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Abstract

This work presents an approach to identify hydrodynamic models for incident, diffraction and

viscous forces acting on a moored floating structure. An important aspect treated here is the analysis

of the unknown initial condition of the hydrodynamic state for the potential-radiation force. There is

established its influence on the parameter convergence and the long-term effects. Afterwards the

persistency of excitation of the regressor is analyzed in the case of both poor and rich excitation

conditions. Theoretical results show that asymptotic convergence of the estimates takes place under

arbitrary conditions of the wave excitation. A case study consisting in the identification of a moored

semisubmersible is carried out to exemplify the application of the approach.

q 2005 Published by Elsevier Ltd.
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1. Introduction

In this paper an approach to the on-line identification of models for excitation and

viscous-drag forces of moored floating structures is addressed. The class of floating

systems included here encompasses semisubmersibles, buoys, barges, pontoons, crane

ships, oil tanks, among the most common used in ocean engineering.

Ocean Engineering 33 (2006) 1161–1213

www.elsevier.com/locate/oceaneng

0029-8018/$ - see front matter q 2005 Published by Elsevier Ltd.

doi:10.1016/j.oceaneng.2005.05.016

* Tel.: C54 291 459 5100/3310; fax: C54 291 459 5154.

E-mail address: mjordan@criba.edu.ar.



The importance of attaining accurate models relies mainly on control requirements like

dynamic positioning of the floating system around fixed positions and also on the needs of

stability analysis like research of forced behaviors with nonlinear oscillations.

From the point of view of the hydrodynamics, an ocean–engineering system interacts

with the liquid environment, in particular with waves. This interaction is subject to

incidental, diffraction, radiation-induced forces and viscous-drag forces (Faltisen, 1990).

A common mathematical approach for the analysis of the forces is the linear Theory of

Airy, which relies on the assumption that excitation waves have small steepness

(Sorensen, 1993). Incoming-wave forces are however divided into linear components of

first-order and nonlinear components of second-orders accounting for the low-frequency

drift caused on the body (Clauss et al., 1982). In particular, potential radiation forces are

induced from the motion of the floating body with a memory effect which vanishes

asymptotically in time (Cummins, 1962; Jiang, 1991). A common property of all

hydrodynamic loads is that they cannot be directly measured. Additionally, the initial

hydrodynamic state for determining the time evolution of potential radiation forces is

unknown.

The requirements of interpreting complex nonlinear dynamic behaviors and also

modifying them by means of control systems are habitually satisfied with the use of

models (Fossen, 1994). Physical models can provide a more accurate and appropriate basis

for analysis, design and simulation tasks than mathematical models since they accurately

capture all phenomenological effects and the true model structure. The determination of

physical models for ocean–engineering systems has been usually accomplished through

experimental tests carried out on structures in reduced scales with the help of onerous test

facilities (Chakrabarti, 1994). On the other side, many of the ocean–engineering systems

nowadays are equipped with a basic instrumentation that enables the registration of

numerous state variables and signals of their behaviors. They provide a common mean for

achieving control, fault diagnosis and supervision purposes. Other direct possibility is to

construct the model via parameter estimation using these measured data on-line.

The employment of on-line methods of the Estimation Theory may have numerous

advantages with respect to the empirical way via test facilities. First on-line estimated

models can be identified using the true excitation of the dynamics, it is, the same one that

perturbs the functional operation of the floating structure. Second, they can be obtained at

a relatively lower effort, time and costs (Ljung, 1987). Finally, many parametric

modifications of the system and environment succeed periodically like variation of the

system mass, initial tension of mooring lines, changes of the depth during tide and flood,

variable wave spectrum, amplitude frequency and incoming angle among others. These

changes can be actualized in model if some proper techniques of adaptation of parameters

are applied on-line. With a continuously updated model, self-tuning of controller

coefficients and adaptive controllers for periodic changes of the system coefficients are

also possible (Ioannou and Sun, 1995).

As a moored floating structure is composed by many subsystems actuating

interactively, namely the mooring-line system, the potential-radiation hydrodynamics,

the Froude–Kriloff excitation and the viscous drag, then a complete estimation may be

performed by integrating the estimations of each subsystem as schematically shown in

Fig. 1. An approach to identify coefficients of mooring lines in dynamic operation with
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measures of the forces and position at their upper extremes is presented in Jordán and

Beltrán-Aguedo (2004a). The estimation of potential-radiation models is analyzed in

Jordán and Beltrán-Aguedo (2004b). In the present work, we complete the identification of

the whole system. The additional subsystems are identified with the measure of

mechanical states, the wave elevation at a certain coordinates and the reconstruction in

time of the potential-radiation force with initial hydrodynamic state equal to zero.

Due to the numerous parameters involved in the estimation, the question emerges

whether it is possible to estimate them under arbitrary conditions of the excitation. The

worst case, but also one of the most important in the application, is described by

monochromatic waves. As this kind of excitation usually possesses a poor richness of

information for identification, a rigorous study of the so-called persistency of excitation

(PE property) is needed. This analysis will categorically determine whether the estimation

algorithms employed in the parameter identification are able to converge asymptotically or

not under such poor but real conditions of excitation. Other important aspect in the

analysis is the effect of the initial hydrodynamic state of the potential-radiation force in

the parameter convergence, which is unknown. All these features will be considered in the

analysis and design of estimation algorithms.

The paper is organized as follows. In the first part, phenomenological laws for the

system dynamics are presented. Afterwards, a regression for the estimation is established

with the analysis of the initial state for the radiation hydrodynamics using concepts of the

Hyperstability Theory. Later, the design and convergence proof of suitable estimation

algorithms in continuous time are presented in form of theorems for the cases of mono-

and multichromatic waves, respectively. Finally, simulation results for the identification of

models for excitation and viscous-drag forces are exemplified for a general case of a

moored semisubmersible.

2. Dynamics of a moored floating structure

2.1. General considerations

The dynamics of a moored floating system is considered in 6 degrees of freedom.

Accordingly, three pure translations are possible along the longitudinal, transversal and

vertical directions of the structure, and three pure rotations are possible about each one of

these directions (see Fig. 2). The six motions are termed surge, sway, heave, roll, pitch and

yaw, respectively. For these motions an earthbound reference coordinating system parallel

to the main directions with the origin at the point O on the water line is selected. In this

way the position and the orientation of the structure are given by a generalized position

vector yZ[x,y,z,4,q,j]T containing the six pure motions in the same order as introduced

above. Accordingly, _y and €y are the generalized velocity and acceleration vectors,

respectively. In addition, it will be useful to indicate the rotation separately as aZ
(4,q,j)T.

The structure is anchored to the sea bed by means of a system of symmetrically spread

mooring lines. The sea depth from the bed to the still water level is denoted by d. Regular

monochromatic waves are assumed to income from a direction with angle bwith respect to
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the x-axis, and to be of amplitude a, frequency u and length l. An usually incorporated

ballast system enables an horizontal balance of the structure with respect to the free

surface in still water. This will be taken as a reference initial position in this work.

The mathematical description is mainly based on the moving equations of rigid body,

the interaction fluid–structure and the interaction structure–mooring system.

2.1.1. Assumptions

The modelling will rest on the following assumptions:

(a) A small wave steepness (2a/l!1/50) is considered such that Linear Potential Theory

(Airy’s Theory) can be applied.

(b) The sea depth for operation of a floating system is supposed intermediate and

constant.

(c) The structure is perfectly balanced by the ballast system at hydrostatic equilibrium,

i.e. 40Zq0Zj0Z0 degree in still water.

(d) The mass of the structure is symmetrically distributed with respect to the plane x–z.

(e) The initial tensions of the mooring lines at hydrostatic equilibrium are equal.

(f) The mass of the set of mooring lines is negligible in comparison to the structure mass.

(g) No sloshing phenomenon in ballast system is taken into account.

The modelling of a moored ocean–engineering system can be developed in three stages.

First, the equations for the dynamics of the structure conceives as a rigid body are obtained

in generalized coordinates. Hereafter, the interaction between fluid and structure together

Fig. 2. Conventions for coordinate frame in a semisubmersible.
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with the description of the rest of the acting forces is derived. Finally, the characterization

of the complete dynamics in space state form is presented.

2.1.2. Notations

Matrices are denoted by capital letters while vectors are in bold. Variables and

constants are denoted in italic. Transforms, functional norms and sets are written in

calligraphic. The zero vector is referred to as 0, the null matrix as 0 and the identity matrix

as I, all of them with the corresponding dimension given in the context. The symbol ‘!’ is

referred to the outer product and the symbol ‘d’ will denote a definition of a variable into

an equation. Norms of vectors and induced norms of matrices are represented by ‘k$k’.
Finally, estimates are characterized with the symbol ‘o’ over the variable name.

2.2. Rigid body dynamics

The dynamics equations for the moored structure are determined by setting up the

change of the linear and angular momentums. Starting point for the linear momentum HL

is the position vector rG of the gravity center rotated in a from initial position

ð0; 0; �zG; 0; 0; 0ÞT. Analogously, the angular momentum HA is established with respect to

the system coordinates O. Hence

_HLO
Zm€rG (1)

_HAO
Z _HAG

CmrG! €rG; (2)

with m the system mass matrix, HL, HAO
and HAG

are the linear and angular momentums

with respect to O and G. In generalized coordinates, it results in

MðyÞ€yCKðy; _yÞZ
P

i FiP
i Fi!rAiO

" #
; (3)

where Fi are the external forces, Fi!rAiO
the moment caused by Fi with respect to O in a

rotation a about it, rAiO
is the distance between the force application point Ai and O.

The matrix M(y) is the generalized inertia matrix

MðyÞZ

m 0 0 0 m1 m2

0 m 0 Km1 0 Km3

0 0 m Km2 m3 0

0 Km1 Km2 IxGxG Cm4 m5 KIxGzG Cm6

m1 0 m3 m5 IyGyG Cm7 m8

m2 Km3 0 KIxGzG Cm6 m8 IzGzG Cm9

2
66666666664

3
77777777775
; (4)

with IxGxG , IyGyG , IzGzG and IxGzG the inertia moments with respect to the xG-, yG-, zG-axes

which have origin at G and are parallel to the x-, y-, z-axes, and m1 till m9 functions of a
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having the form

m1ðaÞZm�zG cos 4 cos q;

m2ðaÞZm�zGðsin 4 cos jKcos 4 sin q sin jÞ;
m3ðaÞZKm�zGðsin 4 sin jCcos 4 sin q cos jÞ;
m4ðaÞZKm�z2G½ðsin 4 cos jKcos 4 sin q sin jÞ2 Ccos24 cos2q�;
m5ðaÞZm�z2G½sin24 sin j cos jKcos24 sin2q sin j cos j

Csin 4 cos 4 sinqð2 cos2jK1Þ�;
m6ðaÞZKm�z2G½sin 4 cos 4 cos q sin jCcos24 sin q cos q cos j�;
m7ðaÞZm�z2G½ðsin 4 sin jCcos 4 sin q cos jÞ2 Ccos24 cos2q�;
m8ðaÞZm�z2G½sin 4 cos 4 cos q cos jKcos24 sin q cos q sin j�;
m9ðaÞZm�z2G½cos24 sin2qCsin24�:

(5)

Finally, Kðy; _yÞ contains the generalized centrifugal and Coriolis forces

Kðy; _yÞZ

m3
_q
2
Cm3

_j2

m2 _4
2 Cm2

_j2

Km1 _4
2Km1

_q
2

m8
_q
2
Km8

_j2

Km6 _4
2 Cm6

_j2

m5 _4
2Km5

_q
2

2
66666666666664

3
77777777777775
C

Km2 _4 _qCm1 _4 _j

Km3 _4 _qCm1
_q _j

Km3 _4 _jKm2
_q _j

m6 _4 _qKm5 _4 _jCm4
_q _j

Km8 _4 _qCm10 _4 _jCm5
_q _j

m11 _4 _qCm8 _4 _jKm6
_q _j

2
6666666666664

3
7777777777775
; (6)

with m10 and m11 also functions of a with the expression

m10ðaÞZKm�z2G½ðsin 4 sin jCcos 4 sin q cos jÞ2Kcos24 cos2q�
m11ðaÞZm�z2G½cos24 sin2qð2 cos2jK1ÞC4 sin 4 cos 4 sin q sin j cos j

Csin24ð1K2 cos2jÞ�:
(7)

2.3. Generalized forces

In the following, the generalized forces indicated on the right side of (3) are derived.

They comprise the forces caused by mooring lines, structure weight, hydrostatic buoyancy,

hydrodynamic loads like incidental, diffraction, potential-radiation and viscous drag forces.

2.3.1. Generalized mooring forces

The mooring forces act on the structure at the attached points with coordinates ðx1i ;
y1i ; z1iÞ depending on y. The force and the moment respect to O produced by each mooring

line i are obtained in the following way.
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First, if the chain length L satisfies

LR ðz0iKz1iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Hi

mcgðz0iKz1iÞ

s
;

then the generalized force at the attached point i is

Fmi
ðyÞZ

Hi cosðaiÞ

Hi sinðaiÞ

mcgðz0iKz1iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Hi

mcgðz0iKz1i Þ
s

Hi sinðaiÞzci Cmcgðz0iKZ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Hi

mcgðz0iKz1iÞ
s

yci

Hi cosðaiÞzci Cmcgðz0iKz1iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Hi

mcgðz0iKz1i Þ
s

xci

Hi cosðaiÞyci CHi sinðaiÞxci

2
666666666666666666664

3
777777777777777777775

; (8)

with Hi being the horizontal component of the peak tension and obtained implicitly from

Hi/
Hi

mcg
cosh

mcg

Hi

l

� �
K1

� �
Kðz0iKz1iÞZ 0; (9)

lZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0iKx1i Þ2 C ðy0iKy1i Þ2

q
; (10)

where mc is the mass of the line per length units, ai the line angles in a top view with

respect to direction x, ðx0i ; y0i ; z0i Þ the coordinates of the attached points at sea bed and

xci
yci
zci

2
64

3
75Z T0ðaÞ

�xci
�yci
�zci

2
64

3
75; (11)

with ð �xci ; �yci ; �zci Þ the coordinates of the attached points at hydrostatic equilibrium, ðxci ; yci
; zciÞ the coordinates of them after a rotation a and T0 a transformation matrix given by

T0ðaÞZ TzðjÞTyðqÞTxð4Þ; (12)

TzðjÞZ
cosðjÞ KsinðjÞ 0

sinðjÞ cosðjÞ 0

0 0 1

2
64

3
75; (13)
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TyðqÞZ
cosðqÞ 0 sinðqÞ
0 1 0

KsinðqÞ 0 cosðqÞ

2
64

3
75; (14)

Txð4ÞZ
1 0 0

0 cosð4Þ Ksinð4Þ
0 sinð4Þ cosð4Þ

2
64

3
75: (15)

If, on the other hand, the chain length L satisfies

ðz0iKz1iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Hi

mcgðz0iKz1iÞ

s
OLR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 C ðz0iKz1i Þ2

q
;

then

Fmi
ðyÞZ

Hi cosðaiÞ
Hi sinðaiÞ
mcgL

Hi sinðaiÞzci CmcgLyci

Hi cosðaiÞzci CmcgLxci

Hi cosðaiÞyci CHi sinðaiÞxci

2
66666666664

3
77777777775
; (16)

with

Hi/
HiL

mcgL
sinh

mcgL

Hi

KlZ 0; (17)

where l is given in (10). Here, it was assumed that any line will not tear up if

LR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0iKx1iKxÞ2 C ðy0iKy1iKyÞ2 C ðz0iKz1iKzÞ2

q
: (18)

The resultant of all catenary generalized forces Fmi
is termed Fm.

2.3.2. Generalized structure weight

The action of the gravity on the structure is obtained by the structure weight force

FgðyÞZ

0

0

mg

mgyG

mgxG

0

2
666666664

3
777777775
; (19)
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where

xG

yG

� �
Z

�zGðsin 4 sin jCcos 4 sin q cos jÞ
�zGðKsin 4 cos jCcos 4 sin q sin jÞ

" #
(20)

results from a rotation in a of the vector ð0; 0; �zGÞT.

2.3.3. Generalized hydrostatic buoyancy

Assuming calm water and the structure rotated in a, the hydrostatic force acts on the

metacentric point of coordinates referred to as (xm,ym,zm)
T whose position at hydrostatic

equilibrium is ð0; 0; �zmÞT with �zm the metacentric height. The hydrostatic generalized force

is

FbðyÞZ

0

0

KmgKrgAwz

KðmgCrgAwzÞym
KðmgCrgAwzÞxm

0

2
66666666664

3
77777777775
; (21)

with r the density of water, Aw the structure water plane area and

xm

ym

zm

2
4

3
5Z

�zmðsin 4 sin jCcos 4 sin q cos jÞ
�zmðKsin 4 cos jCcos 4 sin q sin jÞ

�zmðcos 4 cos qÞ

2
64

3
75; (22)

the metacentric position after rotation.

2.3.4. Generalized potential-radiation force

The induced structure motion due to wave load causes radiation. This radiation is

captured according to the linear Theory of Airy as potential-radiation loads influencing the

inertia and kinematics of the dynamics. They are associated with radiated waves in an

ideal fluid and can be stated in the time domain by means of state-space-model approaches

(Jiang, 1991; Schelin et al., 1993; Jordán and Beltrán-Aguedo, 2003) or a convolution

approach (Cummins, 1962; Olgivie, 1964). This is

Fhðy; s0ÞZKMa €yCs0; (23)

with Ma the so-called added mass matrix or hydrodynamic mass matrix for a frequency

equal to infinite

Ma Z diagðaxN; ayN; azN; a4N; aqN; ajNÞ; (24)
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and the vector s0 accomplishing

s0ðtÞZK

ðt
KN

KðtKtÞ_yðtÞdt; (25)

where K(t) is a functional matrix of the independent variable t containing all the memory

of the radiated fluid load response. It depends only on the geometry of the wet part of the

submersed body. It is noticing that the evolution in time of Fh depends on the past history

of the velocity of the point O, weighted by K(t) on t2[KN,N]. It is suitable to

decompose s0 in a measurable and a nonmeasurable part as

s0ðtÞZ s1ðtÞCs2ðtÞ; (26)

with

s1ðtÞZK

ðt
0

KðtKtÞ_yðtÞdtZK

ðt
0

KðtÞ_yðtKtÞdt (27)

s2ðtÞZK

ð0
KN

KðtKtÞ_yðtÞdt: (28)

If _yðtÞ is registered up to tR0 and the past evolution is considered zero, then s2(t)h0.

2.3.5. Generalized hydrodynamic viscous-drag force

Hydrodynamic viscous-drag forces acting on the moving hull are calculated from

empirical relationships. The generalized force is considered as

Fvð_yÞZK
1

2
r
�
CDx

Axj _xj _x;CDy
Ayj _yj _y;CDz

Azj_zj_z;CD4
A4j _4j _4;CDq

Aqj _qj _q;CDj
Aqj _jj _j

�T
;

(29)

where CDj
are empirical drag coefficients and Aj are coefficients that depend on the

geometry of the wet hull shape.

2.3.6. Generalized excitation forces

Forces acting on the structure due to incoming waves produce incidental and diffraction

loads. They are approximated by the sum of a first-order component and a second-order

slowly-varying drift component (Clauss et al., 1982). An important class of waves is the

directional stationary wave composed of a infinite number of wave harmonics at discrete

frequencies. This is of random stationary nature. Other wave type is the periodic

multichromatic wave. The evolution in time for this particular wave with components of

amplitude ai, frequency ui, incoming direction b, wave length li, initial phase fi, with
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respect to the coordinate system is referred to as the free surface elevation

xðx; y; tÞZ
XN
iZ1

ai cosðsiÞ; (30)

si Z
2p

li
ðx cosðbKjÞCy sinðbKjÞÞKuitCfi; (31)

with (bKj) the wave heading of the wave component i. The wave length is calculated as

li Z
2pc

ui

;

with c the so-called wave celerity for each component.

For N components, the generalized excitation force acting on the coordinate center

point O results

Fwðy; tÞZ
XN
iZ1

H1iai cosðKkiðxðtÞKxbÞcosðbKjðtÞÞKkiðyðtÞKybÞsinðb

KjðtÞÞCui1tCfiÞCH2iai sinðKkiðxðtÞKxbÞcosðbKjðtÞÞ

KkiðyðtÞKybÞsinðbKjðtÞÞCuitCfiÞCz2iGi; (32)

where xb and yb are the coordinates of the measurement point of the free surface elevation

with respect to O, ki is the wave number equal to (2p/li), and

H1iðui; bKjÞZ ðH1xi
;H1yi

;H1zi
;H14i

;H1qi
;H1ji

ÞT; (33)

H2iðui; bKjÞZ ðH2xi
;H2yi

;H2zi
;H24i

;H2qi
;H2ji

ÞT; (34)

Gið �u; bKjÞZ ðGxi
;Gyi

;Gzi
;G4i

;Gqi
;Gji

ÞT; (35)

with gains H1ji
, H2ji

, which are pairs of the real and imaginary parts of the frequency

transfer function vector corresponding to the first-order component of Fw at ui. They

depends also on the hull form and on the wave heading. Additionally, the gains are state-

dependent through the yaw angle, which may vary in stationary state even supposing b

constant. It is remarking that the formulation is conceived for a estimation of gains with j

constant, even when the dynamics occurs in 6 degrees of freedom. Thus the gains

estimated are valid for oscillations with moderated variations of j.

The term z2i G is the frequency-dependent second-order drift force. It depends on z2i
defined as

z2i Z
XN
iZ1

a2i ; (36)

also on the wave heading and on the hull form. For simplification Gji
is evaluated only for

the central frequency �u defined as the algebraic mean of all ui.
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It is remarkable that a monochromatic wave is a special case of the approach above.

Also a stationary random wave with different bi’s can be included in the approach.

However, this kind of wave is generally considered of minor importance in the application

in comparison to directional waves due to its relatively smaller wave energy. Finally, the

approach (32) can be extended nearly to stationary directional waves with continuous

spectra by approximating these with a spectrum of lines with finite energy spread at

regular discrete frequencies. The treatment for these approximations is given in Section 5.

2.4. System dynamics representation

Combining (3) with (8), (16), (19), (21), (23), (29) and (32), the dynamics of the

floating structure is described in the earthbound coordinate system by

½MðyÞCMa�€yCKðy; _yÞZFmðyÞCFgðyÞCFbðyÞCFv CFwðy; tÞCs0ðtÞ: (37)

There is another form in state-space for representing the dynamics. This will be treated

in Section 4 for further analysis.

3. Parameter estimation

3.1. Measures

Taken into account (37) and assuming that y; _y and €y are measurable, then M(y) and

Kðy; _yÞ can be reconstructed. Moreover, suppose that by identification of the mooring-line

coefficients according to Fig. 1, see also Jordán and Beltrán-Aguedo (2003), Fm(y) can be

rebuilt. Similarly, by identifying the weighting matrix function K(t) according to the

geometry of the wet surface of the body, the component s0(t) of the potential-radiation

force and the additive matrixMa can be determined. However, as noticed before, s0 is only

reproduced with null initial hydrodynamic state, i.e. s0(t)hs1(t) (see (27) and (28)).

So, using this information, one can simulate the resultant of the excitation and viscous-

drag forces by means of the first membership in the equation

½MðyÞCMa�€yCKðy; _yÞKFmðyÞKFgðyÞKFbðyÞKs1ðtÞ
ZFn CFwðy; tÞCs2ðtÞ: (38)

Clearly, using s1(t) instead of s0(t) will produce an error that influences the estimates as

shown in Section 3.2.

3.2. Regression

In the general case, with a directional stationary random wave of N harmonics ui2{u1,

.,uN}, the sum of the components for viscous-drag and excitation forces in each motion
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mode is expressed by the following regression in vector form according to (29) and (32)

FT
x ðtÞqx

FT
y ðtÞqy

FT
z ðtÞqz

FT
4ðtÞq4

FT
q ðtÞqq

FT
jðtÞqj

2
6666666666664

3
7777777777775
ZFvðtÞCFwðtÞ; (39)

with the associated scalar regressor for the mode qi2{x,y,z,4,q,j}

FT
qi
ðtÞZ

�
K _qiðtÞj _qiðtÞj; a1 cosðKk1ðxðtÞKxbÞcosðbKjðtÞÞKk1ðyðtÞKybÞ

!sinðbKjðtÞÞCu1tCf1Þ; a1 sinðKk1ðxðtÞKxbÞcosðbKjðtÞÞ
Kk1ðyðtÞKybÞsinðbKjðtÞÞCu1tCf1Þ;.; a cosðKkNðxðtÞKxbÞ
!cosðbKjðtÞÞKkNðyðtÞKybÞsinðbKjðtÞÞCuNtCfNÞ;
!aNsinðKk1ðyðtÞKxbÞcosðbKjðtÞÞKkN ðyðtÞKybÞ

!sinðbKjðtÞÞCuNtCfNÞ;
XN
iZ1

a2i

	
ð40Þ

and the true parameter vector for the same mode

qqi Z
CDqi

Aqi
r

2
;H1qi

ðu1;bÞ;H2qi
ðu1;bÞ;.;H1qi

ðu;bÞ;H2qi
ðu;bÞ;Gqi

ð �u;bÞ
� �T

: (41)

As Fv(t) and Fw(t) are unknown, e.g. nonmeasurable, it is thus required to capture them

indirectly with the help of (38) as a regression

FT
x ðtÞqx

FT
y ðtÞqy

FT
z ðtÞqz

FT
4ðtÞq4

FT
q ðtÞqq

FT
jðtÞqj

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
Z½MðyÞCMa�€yCKðy; _yÞKFmðyÞKFgðyÞKFbðyÞKs1ðtÞKs2ðtÞ: (42)

Clearly, formulations (39) and (42) are equivalent for s2(t)h0.

The number of parameters to be estimated is 12(NC1). It depends basically on the

number of significative components present in the wave line spectrum.
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3.3. Estimation algorithms

For the estimation of the qqi’s it is suitable from a mathematical point a view to use a

minimization procedure in norm 2. Hence for the estimate vector q̂Z ðq̂Tx ; q̂Ty ; q̂Tz ; q̂T4; q̂Tq ; q̂TjÞ
T

consider the following scalar cost functional for the energy of the estimation error

min
q̂2R12ðNC1Þ

Jðt; q̂ÞZ min
q̂2R12ðNC1Þ

1

2t

ðt
0

3T ðt; q̂Þ3ðt; q̂Þdt; (43)

with the estimation error

3ðt; q̂ÞZ ½MðyÞCMa�€yCKðy; _yÞKFmðyÞKFgðyÞKFbðyÞKs1ðtÞ

K

FT
x ðtÞq̂xðtÞ

FT
y ðtÞq̂yðtÞ

FT
z ðtÞq̂zðtÞ

FT
4ðtÞq̂4ðtÞ

FT
q ðtÞq̂qðtÞ

FT
jðtÞq̂jðtÞ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: (44)

Now, in order to findminima of J, one employs an adaptation law. If J is uniformly globally

convex for s0(0)Z0 and there exist suitable excitation conditions (see analysis in Section 6), the

unique minimum is global and given as the root of J by

vJðt; q̂Þ
vq̂

Z 0; implies q̂Z q: (45)

In order to reach the minimum point q̂Zq many algorithms can be applied. We described

two significative classes of them.

3.3.1. Gradient-based algorithm

The parameter trajectory is forced to follow the way of steepest descending path over J

according to the adaptive law

_̂
qZKG

vJðt; q̂Þ
vq̂

Z
G

t

ðt
0

FT ðtÞ3ðt; q̂Þdt; (46)

with q̂ð0ÞZ0, GZGTO0 a gain matrix, FðtÞZdiagðFT
x ðtÞ;FT

y ðtÞ;FT
z ðtÞ;FT

4ðtÞ;FT
q ðtÞ;

FT
jðtÞÞ and 3ZFðqKq̂Þ. The trajectory will converge to the equilibrium point q̂Zq under

necessary and sufficient conditions for t/N. Also, the integral may be skipped over,

obtaining a new estimation algorithm with different convergence to the same equilibrium

point (Ioannou and Sun, 1995).
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3.3.2. Least-squares-based algorithm

Other possibility is to force the parameter trajectory from an initial condition in

direction to some estimation of the equilibrium point at every moment. This is reached by

performing the minimization of the integral of the square errors with respect to the

parameter vector at every time t. The parameter trajectory is given as the solution of the

following ordinary differential equations in vector and matrix forms

_̂
qðtÞZKPðtÞFT ðtÞ3ðtÞ; (47)

_PðtÞZKPðtÞFT ðtÞFðtÞPðtÞ; (48)

with q̂ð0Þ and P(0)O0. The matrix P is referred to as the covariance matrix and stands for

the variance of the parameter errors. The trajectory will converge to the equilibrium point

q̂Zq under certain necessary and sufficient conditions for t/N.

4. Vanishing effect of the initial hydrodynamic state

The inexactitude of (42) lies only in the lack of knowledge about the initial state of the

potential-radiation force s2(t), which is supposed in the analysis before identically zero for

all t. So in using s1 instead of the true s0 in the regression (42), a transient difference

between (39) and (42) will be generally occur, which is zero only in the particular case that

both the environment and the floating structure are at rest at t0Z0, i.e. no excitation is

present. In the next we will study the influence of this uncertainty in the estimation.

As seen below in this section, the vanishing rate of the transient state depends mainly on

the amplitude of _q. It is noticed that the dissipation of the mechanics and hydrodynamic

energy will depend mainly on two forces: the viscous-drag and the linear damping forces.

Most notably is the viscous-drag force that dissipates a significant energy with a power

proportional to the quadratic value of _q. Important in accounting for the magnitude of this

force is the effective area presented to the motion direction and that j _qjO1. On the other

side, the linear damping acts more effective in low-frequency movements of the structure.

4.1. State-space approach of the dynamics

The dynamics of the floating structure plays a fundamental role in the estimation.

Consider a suitable state-space characterization of the whole dynamics given by

_yZ _y;

€y Z ½MðyÞCMa�K1ðKKðy; _yÞCFgðyÞCFbðyÞCs0 CFmðyÞCFnð_yÞ
CFwðy; tÞÞ;

_s0 Z
d

dt
K

ðt
0

KðtKtÞ_yðtÞdt
0
@

1
A;

(49)
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with the generalized state vector

qZ

y

_y

s0

2
64

3
75; (50)

initial condition (cf. (25)–(28))

qð0ÞZ ½yT ð0Þ; _yT ð0Þ; sT0 ð0Þ�T Z ½yT ð0Þ; _yT ð0Þ; sT2 ð0Þ�T; (51)

and with the condition that [M(y)CMa] be nonsingular.

Consider (42) as an associated output equation to the state-space model

FT ðtÞqZ ½MðyÞCMa�€yCKðy; _yÞKFmðyÞKFgðyÞKFbðyÞKs0: (52)

More compactly, (49) is

_qZ fðqÞCM0ðqÞ
0

FmðqÞCFvð _qÞCFwðq; tÞ
0

0
B@

1
CA

FT ðtÞqZFvð _qÞCFwðq; tÞ;

;

8>>><
>>>:

(53)

with the initial condition (51), M0ðqÞZdiagð0; ½MðqÞCMa�K1; 0Þ and

fðqÞZ
sI

0

sI

2
64
3
75qCM0ðqÞ

0

KKðq; _qÞCFgðqÞCFbðqÞC ð0; 0; IÞq
0

2
64

3
75: (54)

where s is the Laplace variable and I a 6!6 identity matrix. It is also assumed that f is

bounded in the state space.

In order to analyze the system dynamics we first focus our analysis on the mooring and

excitation forces. Toward this goal, one assumes mooring lines with catenary forms during

the motion and a whole force–deformation characteristic accomplishing

fmax

�kqk�RkM0ðqÞFMqi
ðqÞkR fmin

�kqk�; (55)

with M0(q)O0 and fmax and fmin being two upper and lower bounding functions of high

order in kqk, respectively. The nonlinear mooring forces play a fundamental role in the

stabilization of the floating structure.

4.2. Perturbed system dynamics

The data used in identification will be obtained partially by numerical simulation of the

potential-radiation hydrodynamics and partially by direct measurement of mechanical

system variables. The dynamics that reflects the data via simulation is that one with initial

hydrodynamics state s0(0)Zs2(0)Z0. This dynamics is referred to as perturbed one and

the corresponding state referred to as qd. From this dynamics, it is practically to distinguish
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two particular situations, namely, the dynamics at rest and that one induced by

monochromatic waves.

The perturbed dynamics can be more appropriately stated from (53) by considering the

perturbed state qd and defining an additive perturbation on the right side being

dqðtÞZ
0

0

Ks2ðtÞ

0
B@

1
CA: (56)

So one can establish two perturbed systems in space state corresponding to the

dynamics mentioned before. These are indicated in Table 1

The initial condition of the states in the perturbed system is the same as in (53), it is

qd(0)Zq(0) (see (51)).

qdð0ÞZ
yð0Þ
_yð0Þ
s0ð0Þ

2
64

3
75Z

yð0Þ
_yð0Þ
s2ð0Þ

2
64

3
75Z qð0Þ: (57)

The dynamics (a) in Table 1 is described in blocks in Fig. 3. It is composed by the

dynamics of the unconstrained floating structure with a nonlinear feedback implemented

0

( ) ( ) ( )+
0

qqF

0

q δsI00M δmδ ,,0

( )δδ

.
qfq = δq

)0((0) qq =δ

Fig. 3. State-space model of the perturbed moored structure at rest.

Table 1

System dynamics of a moored floating structure in two environments

(a) Dynamic non-linear

system at rest _qdZ f ðqdÞCM0ðqdÞ
0

FmðqdÞC ð0; 0; IÞdq
0

0
B@

1
CA

FT
d ðtÞqZ ð0; 0; IÞdq;

; for qdð0ÞZqð0Þ;

8>>><
>>>:

(b) Dynamic oscillating

time-varying system

_qdZ fðqdÞCM0ðqdÞ;
0

FmðqdÞCFvð _qdÞCFwðqd; tÞC ð0; 0; IÞdq
0

0
B@

1
CA

FT
d ðtÞqZFvð _qdÞCFwðqd; tÞC ð0; 0; IÞdq:

; for qdð0ÞZqð0Þ;

8>>>>>><
>>>>>>:
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by the mooring-lines equations. The dynamics (b) in Table 1 is similar as in (a) with an

additional nonlinear time-varying feedback reproduced by the state-depending excitation

(see Fig. 4). It is noticing that both dynamics represented by control systems have null set

points.

It is also observing from (56) and (28) that dq is depending on the past evolution of the

system dynamics and hence on the initial condition q(0). As dq is part of the

hydrodynamics, it is indicated in Figs. 3 and 4 as part of the state feedback.

4.3. Initial hydrodynamic state in the system at rest

Consider first the unperturbed dynamic system at rest. From physical principles, it is

asymptotically stable inasmuch as the initial condition does lie in the attraction domain of

the system. This concerns particularly the critic angles and their derivatives of the pitch

and roll modes. The system trajectory moves from the initial condition q(0) to the

equilibrium point q*Z[0,0,zG,0,0,0,0
T,0T]T asymptotically. The asymptotic stability is

mainly ensured due to two classes of damping, namely the nonlinear damping provided by

the viscous drag force and the linear hydrodynamic damping characterized by s0 (49). The

first damping decelerates strongly the system by quick motions, while the second one

offers resistance to motion during slow motions. However, when the perturbation dq acts

on the dynamics, the hydrodynamics state s0(t) behaves as s1(t) without the past

information of s2(t). The trajectory of the perturbed state qd(t) starts from q(0) but

afterwards runs away from the unperturbed system path. Since s0(t) tends asymptotically

to s1(t), both trajectories will touch asymptotically again. Thus the effect of the

perturbation dq vanishes in time and the perturbed system is also asymptotically stable

having the same equilibrium point q* inasmuch as q(0) remains in the attractive region of

the perturbed system. The evolution of the trajectories of the perturbed and unperturbed

systems are characterized in Fig. 5 graphically.

4.4. Initial hydrodynamic state in the wave-excited system

On the other side, when the system is excited by a monochromatic wave, the dynamics

shows an oscillatory behavior of the same period as that of the wave or a more complex

one in bifurcation state with high periods including also the possibility of chaotic orbits

0

( ) ( ) ( ) ( )+++
0

qFqFqF

0

q δδδδ sI00tM vwm ,,,0

( )δδ qfq = δq

)0()0( qq =δ

·

Fig. 4. State-space model of the perturbed moored structure under monochromatic wave excitation.
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(Kreuzer et al., 2002). Simultaneously, the drift originated by the nonlinear components of

the excitation pushes asymptotically the mean point of the oscillatory motion, which

abandons the static equilibrium point to reach a new center displaced in the opposite

direction of the incoming wave and with a magnitude proportional to the wave energy.

Consider now the unperturbed system. The trajectory starts from q(0) and becomes

asymptotically a periodic orbit in a forced motion. The perturbed system, on the contrary,

behaves similarly under equal excitation, but the influence of dq begins to drive the

trajectory on a different path as in the previous case (see Fig. 6). However, as dq vanishes

in time, the trajectory returns asymptotically to the same periodic orbit as in the

unperturbed case.

The domain of attraction is restricted by certain maximal levels of wave energy that do

not cause the structure to turn over. Usually, the capsizing is avoided by implementing a

system of many mooring lines that provide sufficiently large stabilizing moments for

relatively large angles and displacements.

4.5. Properties of the perturbed state

Consider K(t) in (25) again. For floating structures in the Ocean Engineering K is

absolutely integrable. Then

ðN
0

kKðtÞk dt!N; (58)

fmin

fmax

||qδ(0) ||

|| Mo(qδ) Fm ||

||qδ(t) ||

fmax

fmin

Equilibrium point

unperturbed trajectory

perturbed trajectory

Fig. 5. Trajectories of the perturbed and unperturbed systems at rest.
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it means KðtÞ2L1. Thus, there exists a Fourier transform function of it with real and

imaginary components referred to as D(u) and juMa(u), respectively. From the Riemann–

Lebesgue Lema (Olgivie, 1964), it follows

lim
u/N

ðN
0

KðtÞsinðutÞdt; (59)

lim
u/N

ðN
0

KðtÞcosðutÞdtZ 0; (60)

which tells about the continuity of K(t). Using this feature, (58) and the Barbălat’s Lemma

(cf. Ioannou and Sun, 1995), it is valid that K(t) is bounded, i.e. K2LN.

The stability of the hydrodynamics can equivalently be inferred from the property that

D(u) is continuous. So one gets (Jordán and Beltrán-Aguedo, 2004b)

lim
t/N

KðtÞZ lim
t/N

2

p

ðN
0

DðuÞcosðutÞduZ 0; (61)

which tells about the vanishing effect of the hydrodynamic load in response to a sudden

displacement of the structure.

Usually, the frequency transfer function of the hydrodynamics, expressed by D(u)C
juMa(u), can be fitted accurately by a rational transfer function matrix of appropriate finite

stable orbit

fmin

fma x

||qδ(0) ||

|| Mo(qδ) Fm ||

||qδ(t) ||

fmin

fmax

unperturbed trajectory

perturbed trajectory

Fig. 6. Trajectories of the perturbed and unperturbed systems under regular excitation.
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order n (Jordán and Beltrán-Aguedo, 2004b). Thus the decaying of K(t) for a linearly

increasing t is also exponential, i.e. there exist matrices A and A0 of dimension 6!6 so

that for tR0 it is valid

kKðtÞk%kA0 e
AtkZa0 e

Kat; (62)

with a, a0O0.

Consider now the unperturbed system state q(t) with initial condition q(0) in (51) and

the perturbed system state qd(t) resulting from (53) with the perturbation dq(t) in (50) and

starting from the same initial condition q(0)Zqd(0). Hence the state error is

eqðtÞZ qðtÞKqdðtÞ: (63)

As the control systems described in Figs. 3 and 4 are asymptotically stable, there exists

a scalar function VðtÞZ ð1=2ÞeTq ðtÞeqðtÞ with _VðtÞ%0. Since V(t) is bounded from below

and is not increasing, it has a limit as t/N (see Ioannou and Sun, 1995), it is

lim
t/N

VðtÞZ lim
t/N

1

2

ðt
0

eTq ðtÞeqðtÞdtZVN!N:

This implies that eq(t) is quadratic integrable (i.e. eq2L2) and bounded. Because f is

bounded and M0 is nonsingular, _eqðtÞ is also bounded on [0,N], i.e. eq, _eq2LN. Hence,

eq(t) is also uniformly continuous. In consequence, due to the Barbălat’s Lemma (Ioannou

and Sun, 1995) one holds

lim
t/N

eqðtÞZ 0: (64)

The property (64) will be invoked below in Section 4.6. It is proved that the difference

between the trajectories q(t) and qd(t) vanishes in time as indicated graphically in Figs. 5

and 6.

4.6. Properties of the measure error

Consider the perturbed measure vector as indicated in Table 1 for the time-varying

system

F
T
d ðtÞqZFvð _qdÞCFwðqd; tÞC ð0; 0; IÞdq (65)

and the corresponding unperturbed vector defined in (39) as

FT ðtÞqZFvð _qÞCFwðq; tÞ: (66)

Taking the difference between both vectors, one gets the measure error

3FðtÞZ ðFT ðtÞKFT
d ðtÞÞqZKð0; 0; IÞdqZK

ð0
KN

KðtKtÞð0; I; 0ÞqðtÞdt: (67)

According to (62), K(t) is exponentially decaying and for every element kij, there exists
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real-valued constants a1ij
, a2ij

, b1ij and b2ij , with a1ij
!a2ij

and b1ijOb2ijO0, such that

a1ij
e
Kb1ij t%kijðtÞ%a2ij

e
Kb2ijt: (68)

The first 12 components of 3F are zero and the last 6 satisfy

K

ð0
KN

X6
jZ1

a1ij
e
Kb1ij ðtKtÞ

qiðtÞdtR3Fqi
ðtÞ

ZK

ð0
KN

X6
jZ1

kijðtKtÞqiðtÞdtRK

ð0
KN

X6
jZ1

a2ij
e
Kb2ij ðtKtÞ

qiðtÞdt; (69)

with qiZ _yi2f _x; _y; _z; _q; _4; _jg according to the generalized velocity vector _y. Equivalently

K
X6
jZ1

a1ij

b1ij
e
Kb1ij t sup

t2½0;t�
ðqiðtÞÞR3Fqi

ðtÞRK
X6
jZ1

a2ij

b2ij
eKb2ijt sup

t2½0;t�
ðqiðtÞÞ: (70)

Then, it follows from (70) with supt2½0;t�ðqiðtÞÞ!N the property

lim
t/N

3F Z 0: (71)

The main conclusion that can be derived from the last equation is that the perturbation

dq can produce a false measure and its effect is exponentially decreasing in time.

4.7. Properties of the regression matrix

Consider the measure error component 3Fqi
. It is valid the relation

ðt
0

32Fqi
dtZ q̂

T
qi
ðtÞ
ðt
0

ðFqi
ðtÞKFdqi

ðtÞÞðFqi
ðtÞKFdqi

ðtÞÞT dt q̂qiðtÞ: (72)

Since 3Fqi
ðtÞ is bounded from below and above, this implies it is quadratic integrable,

i.e. 3Fi
2L2. In consequence the total energy of the measure error is

lim
t/N

ðt
0

32Fi
ðtÞdtZ c; (73)

with c a positive constant vector.

The integral in (72) represents the energy of the error in the measurements that causes

the misinformation in the estimation. Moreover, in case of convergence, Fqi
must be

necessarily persistent exciting (see next theorems) and it is valid

lim
t/N

ðt
0

Fqi
FT

qi
dtZ lim

t/N

ðt
0

Fdqi
FT

dqi
dtZN; (74)
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and

lim
t/N

Ðt
0

ðFqi
KFdqi

ÞðFqi
KFdqi

ÞT dt












Ðt
0

Fqi
FT

qi
dt












Z 0: (75)

This last statement says, that the misinformation becomes asymptotically insignificant

in comparison to the information gained along the time. The parameter trajectory induced

by an estimation law based onFdqi
will be distorted temporarily in its behavior due to the

presence of 3Fi
in comparison with the case of unperturbed measures. At the same time, as

the true information begins to cumulate increasingly, the trajectory will be pushed by the

adaptive law to move to the true parameter vector.

5. Identification of wave parameters

The measurement of a directional wave elevation is necessary in (40) for the

identification of excitation forces on the structure (see Fig. 1). It provides the amplitudes of

the fractionated wave components of the wave spectrum and their phases, which is needed

for applying the wave parameters in the regressor (40), namely the wave amplitude ai, the

wave number ki and the wave initial phase fi of every component in the wave spectrum.

The wave parameters can be estimated from the measurement of the wave elevation at a

single-point of the surface. There exist ad hoc surface buoys with instrumentation to

achieve this objective. These on-line capture the height of the primary wave above the

bottom and perform RF transmission to another reception point (see, for instance,

Grosenbaugh, 1996; Tasai et al., 1980; Borgman et al., 2003). In particular, it is assumed

here that the sensor buoy is in the neighborhood of the floating structure, which is the

receptor of the wave information.

The objective in this section is to develop an estimation method for the wave

parameters based on the measurement of the wave elevation at a single point of the ocean.

The transmitted wave signal will be synchronized with the sensors of y, _y and €y of the

floating structure so as to exactly reproduce the excitation forces on the structure according

to (38).

Additionally, it is assumed that in the case of a continuous wave spectrum, this can be

approximated by a discrete one supported by discrete-time samples of the wave elevation

at an appropriate rate. The proper selection of the sample rate is based on following

physical arguments. First, it is a physical fact that wave spectra of different geographic

regions decrease significantly for frequencies greater than 10 rad/s. Therefore, it implies

by Shannon Theorem that the sample rate has not to be larger than p/10Z0.314 s. On the

other hand, too small values of the sample rate would lead to irrelevant information of the

wave at high frequencies and intolerable time-consuming computations for the spectrum

determination. An usual value for the sample time could be 0.1 s, thus the influence of

aliasing phenomena on the sampled signal due to the unconsidered portion of the spectrum

will be negligible.
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We divide our analysis into two cases, both concerning directional waves. The first case

describes regular multichromatic waves and the second one focuses realizations of

irregular stationary waves. In both cases x(t,x0,y0) is referred to as the wave elevation at the

sensor buoy position, which is digitally registered from tZt0 up to tZt0CT, with t0 the so-

called synchronization time and T the measurement period at the sensor buoy.

5.1. Case 1: Multichromatic waves

Consider a buoy with symmetry in the plane x–y and a periodic wave x(t,x0,y0) with a

wave heading angle equal to b according to (30). Thus it is valid

xðt; x0; y0ÞZ
XN
iZ1

ai sinðkiðx0 cos bCy0 sin bÞCuitCfiÞ; (76)

where fi is a stochastic phase uniformly distributed between 0 and 2p radians, ai the

amplitude, ui the frequencies of the wave components, b the incoming angle, ki the wave

number and (x0,y0) the geographic coordinates of the buoy with respect to the floating

structure.

The set of wave parameters to be identify is

§i Z fai;ui;fi; kig; iZ 1;.;N: (77)

As the line spectrum has no information of phase, one employs consequently the

Fourier Transform of x over the measurement interval [t0,t0CT], with T[2p/min ui

(Bracewell, 1978). Hence, the time-discrete signal

x0ðtk; x0; y0ÞZwðtk; t0; TÞxðtk; x0; y0Þ; (78)

is available from the measured signal with tk a discrete-time, w a weighting function that

satisfies w(t;t0,T)Zh(tKt0)Kh(tKt0KT) and h(t) a unit step function. Then, for N

samples in [t0,t0CT] the discrete Fourier transform (DFT) is

Xi ZXðtk; x0; y0ÞZ 1

N

XN
kZ1

ejð2pðkK1ÞðiK1Þ=NÞ; for 1% i%N; (79)

where Xif g represents a series of complex Fourier coefficients of the DFT, which can be

described equivalently in discrete time by

x0i Z x0ðt; x0; y0ÞZ
XN
iZ1

ai sinðuitCfiÞ; (80)

where the fx0ig represents the transmitted signal of the wave elevation to the floating

structure.

The estimation of ai and fi results from the calculus using the Fourier coefficients XiZ
aiCjbi in the following identity by means of

ai sinðuitCfiÞZai sinðuitÞCbi cosðuitÞ; (81)
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with

ai
jaij

cos tanK1 bi
ai

� 	Z
jbij

sin tanK1 bi
ai

� 	 ; (82)

fi Z

KtanK1 bi

ai

C
p

2
; for aiO0;

KtanK1 bi

ai

C
3p

2
; for ai!0:

8>>>><
>>>>:

(83)

The frequencies ui and the number N of them must be detected directly from the lines

of the series {Xi} in (79). The criterion developed in this paper is to define the set of

significative lines as

SN Z fai2DFT½xðtk; x0; y0Þ�jaiO3O0; iZ 1;.;Ng; (84)

with 3 a threshold for avoiding insignificant amplitudes. Then, for all ai in the set SN, one

picks up the frequencies ui for which (82) and (83) are calculated.

The wave numbers in (77) are univocally calculated a posteriori by means of the

implicit relation (Sorensen, 1993)

u2
i Z kig tanhðkidÞ; (85)

where d is the sea depth.

5.1.1. Example

Let x(tk,x0,y0) be a multichromatic periodic wave elevation as represented in Fig. 7. The

signal is composed by 10 sinus components with stochastically chosen phases and
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Fig. 7. Directional periodic wave elevation.
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reproduced with a sample time equal to 0.1 s on [0,T], with T being 30 times the signal

period.

After applying the DFT on x(tk,x0,y0), (82) and (83) and considering a threshold

3Z0:1 maxiZ1;.;NðaiÞ, then 10 harmonics are detected. The unknown amplitudes and

phases are identified with insignificant error and shown in Figs. 8 and 9, respectively.

5.2. Case 2: Irregular stationary waves

In the case of irregular stationary waves, the associated spectral density function is

continuous in the frequency. The contribution of energy of each wave component of the

0 0.5 1 1.5 2 2.5 3 3.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

omega [rad/s] 

ε

[m
]

Fig. 8. Amplitudes of the discrete Fourier Transform for a periodic wave elevation.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

order number of harmonic

[r
ad

ia
ns

]

Fig. 9. Estimated phases of the expansion for a periodic wave elevation.
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spectrum is infinitesimal. However, by the time sampling of such a wave in a finite period

T, a discrete spectrum is generated. For N time samples in T, the spectral lines are placed at

discrete frequencies (i2p)/T, with iZ0,G1,G2,.,GN/2. In the limit, i.e. for T/N, the

discrete spectrum tends asymptotically to the continuous one. For all discrete frequencies

the DFT computes the spectral density lines with amplitudes and phases which are

equivalent to the pseudo-stochastic signal x(t)Zx(tCT), where x(t) on [0,T] is the portion

of the sampled irregular wave behavior. Once T and N are fixed, one defines a set of

significative lines in the spectrum according to (84).
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Fig. 10. Directional random wave elevation.
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Fig. 11. Amplitudes of the discrete Fourier Transform for a random wave elevation.
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5.2.1. Example

In Fig. 10 a stationary random wave elevation x(t,x0,y0) is generated as a stochastic

process with the typical wave spectrum of Pierson–Moskowitz. The signal course on a

period of TZ700 s is depicted in Fig. 10.

After applying DFT on x(tk,x0,y0), (82) and (83) and considering a threshold

3Z0:05 maxiZ1;.;NðaiÞ, then 60 harmonics are detected as meaningful. The identified

amplitudes and phases are shown in Figs. 11 and 12, respectively. With these estimates,

the wave can be reconstructed with minor errors through the expression (76) for NZ60.

5.3. Insertion of the wave at the structure sensor point

The information of the buoy sensor has to be transmitted to the estimator, which computes

herefrom the wave elevation at the structure site. If the sensor buoy is located on the

downstream side with respect to the structure, then the estimator must predict backwards the

evolution of the wave elevation at the site of the structure. On the other hand, if the buoy is on

the upstream side, the estimator must predict forwards the evolution from the buoy sensor.

Only in the particular case when structure and buoy are located in a line, which is

perpendicular to the incoming wave direction, the wave elevation is the same at both sites.

If the wave is irregular, the wave elevation is not predictable anywhere. On the

contrary, for regular waves a prediction is possible. The problem of prediction the wave

elevation at different geographic coordinates is not simple because the wave may

propagate with different celerities for each frequency component, i.e.

ci Z
liui

2p
Z

ui

ki
: (86)

Hence the predictions does not imply a simple time delay of the elevation x(t) because

the initial phases fi change with the location. However, if the measurement of the wave

elevation is made at two different points simultaneously with relative coordinates (x0,y0)
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Fig. 12. Estimated phases of the expansion for a random wave elevation.
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and corresponding signals

x1ðt; 0; 0ÞZ
XN
iZ1

a1i sinðuitCf1iÞ; (87)

x2ðt; 0; 0ÞZ
XN
iZ1

a2i sinðuitCf2iÞ; (88)

then, according to (76), the initial phases f1i and f2i are related together through

f1i Z kiðx0 cos bCy0 sin bÞCf2i; (89)

and for each harmonic detected by means of the criterium (84) it is valid

ki Z
f1iKf2i

x0 cos bCy0 sin b
:

Finally, for the prediction of x, it is supposed that the transmitted data are synchronized

with the on-board sensors of the structure. Let the structure sensor position O have planar

coordinates (x(t),y(t)) and the coordinates of the buoy in the fixed frame have coordinates

(xb,yb). This synchronization is accomplished for the received wave elevation x(tk,x,y),

which is transformed by means of the DFT and rearranged for the new coordinates of the

sensor position O accordingly to

xðt;x;yÞZ
XN
iZ1

aicos KkiðxðtÞKxbÞcosðbKjðtÞÞKkiðyðtÞKybÞsinðbKjðtÞÞCuitCfiC
p

2

� 	
:

(90)

This periodic signal is the excitation that accounts for the dynamics of the platform

reproduced by the measures y, _y and €y. Moreover, the coefficients ai, ui, ki and fi are

needed in the regressor (40) for the intended on-line identification of the excitation-force

and drag-force models. For pseudo-periodic signals as described in the Case 2, the

prediction for another geographic point is only approximately valid, since the signal is not

repeatable after tOT.

6. Convergence

The analysis here is concerned with the ability of the estimation algorithms developed

in Section 3.3, to converge asymptotically to the true values under important classes of sea

excitations. The convergence of the estimation for the incident, diffraction and viscous-

drag parameters is first demonstrated for monochromatic excitation and then generalized

for directional regular multichromatic waves.

An important part of the convergence proof is based on the concept of persistent of

excitation (PE) for finite period of arbitrary length in continuous time, which is necessary

condition for analysis of asymptotic and exponential stable adaptive systems. The

literature in this area is quite diverse and vast, see for instance, Kreisselmeier and Rietze-
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Augst (1990), Narendra and Annaswamy (1987), Ioannou and Sun (1995) and Jordán

(2002).

Per definition, a piecewise continuous signal vectorF : RC/Rn is referred to as PE in

[0,T] with a so-called level of excitation a0O0 if there exists constants a1, T0O0 and

T02(0,T] such that

a1IR
1

T0

ðtCT0

t

FðtÞFT ðtÞdtRa0I: (91)

The results of this section are presented in form of theorems for a general moored

structure described by (37). First it is proved that the regressor vectorFqi
ðtÞ in (40) is PE.

Afterwards, the convergence of the algorithms (46), (47) and (48) are proved with the PE

condition satisfied.

Theorem 1 (Persistency of excitation—Case: monochromatic wave). If the floating

structure is excited by a monochromatic wave

xðt; x; yÞZ a0 cosðKk0ðxKxbÞcosðbKjÞKk0ðyKybÞsinðbKjÞCu0tCf0Þ; (92)

then the regressor Fqi
ðtÞ in (40) with NZ1 is PE.

Proof. ConsiderFqi
2R4 according to (39) for NZ1 with qi an arbitrary mode. Using the

definition in (91), for Fqi
to be PE it must satisfy

a1T0IR

ðtCT0

t

Fqi
ðtÞFT

qi
ðtÞdtRa0T0I; (93)

for some level of persistency a0O0, some constant a1O0 and some period T0O0. The

former condition is equivalent to

spanfFqi
ðtÞ; for t2½t; tCT0�gZR4: (94)

which corresponds to generate four vectors Fqi
ðtjÞ for arbitrary and distinct tj2[t,tCT0]

from the functional basis

BðtÞZ fb1ðtÞ; b2ðtÞ; b3ðtÞ; b4ðtÞg; (95)

with

b1ðtÞZK_qiðtÞj _qiðtÞj; (96)

b2ðtÞZ a1 cosðKk1ðxðtÞKxbÞcosðbKjðtÞÞKk1ðyðtÞKybÞsinðbKjðtÞÞ
Cu1tCf1Þ; (97)

b3ðtÞZ a1 sinðKk1ðxðtÞKxbÞcosðbKjðtÞÞKk1ðyðtÞKybÞsinðbKjðtÞÞ
Cu1tCf1Þ; (98)
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b4ðtÞZ a21; (99)

and to demand for {t1,t2,t3,t4}2[t,tCT0] that
P4
jZ1

Fqi
ðtiÞFT

qi
ðtiÞO0, i.e. to be positive

definite. More generally, for the last statement to be valid, there must not exist nonzero

constants cj other than zero such that one attains

b1ðtÞZ c1b2ðtÞ; (100)

b1ðtÞZ c2b3ðtÞ; (101)

b1ðtÞZ c3b4ðtÞ; (102)

b2ðtÞZ c4b3ðtÞ; (103)

b2ðtÞZ c5b4ðtÞ; (104)

b3ðtÞZ c5b4ðtÞ: (105)

For (100), the following differential equation is produced with (96) and (97)

K_qiðtÞj _qiðtÞjZ c1a1 cosðKk1ðxðtÞKxbÞcosðbKjðtÞÞKk1ðyðtÞKybÞsinðb
KjðtÞÞCu1tCf1Þ: (106)

In the case _qiZ _x the proportionality between the left and right members for every t is

impossible, i.e. there is no solution for all t2[0,N] except for a set of values {tk} of

measure zero. The main reason is that the right member of (106) describes an oscillating

function with crossings by zero, mainly due to the monotonically increasing argument u1t

with bounded signals x(t), y(t) and j(t). For _xðtÞj _xðtÞj to change oscillatory also the

modes y(t) and j(t) will be varied in particular forms in t. But these will result from the

fundamental constrain represented by the dynamic equation (49). The same argumentation

can be concluded for the other cases _qi2 _y; _z; _4; _q; _j
� �

.

On the other side, (101) concerns other differential equation of the same characteristic

as (106). It is thus straightforward to conclude that this new equation has no solution for all

t2[0,N] except for a set of values {tk} of measure zero.

For (102), the following differential equation

K_qiðtÞj _qiðtÞjZ c3a
2
1; (107)

is established and the solution for this is

qiðtÞZ c0tZ
c0O0; c0 ZK

ffiffiffiffiffiffiffiffiffiffi
c3a

2
1;

p
c0!0; c0 Z

ffiffiffiffiffiffiffiffiffiffi
c3a

2
1;

p
(

(108)
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with c3O0. But this solution corresponds to an unbounded trajectory, which contradicts

the stable solutions of the fundamental dynamic Eq. (49). So, we can infer that no state qi
can behave as c0t and hence (102) cannot be satisfied for all t2[0,N] except for a set of

measure zero. The same is inferred for (104) and (105).

It remains (103). This condition generates the constrain

cosðKk1ðxðtÞKxbÞcosðbKjðtÞÞKk1ðyðtÞKybÞsinðbKjðtÞÞCu1tCf1Þ
Z c4 sinðKk1ðxðtÞKxbÞcosðbKjðtÞÞKk1ðyðtÞKybÞsinðbKjðtÞÞCu1t

Cf1Þ; (109)

which leads to

cosðwðxðtÞ; yðtÞ;jðtÞÞCu1tCf1Þ
Z c4 sinðwðxðtÞ; yðtÞ;jðtÞÞCu1tCf1Þ; (110)

with

wðx; y;jÞZKk1ðxKxbÞcosðbKjÞKk1ðyKybÞsinðbKjÞ; (111)

a common function of the states in both arguments. Clearly, for every c4 there exists a

solution only for

wðxðtÞ; yðtÞ;jðtÞÞCu1tCf1 Z tanK1 1

c4

� �
; (112)

which is satisfied by a set of countable tk’s with measure zero in [0,N].

So one can infer that properties (100)–(105) cannot be fulfilled, unless cjZ0 in t2[t,

tCT0], for every t2[0,N] and T0O0. Finally on concludes that the regressor spans

uniformly the space R4 in t2[t,tCT0] for t2[0,N] and T0O0.

,

Theorem 2 (Persistency of Excitation—Case multichromatic waves). If the floating

structure is excited by a multichromatic wave elevation

xðt; x; yÞZ
XN
iZ1

ai cosðKkiðxðtÞKxbÞcosðbKjðtÞÞKkiðyðtÞKybÞsinðbKjðtÞÞ

CuitCfiÞ; (113)

then the regressor (40) is PE.

Proof. The PE condition of Fqi
ðtÞ on t2[t,tCT0] is equivalent to

spanfFqi
ðtÞ on t2½t; tCT0�gZR2ðNC1Þ; (114)

for every T0O0 and 2(NC1) being the dimension of the parameter vector. Let the function
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basis

BðtÞZ fb1ðtÞ;.; b2NC2g; (115)

be defined for generating vectors in R2ðNC1Þ for specific t.

The condition (114) is not satisfied if at least one of the following equations is fulfilled

with cjZconstants0 in t2[t,tCT0]

b1ðtÞZ c1b2ðtÞ; (116)

b1ðtÞZ c2NC1b2NC2ðtÞ; (117)

b2ðtÞZ c2NC2b3ðtÞ; (118)

b2ðtÞZ c4NC1b2NC2ðtÞ; (119)

b2NC1ðtÞZ c2N2C3NC1b2NC2ðtÞ: (120)

Many of these conditions are similar to those already analyzed in Theorem 1, where it

was shown that those concerning trigonometric functions are not satisfied, unless cjZ0.

Therefore, these similar ones are also valid here. The rest of the conditions, however,

involves two trigonometric functions of different frequencies and phases. They are, for

instance, b2(t)Zc2NC3b4(t), b2(t)Zc2NC4b5(t), etc. In general, this class of equations

can be put into

sinðwðxðtÞ; yðtÞ;jðtÞÞCuitCfiÞZ cj sinðwðx; ðtÞyðtÞ;jðtÞÞCujtCfjÞ; (121)

with w defined in (111) and uiOuj. Invoking the boundedness of x(t), y(t) and j(t), there

are in general a countable number of real values tk in [0,N] that are solution of (121). The

set of tk’s has measure zero.

Therefore, it can be concluded that the regressor Fqi
spans the dimension of the

parameter vector on [t,tCT0]. As this will occur for every T0O0 and t2[0,N], this span is

uniform in [0,N]. Then Fqi
is PE.

,

Now the proof of the convergence of the parameter trajectories qqiðtÞ is given. The

demonstration is based on stability analysis via Lyapunov functions (see Ioannou and Sun,

1995). The analysis of both the asymptotic and the exponential convergence is placed

under a common formalism. This in turn is related below to the fundamental estimators

described before, namely the least squares-based and the gradient-based algorithms.

Theorem 3 (Asymptotic convergence). IfFqi
ðtÞ of (40) is PE, then the pure least squares

estimation of (47) and (48) gives asymptotically error-free estimates provided that the
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measures in the set

Mi Z fx; qi; _qi; €qi;Fqi
g; (122)

are noise free, for qi2{x,y,z,4,q,j}, with the exception of Fqi
, which constitutes the

perturbed component qi of the measure vector in the left member of (38).

Proof. Let a Lyapunov function be

VðtÞd
ðt
0

ðFT
qi
ðtÞ ~qqi ðtÞÞ2dtZ (123)

~qqiðtÞPK1
qi
ðtÞ ~qqi ðtÞ
2

; (124)

with ~qqi ðtÞZKqqiKqqi ðtÞ the error of the estimate and �qqi the true estimate. Then

VðtCTÞZVðtÞK
ðtCT

t

ðFT
qi
ðtÞ ~qqiðtÞÞ2 dt; (125)

for any t and TO0. Using FT
qi
ðtÞ ~qqiðtÞZFT

qi
ðtÞ ~qqiðtÞCFT

qi
ðtÞð ~qqiðtÞK ~qqi ðtÞÞ and the

inequality (xCy)2R(1/2)x2Ky2, it follows

ðtCT

t

ðFT
qi
ðtÞ ~qqiðtÞÞ2dtR (126)

1

2

ðtCT

t

ðFT
qi
ðtÞ ~qqi ðtÞÞ2 dtK (127)

ðtCT

t

ðFT
qi
ðtÞð ~qqiðtÞK ~qqi ðtÞÞÞ2 dt: (128)

Since Fqi
is PE, one holds

ðtCT0

t

Fqi
ðtÞFT

qi
ðtÞdtRa0T0I (129)
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with a0O0 and some T0O0, it follows from (124)

ðtCT0

t

ðFT
qi
ðtÞ ~qqiðtÞÞ2 dtRa0T0 ~q

T
qi
ðtÞ ~qqi ðtÞ: (130)

On the other hand, the covariance matrix of the regressor Fqi
is

_Pqi
ZKPqi

Fqi
FT

qi
Pqi

; Pqi
ð0ÞZPqi0

; (131)

with _Pqi
%0, i.e. Pqi

ðtÞ%Pqi0
. Moreover as Pqi

ðtÞ is nonincreasing and bounded from

below, i.e. Pqi
ðtÞZPT

qi
ðtÞR0; ctR0, it is valid

lim
t/N

Pqi
ðtÞZ �Pqi

; (132)

where �Pqi
Z �PT

qi
R0 is a constant matrix. Because

Pqi
ðtÞZ

ðt
0

Fqi
ðtÞFT

qi
ðtÞdt

2
4

3
5K1

; (133)

andFqi
uniformly spans a space of the parameter vector dimension on [0,N], then �Pqi

Z0.

Hence

lminðtÞI%Pqi
ðtÞ%lmaxðtÞI; (134)

with

lim
t/N

lminðtÞZ lim
t/N

lmaxðtÞZ 0; (135)

and there also exist two bounds

�
lðtÞ%lminðtÞ%lmaxðtÞ% �lðtÞ; (136)

with the properties

�
lðtÞO

�
lðtC3Þ; (137)

�lðtÞ! �lðtC3Þ; (138)

for 3O0, i.e.
�
lðtÞ and �lðtÞ are monotonically increasing functions.

Using (124) and (134) in (130) one gets

ðtCT0

t

ðFT
qi
ðtÞ ~qqiðtÞÞ2 dt; (139)

R2a0T0�
lðtÞVðtÞ: (140)
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On the other side, it is valid from (47)

~qqiðtÞK ~qqi ðtÞZ (141)

ðt
t

_~qðsÞdsZ (142)

K

ðt
t

Pqi
ðsÞFqi

ðsÞFT
qi
ðsÞ ~qqi ðsÞds; (143)

and it follows

FT
qi
ðtÞð ~qqi ðtÞK ~qqiðtÞÞZK

ðt
t

~q
T
qi
ðsÞFqi

ðsÞFT
qi
ðtÞPqi

ðsÞFqi
ðsÞds: (144)

Using the Schwarz inequality on (128) with (144)

ðtCT0

t

ðFT
qi
ðtÞð ~qqiðtÞK ~qqiðtÞÞÞ2 dt (145)

%

ðtCT0

t

ðt
t

ðFT
qi
ðtÞPqi

ðsÞFqi
ðsÞÞ2 ds

0
@

1
A ðt

t

ðFT
qi
ðsÞ ~qqi ðsÞÞ2 ds

0
@

1
Adt; (146)

%b4 �l
2ðtÞ

ðtCT0

t

ðtKtÞ
ðt
t

ðFT
qi
ðsÞ ~qqiðsÞÞdsdt; (147)

with bZsuptR0 jFqi
ðtÞj. Changing the sequence of integration in (147), it is valid

ðtCT0

t

ðFT
qi
ðtÞð ~qqiðtÞK ~qqiðtÞÞÞ2 dt; (148)

%b4 �l
2ðtÞ

ðtCT0

t

ðFT
qi
ðsÞ ~qqiðsÞÞ2

ðtCT0

s

ðtKtÞdtds; (149)
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%b4 �l
2ðtÞ

ðtCT0

t

ðFT
qi
ðsÞ ~qqiðsÞÞ2

T2
0KðsKtÞ2

2

� �
ds; (150)

%
b4 �l

2ðtÞT2
0

2

ðtCT0

T

ðFT
qi
ðsÞ ~qqi ðsÞÞ2ds: (151)

Using (140) and (151) as new bounds for (127) and (128) in (126) and making TZT0,

one achieves

ðtCT0

t

ðFT
qi
ðtÞ ~qqiðtÞÞ2 dt; (152)

Ra0T0�
lðtÞVðtÞKb4 �l

2ðtÞT2
0

2

ðtCT0

T

ðFT
qi
ðsÞ ~qqi ðsÞÞ2 ds; (153)

which leads to

ðtCT0

t

ðFT
qi
ðtÞ ~qqiðtÞÞ2 dt; (154)

R2a0T0�
lðtÞ

2Cb4T2
0
�l
2ðtÞVðtÞ: (155)

Using this inequation in (125) for TZT0 and denoting g1ðtÞZ ð2a0T0�
lðtÞÞ=ð2C

b4T2
0
�l
2ðtÞÞ one attains finally

VðtCT0Þ% ð1Kg1ðtÞÞVðtÞZgðtÞVðtÞ: (156)

Because g1(t)R0 and V(tCT0)R0, then we have 0!g(t)!1.

Since (156) holds for all tR0, we can take samples of V(t) equally spaced at time points

equal to nT0, nZ0,1,., and use (156) successively to obtain

VðtÞ%VðnT0Þ%gð0Þgð1Þ/gððnK1ÞT0ÞVð0Þ; (157)

for all tRnT0, and 0!gð0Þ;gðT0Þ;.;gððnK1ÞT0Þ!1 with g(t)/1 for t/N. Certainly,

as n/N,
QnK1

iZ0

gðiT0Þ/0, and the convergence is reached asymptotically, i.e. V(t)/0 for

t/N asymptotically fast. This implies in turn that ~qqi ðtÞ/0 for t/N asymptotically fast.

,

M.A. Jordán / Ocean Engineering 33 (2006) 1161–12131198



Remark 1 (Exponential Convergence). As
�
lðtÞ and �lðtÞ are not guaranteed to be constant

or time-variable with the same order of magnitude, then one can not ensure an exponential

decay of V(t) in time as in the case of a gradient-based algorithm, where Pqi
ðtÞ is replaced

by a fixed positive definite matrix G in the adaptation law (46). As g(t) will tend to 1

asymptotically fast for t tending to infinity, a rapid approximation of the parameter

trajectory is expected in the initial phase, while the convergence will go decelerating in

time. On the contrary, for a gradient-based algorithm the descent of the error trajectory
~qqiðtÞ is uniform in time and takes place exponentially.

This can be drawn out directly from the last result in former theorem. If we replace

Pqi
ðtÞ in the adaptation law by a constant, positive definite matrix G with constant

eigenvalues lmax and lmin, then gZ1Kðð2a0T0lminÞ=ð2Cb4T2
0l

2
maxÞÞZconstant and it is

valid

VðtÞ%VðnT0Þ%gnVð0Þ; for c tRnT0; nZ 0; 1;.; (158)

for all tRnT0, 0!gn!1, and the convergence occurs exponentially fast.

7. Case study: identification of a semisubmersible

In order to test the proposed estimation algorithms in Section 3, the model of a moored

semisubmersible called Thialf (DB102) is taken as case study (see Fig. 13). The main

geometric measures and operating parameters of the dynamic system are given in the

table 2.

This kind of system has a complex hydrodynamics represented by the induced

radiation, diffraction and incident forces. It disposes of six thrusters for pitch control

during operation of the twin cranes. The structure is maintained at a fixed position by

means of a system of mooring lines with symmetric balance of the initial tensions. For the

Fig. 13. Twin crane semisubmersible Thialf.
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simulation of the whole dynamics, a geometric model was constructed in the program

Advanced Quantitative Wave Analysisw (AQWA, 2002), see Fig. 2. The CAD program

enables the calculation of the hydrodynamic forces by means of finite elements and the

simulation of the behavior under external perturbations like regular waves. In all

simulations it is assumed that the pitch control remains inactive and the structure stands at

a static equilibrium before the wave action comes into effect on the system behavior.

Moreover, a perfect symmetry in geometry and mass distribution about the plane x–z is

assumed.

The simulations are divided into case (a) monochromatic excitation and case (b)

multichromatic excitation. In the first case, the system is subject to a planar motion

involving three modes of motion. In the second case, the system is free to move in six

degrees of freedoms. The simulation provides all the measures, i.e. the signals on the first

membership of (38) and the elevation of the free surface at the pointO on the water line, so

as the regression (39) for the parameter estimation can be built up with s2(t)h0. The

estimation algorithm used in the simulation is based on quadratic norm and described in

(47) and (48).

7.1. Parameter identification under monochromatic waves

Under symmetric distribution of mass and volume about the x–z plane, an incident

angle for the monochromatic wave equal to zero will produced a planar motion of the

system in the modes surge, heave and pitch. This kind of wave constitutes the most

unfavorable case for the estimation from the viewpoint of the richness of the excitation.

In Table 3 the parameters of the monochromatic wave are given.

The steepness of the selected wave, i.e. 2a/l, is small enough ð2a=lZ0:0186!1=50Þ so
as to consider the Potential Theory of Airy for the hydrodynamics valid. According to (41),

the parameters to be identified are

qx Z ½CDx
Ax H1x H2x Gx �T; (159)

qz Z ½CDz
Az H1z H2z Gz �T; (160)

Table 2

Basic information of the semisubmersible model Thialf

Length (m) Breadth (m) Weight (ton) Max. load (ton) Min. draught (m) Max. draught (m)

201.6 88.4 136,709 14,200 11.8 31.6

Table 3

Wave parameters

Frequency

u0 (rad/s)

Period T

(s)

Amplitude

a (m)

Number k

(rad/m)

Phase f

(rad)

Angle b

(rad)

Length l

(m)

Depth d

(m)

0.445 14.1354 2.8190 2.0237!10K2 1.5736 0 302.34 100
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qq Z ½CDq
Aq H1q

H2q
Gq �T: (161)

Figs. 14–16 depict the evolution of the modes surge, heave and pitch of the

semisubmersible, beginning from the static equilibrium up to practically the steady state. It

is appreciated a transitory of great intensity and duration with a weak damping,

Fig. 14. Induced surge motion under monochromatic excitation.

Fig. 15. Induced heave motion under monochromatic excitation.
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particularly in the surge mode. The long persistence of the transitions is mainly due to the

large inertia and the weak potential-radiation and viscous damping under slow motions.

The transient duration is approximately 170 times longer that the period of the wave in the

surge mode, but about the half shorter in the heave and pitch modes.

Fig. 16. Induced pitch motion under monochromatic excitation.

Fig. 17. Evolution of the estimate CDx
Ax.
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Figs. 17–19 reproduce the evolution of the estimates which contain the drag coefficients

in the different modes. The true values of the CDi
’s can indirectly be obtained if the

effective areas Ax, Az and Aq are calculated beforehand. The convergence is fast in the first

phase and then the evolution tends slowly to the true values with exception of the estimate

CDq
Aq, which shows a small bias at end of the identification period.

Fig. 18. Evolution of the estimate CDz
Az.

Fig. 19. Evolution of the estimate CDq
Aq.
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In Figs. 20–23, the behavior of the estimates for the incident force transfer function in

the x–y plane are exposed. One sees the convergence takes place asymptotically.

The estimation of the constant parameters of the second-order drift force, are given in

Figs. 24 and 25. A slow convergence is however observed in the estimate Gz.

Fig. 20. Evolution of the estimate H1x.

Fig. 21. Evolution of the estimate H2x.
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In general, the transient behavior has enabled a fast approximation of the estimates to

the true values, yet for some parameters the asymptotic convergence takes place slow in

steady state. The reason is that the level of excitation drops in time as it is verified from the

evolution of the eigenvalues of the covariance matrix of the least-squares estimator for the

Fig. 22. Evolution of the estimate H1z.

Fig. 23. Evolution of the estimate H2z.

M.A. Jordán / Ocean Engineering 33 (2006) 1161–1213 1205



Fig. 24. Evolution of the estimate Gx.

Fig. 25. Evolution of the estimate Gz.
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mode qi

PK1
qi
ðtÞZ

ðt
0

Fqi
ðtÞFT

qi
ðtÞdt

2
4

3
5K1

; (162)

and from its relation with the property of persistence of excitation PE (cf. (91))ðv
tKT0

Fqi
ðtÞFT

qi
ðtÞdtZPK1

qi
ðtÞKPK1

qi
ðtKT0Þ: (163)

In Fig. 26, the behavior in time of the eigenvalues of the covariance matrix for the

parameter vector qx are shown as part of the validation for Px(t)O0.

All eigenvalues remain positive during the estimation. From them, the second and the

forth constitute the minimal and maximal values (referred to as
�
l and �l), respectively.

From (162) and (163) and the evolutions of
�
l and �l it is proved that there always exists an

instant t1 so that tOt1 for which it is valid

½t
�
lðtÞKðtKT0Þ�lðtKT0Þ�I

%

ðt
tKT0

Fqi
ðtÞFT

qi
ðtÞdt% ½t �lðtÞKðtKT0Þ �lðtKT0Þ�I; (164)

Fig. 26. Evolution of the eigenvalues of (1/t)PK1(t).
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and there exist a1,a0O0 such that

a1R ½t �lðtÞKðtKT0Þ �lðtKT0Þ�O ½t
�
lðtÞKðtKT0Þ�lðtKT0Þ�Ra0; (165)

for every T0O0. The same is verified for the eigenvalues of the minors of first, second and

third order. Then, for t/N it is expected an asymptotic convergence of the estimates

from qx(0).

7.2. Parameter identification under multichromatic waves

In this case a multichromatic wave with an incident angle of 458 is applied to excite the
floating structure in 6 degrees of freedom. The wave parameters are summarized in

Table 4.

For this case there are 72 parameters involved to be estimated. They are described in the

parameter vectors

qx u0;bZ
p

4

� 	
Z CDx

Ax H1x1
.H1x10

H2x1
.H2x10

Gx

 �T
; (166)

qy u0;bZ
p

4

� 	
Z CDy

Ay H1y1
.H1y10

H2y1
.H2y10

Gy

 �T
; (167)

qz u0; bZ
p

4

� 	
Z CDz

Az H1z1
.H1z10

H2z1
.H2z10

Gz

 �T
; (168)

q4 u0;bZ
p

4

� 	
Z CD4

A4 H141
.H1410

H241
.H2410

G4

 �T
; (169)

qq u0;bZ
p

4

� 	
Z CDq

Aq H1q1
.H1q10

H2q1
.H2q10

Gq

 �T
; (170)

qj u0;bZ
p

4

� 	
Z CDj

Aj H1j1
.H1j10

H2j1
.H2j10

Gj

 �T
: (171)

Table 4

Harmonic components of a multichromatic wave for simulation

Comp. j Freq. u

(rad/s)

Period T

(s)

Amplit. a

(m)

Number k

(rad/m)

Phase f

(rad)

Angle b

(rad)

Length l

(m)

Depth d

(m)

1 0.272 23.099 0.312 8.743!10K3 1.572 p/4 632.292 100

2 0.309 20.333 0.433 1.058!10K2 48.923 p/4 533.637 100

3 0.334 18.811 0.325 1204!10K2 273.587 p/4 478.082 100

4 0.358 17.550 0.404 1.357!10K2 166.684 p/4 431.353 100

5 0.384 16.362 0.304 1.534!10K2 193.366 p/4 386.756 100

6 0.413 15.213 0.290 1.757!10K2 80.395 p/4 343.233 100

7 0.448 14.025 0.424 2.059!10K2 18.506 p/4 298.165 100

8 0.496 12.667 0.334 2.518!10K2 245.961 p/4 247.416 100

9 0.575 10.927 0.286 3.373!10K2 246.116 p/4 185.986 100

10 0.852 7.376 0.296 7.415!10K2 338.059 p/4 84.943 100
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Fig. 27. Multichromatic wave excitation of 10 components.

Fig. 28. Evolution of the surge mode.
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Fig. 29. Evolution of the estimate H1x3
.

Fig. 30. Evolution of the estimate H2x3
.
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The surface elevation is given in Fig. 27. From this excitation it results the surge

displacement x as shown in Fig. 28.

In the next figures a part of the estimations are depicted. All evolutions

corresponding to the first-order components of the exciting force parameters are

characterized by a fast convergence after starting the estimation followed by a jittery

behavior of the estimates about a fixed value. The variance of the estimates however

fades away in time. These features can be observed in Figs. 29 and 30 for the

parameters corresponding to the third harmonic of the wave in the sway mode.

The evolution of the estimations corresponding to the second-order components of

the exciting force parameters is, in opposite to those of the first-order components,

smooth and faster. As example of these features the estimate for the surge mode is

reproduced in Fig. 31.

8. Conclusions

In this work an approach to identify hydrodynamic models for incident, diffraction and

viscous forces acting on a moored floating structure is presented. It is based on measures of

the mechanical state and of the mooring forces. This contribution, together with the

identification of models for the mooring lines attached to the structure (Jordán and

Beltrán-Aguedo, 2004a) and the estimation of potential-radiation models (Jordán and

Beltrán-Aguedo, 2004b) complete the parameter estimation of the whole dynamic system.

Fig. 31. Evolution of the estimate Gx.
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An important aspect in the approach has consisted in the analysis of the unknown initial

condition of the hydrodynamic state for the potential-radiation force. It has been proved

that its influence on the parameter convergence is vanishing and has no long-term effect.

The number of parameters of the hydrodynamics involved in the estimation is relatively

large. Due to the nonlinear nature of the model structure, it is possible to satisfy a complete

span of the regressor (PE property) even in the case of poor excitation conditions. This

work has provided theoretical results that show that asymptotic convergence of the

estimates takes place under arbitrary conditions of the wave excitation. The proof was

given first for the case of monochromatic waves, which can be considered as the worst

case from the viewpoint of the richness of information. This result was also generalized for

the case of multichromatic waves. A case study consisting in the identification of a moored

semisubmersible shows the application of the approach by means of numerical

simulations.
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