.J_{7 \mathrm{a}, 7 \mathrm{~b}}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{aX}\right), 1.79\left(\mathrm{br} \mathrm{d}, J_{7 \mathrm{a}, 7 \mathrm{~b}}=\right.$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{aN}$), 1.76 (br d, $J_{7 \mathrm{a}, 7 \mathrm{~b}}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{bX}$), $1.67-$
20.61 (m, 1H, H-7bN). ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\delta 143.8$ (C, Ar-N), 143.3 (C, Ar-X), 141.3 (CH, C-5N), 137.6 (CH, C-6X), 134.0 (CH, C-5X), $132.9(\mathrm{CH}, \mathrm{C}-6 \mathrm{~N}), 128.5(2 \mathrm{CH}, \mathrm{Ar}-\mathrm{N}), 128.0(2 \mathrm{CH}$, Ar-X), 127.8 ($2 \mathrm{CH}, \mathrm{Ar}-\mathrm{X}$), 127.2 ($2 \mathrm{CH}, \mathrm{Ar}-\mathrm{N}$), 126.0 ($2 \mathrm{CH}, \mathrm{Ar}-$ X and $\mathrm{Ar}-\mathrm{N}$), 80.7 (CH, C-2N), 79.4 (CH, C-2X), 55.4 (CH, C${ }_{25} 3 \mathrm{X}$), 55.3 (CH, C-3N), 51.3 (CH, C-1X), 48.6 (CH, C-1N), 48.1 (CH, C-4N), $47.3\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{X}\right), 47.1(\mathrm{CH}, \mathrm{C}-4 \mathrm{X}), 45.7\left(\mathrm{CH}_{2}, \mathrm{C}-\right.$ $7 \mathrm{~N})$. HRMS (APCI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13}\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right)^{+}$169.1012, found 169.1041 .
3-(4-Chlorophenyl)bicyclo[2.2.1]hept-5-en-2-ol (3f). Alcohol 3f 30 was obtained as a mixture of diastereomers according to the general procedure C, using alkenylboronate $\mathbf{1 f}(0.17 \mathrm{mmol})$ and cyclopentadiene (0.51 mmol). Diels-Alder reaction conditions: TFA ($5 \mathrm{~mol} \%$), 72 h at $80^{\circ} \mathrm{C}$. Overall yield: 28% (10.5 mg), endo/exo 13:87. Alcohols 3f-X and 3f-N (yellowish oil) IR (film)
${ }_{35} V_{\max } 3361,3340,2964,2916,2848,1490,1091,1033,1012,798$, $727 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz) $\delta 7.31-7.19(\mathrm{~m}, 6 \mathrm{H}$, ArH-X and ArH-N), 7.14-7.09 (m, 2H, ArH-X), $6.63\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6}=5.9, J_{4,5}=\right.$ $3.3 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{~N}), 6.25\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6}=5.8, J_{1,6}=3.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~N}\right), 6.16$ (dd, $1 \mathrm{H}, J_{5,6}=5.7, J_{4,5}=3.3 \mathrm{~Hz}, \mathrm{H}-5 \mathrm{X}$), 6.04 (br d, $1 \mathrm{H}, J_{5,6}=5.70$ ${ }_{40} \mathrm{~Hz}, \mathrm{H}-6 \mathrm{X}$), 4.35 (br s, 1H, H-2N), 3.98 (br s, 1H, H-2X), 3.03 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4 N$), 2.99 (br s, $3 \mathrm{H}, \mathrm{H}-3 \mathrm{X}, \mathrm{H}-4 \mathrm{X}$ and $\mathrm{H}-1 \mathrm{~N}$,), 2.83 (br s, $1 \mathrm{H}, \mathrm{H}-1 \mathrm{X}$), $2.32\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=J_{3,4}=3.0 \mathrm{~Hz}, \mathrm{H}-3 \mathrm{~N}\right), 2.04(\mathrm{br} \mathrm{d}, 1 \mathrm{H}$, $\left.J_{7 \mathrm{a}, 7 \mathrm{~b}}=8.6 \mathrm{~Hz}, \mathrm{H}-7 \mathrm{aX}\right), 1.76$ (br d, $\left.J_{7 \mathrm{a}, 7 \mathrm{~b}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{bX}\right)$, $1.76-1.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7 \mathrm{~N}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.8$ 45 (2C, Ar-X and Ar-N), 141.2 (CH, C-5N), 137.3 (CH, C-6X), 134.2 (CH, C-5X), 132.9 (CH, C-6N), 131.8 (C, Ar-X), 129.1 ($2 \mathrm{CH}, \mathrm{Ar}-\mathrm{X}$), 128.5 ($4 \mathrm{CH}, \mathrm{Ar}-\mathrm{N}$), 128.1 ($2 \mathrm{CH}, \mathrm{Ar}-\mathrm{X}$), 80.9 (C, C-2N), 79.5 (C, C-2X), 54.8 (CH, C-3N), 54.6 (CH, C-3X), 51.3 (CH, C-1X), $48.6(\mathrm{CH}, \mathrm{C}-4 \mathrm{~N}), 47.9(\mathrm{CH}, \mathrm{C}-1 \mathrm{~N}), 47.3\left(\mathrm{CH}_{2}, \mathrm{C}-\right.$ $\left.{ }_{50} 7 \mathrm{X}\right), 47.0(\mathrm{CH}, \mathrm{C}-4 \mathrm{X}), 45.7\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{~N}\right), \mathrm{C}-8 \mathrm{~N}$ not detected. HRMS (APCI) calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{Cl}\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right)^{+}$203.0628, found 203.0586.

3-(3-(Trifluoromethyl)phenyl)bicyclo[2.2.1]hept-5-en-2-ol (3g) Alcohol $\mathbf{3 g}$ was obtained as a mixture of diastereomers according 55 to the general procedure C , using alkenylboronate $\mathbf{1 g}$ (0.27 mmol) and cyclopentadiene (0.81 mmol). Diels-Alder reaction step conditions: TFA ($5 \mathrm{~mol} \%$), 72 h at $80^{\circ} \mathrm{C}$. Overall yield: 97% (30.0 mg), endo/exo 9:91. Alcohols $\mathbf{3 g - X}$ and $\mathbf{3 g - N}$
(yellowish oil) IR (film) $v_{\max } 3343,3308,2970,2916,2359$, ${ }_{60} 2344,1331,1165,1124,1074,1034,795,721,669 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.31$ (m, 8 H , ArH-X and ArH$\mathrm{N}), 6.65\left(\mathrm{dd}, J_{5,6}=5.4, J_{4,5}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{~N}\right), 6.27\left(\mathrm{dd}, J_{5,6}=\right.$ $\left.5.4, J_{1,6}=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~N}\right), 6.20\left(\mathrm{dd}, J_{5,6}=5.7, J_{1,6}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{H}-6 \mathrm{X}), 6.05\left(\mathrm{dd}, J_{5,6}=5.7, J_{4,5}=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{X}\right), 4.39(\mathrm{~m}, 1 \mathrm{H}$, ${ }_{65} \mathrm{H}-2 \mathrm{~N}$), 4.03 (br s, $1 \mathrm{H}, \mathrm{H}-2 \mathrm{X}$), 3.07 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3 \mathrm{X}$ and $\mathrm{H} 1-\mathrm{N}$), 3.04 (br s, $2 \mathrm{H}, \mathrm{H}-4 \mathrm{X}$ and $\mathrm{H}-4 \mathrm{~N}$), 2.85 (br s, $1 \mathrm{H}, \mathrm{H}-1 \mathrm{X}$), 2.10 (m, $1 \mathrm{H}, \mathrm{H}-3 \mathrm{~N}$), 2.06 (br d, $J_{7 \mathrm{a}, 7 \mathrm{~b}}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{aX}$), 1.90 (br s 1 H , $\mathrm{OH}-\mathrm{X}), 1.82-1.76$ (m, 1H, H-7bX), 1.76-1.63 (m, 2H, H-7N). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.5(\mathrm{C}, \mathrm{Ar}-\mathrm{N}), 144.3(\mathrm{C}, \mathrm{Ar}-\mathrm{X})$, $141.0(\mathrm{CH}, \mathrm{C}-5 \mathrm{~N}), 137.2$ (CH, C-5X), 134.4 (CH, C-6X), 133.1 $(\mathrm{CH}, \mathrm{C}-6 \mathrm{~N}), 131.2(\mathrm{CH}, \mathrm{Ar}-\mathrm{X}), 130.3\left(\mathrm{C}, J_{\mathrm{C}, \mathrm{F}}=32.0 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{X}\right)$, 129.7 (CH, Ar-N), 128.9 (CH, Ar-N), 128.4 (CH, Ar-X), 126.1 (CH, Ar-N), $124.6(\mathrm{CH}, \mathrm{Ar}-\mathrm{N}), 124.5\left(\mathrm{CH}, J_{\mathrm{C}, \mathrm{F}}=3.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{X}\right)$, $122.9\left(\mathrm{CH}, J_{\mathrm{C}, \mathrm{F}}=3.9 \mathrm{~Hz}, \mathrm{ArX}\right), 122.4(\mathrm{CH}, \mathrm{Ar}-\mathrm{N}), 80.8(\mathrm{CH}, \mathrm{C}-$ $\left.{ }_{75} 2 \mathrm{~N}\right), 79.4(\mathrm{CH}, \mathrm{C}-2 \mathrm{X}), 55.1(\mathrm{CH}, \mathrm{C}-3 \mathrm{~N}), 55.0(\mathrm{CH}, \mathrm{C}-3 \mathrm{X}), 51.4$ ($\mathrm{CH}, \mathrm{C}-1 \mathrm{X}$), $48.6(\mathrm{CH}, \mathrm{C}-4 \mathrm{~N}), 47.3\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{X}\right), 47.8(\mathrm{CH}, \mathrm{C}-$ $1 \mathrm{~N}), 47.0(\mathrm{CH}, \mathrm{C}-4 \mathrm{X}), 45.7(\mathrm{CH}, \mathrm{C}-7 \mathrm{~N}) .{ }^{19} \mathrm{~F}$ NMR (282 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-62.6$. HRMS (APCI) calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~F}_{3}\left(\mathrm{M}+\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right)^{+}$ 237.0886, found 237.0902. 2-Phenylbicyclo[2.2.1]hept-5-en-2-
${ }_{80} \mathbf{0 l}(\mathbf{3 h})$. Alcohol $\mathbf{3 h}$ was obtained as a mixture of diastereomers according to the general procedure C using alkenylboronate $\mathbf{1 h}$ $(0.17 \mathrm{mmol})$ and cyclopentadiene $(0.51 \mathrm{mmol})$. A small fraction of exo diastereomer could be separated and characterized. DielsAlder reaction step conditions: 12 h at $80^{\circ} \mathrm{C}$. Overall yield: 100 ${ }_{85} \%(28.8 \mathrm{mg}$), endolexo 6:94. Alcohol 3h-X (major compound, white solid, $\mathrm{mp} 62.5-63.0^{\circ} \mathrm{C}$) IR (KBr) $v_{\text {max }} 3364,2986$, 2970, 2945, 1493, 1447, 1274, 1061, 1028, 989, 894, 758, 721, $698 \mathrm{~cm}^{-}$ ${ }^{1}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.19(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 6.17$ (dd, $\left.J_{5,6}=5.6, J_{4,5}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5\right), 5.78\left(\mathrm{dd}, J_{5,6}=5.6, J_{1,6}=3.1\right.$ ${ }_{90} \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), $3.08-3.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 2.98$ (br s, 1H, H-4), 2.16 (br d, $J_{7 \mathrm{a}, 7 \mathrm{~b}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{~b}$), 2.13 (dd, $J_{3 \mathrm{n}, 3 \mathrm{x}}=12.2, J_{3 \mathrm{n}, 4}=2.3$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{n}}$), $2.03\left(\mathrm{dd}, J_{3 \mathrm{n}, 3 \mathrm{x}}=12.2, J_{3 \mathrm{x}, 4}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{x}}\right)$, 1.95 (br s, $1 \mathrm{H}, \mathrm{OH}$), 1.75-1.68 (m, 1H, H-7a). ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.6(\mathrm{C}, \mathrm{Ar}), 138.9(\mathrm{CH}, \mathrm{C}-5), 134.5(\mathrm{CH}, \mathrm{C}-6)$, ${ }_{5} 128.1$ (2CH, Ar), 127.0 (3CH, Ar), 82.7 (C, C-2), $54.3(\mathrm{CH}, \mathrm{C}-1)$, $48.2\left(\mathrm{CH}_{2}, \mathrm{C}-7\right), 43.1\left(\mathrm{CH}_{2}, \mathrm{C}-3\right), 41.9(\mathrm{CH}, \mathrm{C}-4)$. Alcohols 3h-X and $3 \mathrm{~h}-\mathrm{N}$ (white solid) IR (KBr) $v_{\max } 3366,2970,2945,1491$, 1447, 1274, 1061, 1028, 989, 895, 758, 721, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63-7.19(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}-\mathrm{X}$ and $\mathrm{ArH}-\mathrm{N}$), $1006.58\left(\mathrm{dd}, J_{5,6}=5.7, J_{1,6}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~N}\right), 6.33\left(\mathrm{dd}, J_{5,6}=5.7\right.$, $J_{4,5}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{~N}$), 6.17 (dd, $J_{5,6}=5.6, J_{4,5}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ 5 X), $5.78\left(\mathrm{dd}, J_{5,6}=5.6, J_{1,6}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{X}\right), 3.24-3.20(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-4 \mathrm{~N}$), 3.08-3.03 (m, 1H, H-1X), 2.98 (br s, 2H, H-4X and $\mathrm{H}-1 \mathrm{~N}), 2.49\left(\mathrm{dd}, J_{3 \mathrm{x}, 3 \mathrm{n}}=12.6, J_{3 \mathrm{x}, 4}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3 \mathrm{xN}\right), 2.16(\mathrm{br}$ $\left.105 \mathrm{~d}, J_{7 \mathrm{a}, 7 \mathrm{~b}}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{bX}\right), 2.13\left(\mathrm{dd}, J_{3 \mathrm{n}, 3 \mathrm{x}}=12.2, J_{3 \mathrm{n}, 4}=2.3 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, \mathrm{H}-3_{\mathrm{n}} \mathrm{X}\right), 2.03\left(\mathrm{dd}, J_{3 \mathrm{n}, 3 \mathrm{x}}=12.2, J_{3 \mathrm{x}, 4}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{x}} \mathrm{X}\right)$, 1.95 (br s, 1H, OH-X), 1.83 (br s, $1 \mathrm{H}, \mathrm{OH}-\mathrm{N}$), 1.75-1.68 (m, 1H, $\mathrm{H}-7 \mathrm{aX}), 1.63-1.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7 \mathrm{~N}), 1.52-1.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{n}} \mathrm{N}\right) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.6$ ($2 \mathrm{C}, \mathrm{Ar}-\mathrm{X}$ and $\mathrm{Ar}-8 \mathrm{~N}$), 141.3 (C, $\left.{ }_{110} \mathrm{C}-6 \mathrm{~N}\right), 138.9$ ($\mathrm{CH}, \mathrm{C}-5 \mathrm{X}$), 134.5 (CH, C-6X), 133.6 (C, C-5N), 129.2 (CH, Ar-N), 128.1 ($4 \mathrm{CH}, \mathrm{Ar}-\mathrm{X}$ and Ar-N), 127.0 (3CH, Ar-X), 82.7 (C, C-2X), 54.3 (CH, C-1X), 53.2 (CH, C-4N), 49.3 $\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{~N}\right), 48.2\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{X}\right), 44.8\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{~N}\right), 43.3\left(\mathrm{CH}_{2}\right.$, $\mathrm{C}-1 \mathrm{~N}), 43.1\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{X}\right), 41.9(\mathrm{CH}, \mathrm{C}-4 \mathrm{X})$. C-2N signal missing.
115 HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{ONa}(\mathrm{M}+\mathrm{Na})^{+}$209.1250, found 209.0937.

2-Methyl-bicyclo[2.2.1]hept-5-en-2-ol (3i). ${ }^{45-48}$ Alcohol 3i was obtained as a mixture of diastereomers according to the general procedure C using alkenylboronate $\mathbf{1 i}(0.5 \mathrm{mmol})$ and cyclopentadiene (1.5 mmol). Diels-Alder reaction step 5 conditions: 24 h at $170{ }^{\circ} \mathrm{C}$. Overall yield: 66% (40.9 mg), endolexo 9:91. Alcohols 3i-X and 3i-N (yellowish liquid) IR (film) $v_{\max } 3381,3061,2956,2924,2868,2852,1446,1330$, 1251, 1109, 939, 887, $729,705 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.42\left(\mathrm{dd}, J_{5,6}=5.63, J_{1,6}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~N}\right), 6.19$ $10\left(\mathrm{dd}, J_{5,6}=5.6, J_{4,5}=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{~N}\right), 6.12\left(\mathrm{dd}, J_{5,6}=5.5, J_{4,5}=\right.$ $2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5 \mathrm{X}$), 6.06 (dd, $J_{5,6}=5.5, J_{1,6}=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{X}$), 2.82 (br s, $2 \mathrm{H}, \mathrm{H}-4 \mathrm{X}$ and $\mathrm{H}-4 \mathrm{~N}$), 2.65 (br s, $1 \mathrm{H}, \mathrm{H}-1 \mathrm{~N}$), 2.48 (br $\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-1 \mathrm{X}$), 1.92 (br d, $J_{7 \mathrm{a}, 7 \mathrm{~b}}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{X}$), 1.80 (dd, $J_{3 \mathrm{n}, 3 \mathrm{x}}=12.2, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{x}} \mathrm{N}$), $1.68\left(\mathrm{dd}, J_{3 \mathrm{n}, 3 \mathrm{x}}=12.1, J=\right.$ $\left.153.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{x}} \mathrm{X}\right), 1.59-1.48(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-7 \mathrm{~N}), 1.56\left(\mathrm{br} \mathrm{d}, J_{7 \mathrm{a}, 7 \mathrm{~b}}=\right.$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-7 \mathrm{X}$), 1.49 (s, $3 \mathrm{H}, \mathrm{H}-8 \mathrm{~N}$), $1.28-1.21$ (m, 1H, H$3_{\mathrm{n}} \mathrm{X}$), 1.22 (s, 3H, H-8X), 1.16 (dd, $J_{3 \mathrm{n}, 3 \mathrm{x}}=12.3, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-$ $3_{\mathrm{n}} \mathrm{N}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.0(\mathrm{CH}, \mathrm{C}-6 \mathrm{~N}), 138.4$ (CH, C-5X), 134.5 (CH, C-6X), 133.5 (CH, C-5N), 79.1 (C, C$\left.{ }_{20} 2 \mathrm{X}\right), 78.5(\mathrm{C}, \mathrm{C}-2 \mathrm{~N}), 54.9(\mathrm{CH}, \mathrm{C}-1 \mathrm{X}), 53.8(\mathrm{CH}, \mathrm{C}-1 \mathrm{~N}), 49.5$ $\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{~N}\right), 48.4\left(\mathrm{CH}_{2}, \mathrm{C}-7 \mathrm{X}\right), 44.9\left(\mathrm{CH}_{2}, \mathrm{C}-3 \mathrm{~N}\right), 43.5\left(\mathrm{CH}_{2}, \mathrm{C}-\right.$ $3 \mathrm{X}), 43.0(\mathrm{CH}, \mathrm{C}-4 \mathrm{~N}), 42.3(\mathrm{CH}, \mathrm{C}-4 \mathrm{X}), 28.2\left(\mathrm{CH}_{3}, \mathrm{C}-8 \mathrm{~N}\right), 27.7$ $\left(\mathrm{CH}_{3}, \mathrm{C}-8 \mathrm{X}\right)$. HRMS (APCI) calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}$125.0966, found 125.0961 .

${ }_{25}$ Acknowledgement

We thank CONICET, Universidad Nacional de Rosario, Universidad Nacional del Nordeste, ANPCyT and Fundación Josefina Prats for financial support.

Notes and references

30 a Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario (2000), Argentina. E-mail: pellegrinet@iquirconicet.gov.ar
$35 \dagger$ Electronic Supplementary Information (ESI) available: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of all novel compounds. Reaction coordinates and geometries of transition structures not included in the paper. See DOI: 10.1039/b000000x/

40 1. D. G. Hall, Boronic acids: preparation and applications in organic synthesis and medicine, Wiley-VCH, Weinheim, 2005.
2. G. Hilt and P. Bolze, Synthesis, 2005, 2091-2115.
3. J. E. Moore, M. York and J. P. A. Harrity, Synlett, 2005, 2005, 08600862.

45 4. M. D. Helm, J. E. Moore, A. Plant and J. P. A. Harrity, Angew. Chem. Int. Ed., 2005, 44, 3889-3892.
5. P. M. Delaney, J. E. Moore and J. P. A. Harrity, Chem. Commun., 2006, 3323-3325.
6. M. D. Helm, A. Plant and J. P. A. Harrity, Org. Biomol. Chem., 50 2006, 4, 4278-4280.
7. E. Gomez-Bengoa, M. D. Helm, A. Plant and J. P. A. Harrity, J. Am. Chem. Soc., 2007, 129, 2691-2699.
8. M. D. Helm, A. Plant and J. P. A. Harrity, Synlett, 2007, 2007, 28852887.

55 9. D. L. Browne, M. D. Helm, A. Plant and J. P. A. Harrity, Angew. Chem. Int. Ed., 2007, 46, 8656-8658.
10. P. M. Delaney, J. Huang, S. J. F. Macdonald and J. P. A. Harrity, Org. Lett., 2008, 10, 781-783.
11. P. M. Delaney, D. L. Browne, H. Adams, A. Plant and J. P. A. ${ }_{60}$ Harrity, Tetrahedron, 2008, 64, 866-873.
12. D. L. Browne, J. F. Vivat, A. Plant, E. Gomez-Bengoa and J. P. A. Harrity, J. Am. Chem. Soc., 2009, 131, 7762-7769.
13. R. S. Foster, J. Huang, J. F. Vivat, D. L. Browne and J. P. A. Harrity, Org. Biomol. Chem., 2009, 7, 4052-4056.
65 14. D. L. Browne and J. P. A. Harrity, Tetrahedron, 2010, 66, 553-568.
15. J. D. Kirkham, P. M. Delaney, G. J. Ellames, E. C. Row and J. P. A. Harrity, Chem. Commun., 2010, 46, 5154-5156.
16. R. S. Foster, H. Jakobi and J. P. A. Harrity, Tetrahedron Lett., 2011, 52, 1506-1508.
70 17. J. Kirkham, A. Leach, E. Row and J. P. A. Harrity, Synthesis, 2012, 44, 1964-1973.
18. J. D. Kirkham, S. J. Edeson, S. Stokes and J. P. A. Harrity, Org. Lett., 2012, 14, 5354-5357.
19. J. D. Kirkham, R. J. Butlin and J. P. A. Harrity, Angew. Chem. Int. Ed., 2012, 51, 6402-6405.
20. R. S. Foster, H. Jakobi and J. P. A. Harrity, Org. Lett., 2012, 14, 4858-4861.
21. D. S. Matteson and J. O. Waldbillig, J. Org. Chem., 1963, 28, 366369.
${ }^{80}$ 22. I. S. Bengelsdorf, K. Kiyoshi, G. W. Willcockson and W. G. Woods, US Pat. 3135781, 1964.
23. W. G. Woods and I. S. Bengelsdorf, J. Org. Chem., 1966, 31, 27692772.
24. D. S. Matteson and M. L. Talbot, J. Am. Chem. Soc., 1967, 89, 11231126.
25. D. A. Evans, W. L. Scott and L. K. Truesdale, Tetrahedron Lett., 1972, 13, 121-124.
26. P. Martinez-Fresneda and M. Vaultier, Tetrahedron Lett., 1989, 30, 2929-2932.
90 27. K. Narasaka and I. Yamamoto, Tetrahedron, 1992, 48, 5743-5754.
28. C. Rasset and M. Vaultier, Tetrahedron, 1994, 50, 3397-3406.
29. J. D. Bonk and M. A. Avery, Tetrahedron: Asymmetry, 1997, 8, 1149-1152.
30. G. Lorvelec and M. Vaultier, Tetrahedron Lett., 1998, 39, 5185-5188.

95 31. R. A. Batey, A. N. Thadani and A. J. Lough, J. Am. Chem. Soc., 1999, 121, 450-451.
32. A. M. Sarotti, P. L. Pisano and S. C. Pellegrinet, Org. Biomol. Chem., 2010, 8, 5069-5073.
33. E. Plettner, A. Mohle, M. T. Mwangi, J. Griscti, B. O. Patrick, R. Nair, R. J. Batchelor and F. Einstein, Tetrahedron: Asymmetry, 2005, 16, 2754-2763.
34. H. Yamamoto and K. Ishihara, Acid catalysis in modern organic synthesis, Wiley-VCH, Weinheim, 2008.
35. D. G. Hall, Boronic acids: preparation and applications in organic synthesis, medicine and materials, 2nd completely rev. edn., WileyVCH, Weinheim, 2011.
36. S. Roscales, Á. Rincón, E. Buxaderas and A. G. Csákÿ, Tetrahedron Lett., 2012, 53, 4721-4724.
37. S. Roscales and A. G. Csákÿ, Org. Lett., 2012, 14, 1187-1189.

110 38. M. J. T. Frisch, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. , Gaussian 09, Revision D.01, (2009) Gaussian, Inc., Wallingford CT.
39. Y. Zhao and D. G. Truhlar, J. Phys. Chem. A, 2004, 108, 6908-6918.
40. J. Tomasi and M. Persico, Chem. Rev., 1994, 94, 2027-2094.
41. E. Cancès, B. Mennucci and J. Tomasi, J. Chem. Phys. , 1997, 107, 3032-3041.
42. M. Cossi, V. Barone, R. Cammi and J. Tomasi, Chem. Phys.Lett., 1996, 255, 327-335.
43. V. Barone, M. Cossi and J. Tomasi, J. Comput. Chem. , 1998, 19, 404-417.
5 44. N. Grimblat and S. C. Pellegrinet, Org. Biomol. Chem., 2013, 11, 3733-3741.
45. C. J. Collins and B. M. Benjamin, J. Am. Chem. Soc., 1967, 89, 1652-1661.
46. A. Padwa and W. Eisenberg, J. Am. Chem. Soc., 1972, 94, 5852$10 \quad 5858$
47. R. L. Snowden, Helv. Chim. Acta, 1983, 66, 1031-1038.
48. T. G. Waddell, A. D. Carter, T. J. Miller and R. M. Pagni, J. Org. Chem., 1992, 57, 381-383.

15

