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Abstract

This work presents an approach to identify hydrodynamic models for incident, diffraction and
viscous forces acting on a moored floating structure. An important aspect treated here is the analysis
of the unknown initial condition of the hydrodynamic state for the potential-radiation force. There is
established its influence on the parameter convergence and the long-term effects. Afterwards the
persistency of excitation of the regressor is analyzed in the case of both poor and rich excitation
conditions. Theoretical results show that asymptotic convergence of the estimates takes place under
arbitrary conditions of the wave excitation. A case study consisting in the identification of a moored
semisubmersible is carried out to exemplify the application of the approach.
© 2005 Published by Elsevier Ltd.
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1. Introduction

In this paper an approach to the on-line identification of models for excitation and
viscous-drag forces of moored floating structures is addressed. The class of floating
systems included here encompasses semisubmersibles, buoys, barges, pontoons, crane
ships, oil tanks, among the most common used in ocean engineering.
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The importance of attaining accurate models relies mainly on control requirements like
dynamic positioning of the floating system around fixed positions and also on the needs of
stability analysis like research of forced behaviors with nonlinear oscillations.

From the point of view of the hydrodynamics, an ocean—engineering system interacts
with the liquid environment, in particular with waves. This interaction is subject to
incidental, diffraction, radiation-induced forces and viscous-drag forces (Faltisen, 1990).
A common mathematical approach for the analysis of the forces is the linear Theory of
Airy, which relies on the assumption that excitation waves have small steepness
(Sorensen, 1993). Incoming-wave forces are however divided into linear components of
first-order and nonlinear components of second-orders accounting for the low-frequency
drift caused on the body (Clauss et al., 1982). In particular, potential radiation forces are
induced from the motion of the floating body with a memory effect which vanishes
asymptotically in time (Cummins, 1962; Jiang, 1991). A common property of all
hydrodynamic loads is that they cannot be directly measured. Additionally, the initial
hydrodynamic state for determining the time evolution of potential radiation forces is
unknown.

The requirements of interpreting complex nonlinear dynamic behaviors and also
modifying them by means of control systems are habitually satisfied with the use of
models (Fossen, 1994). Physical models can provide a more accurate and appropriate basis
for analysis, design and simulation tasks than mathematical models since they accurately
capture all phenomenological effects and the true model structure. The determination of
physical models for ocean—engineering systems has been usually accomplished through
experimental tests carried out on structures in reduced scales with the help of onerous test
facilities (Chakrabarti, 1994). On the other side, many of the ocean—engineering systems
nowadays are equipped with a basic instrumentation that enables the registration of
numerous state variables and signals of their behaviors. They provide a common mean for
achieving control, fault diagnosis and supervision purposes. Other direct possibility is to
construct the model via parameter estimation using these measured data on-line.

The employment of on-line methods of the Estimation Theory may have numerous
advantages with respect to the empirical way via test facilities. First on-line estimated
models can be identified using the true excitation of the dynamics, it is, the same one that
perturbs the functional operation of the floating structure. Second, they can be obtained at
a relatively lower effort, time and costs (Ljung, 1987). Finally, many parametric
modifications of the system and environment succeed periodically like variation of the
system mass, initial tension of mooring lines, changes of the depth during tide and flood,
variable wave spectrum, amplitude frequency and incoming angle among others. These
changes can be actualized in model if some proper techniques of adaptation of parameters
are applied on-line. With a continuously updated model, self-tuning of controller
coefficients and adaptive controllers for periodic changes of the system coefficients are
also possible (Ioannou and Sun, 1995).

As a moored floating structure is composed by many subsystems actuating
interactively, namely the mooring-line system, the potential-radiation hydrodynamics,
the Froude—Kriloff excitation and the viscous drag, then a complete estimation may be
performed by integrating the estimations of each subsystem as schematically shown in
Fig. 1. An approach to identify coefficients of mooring lines in dynamic operation with
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measures of the forces and position at their upper extremes is presented in Jordan and
Beltran-Aguedo (2004a). The estimation of potential-radiation models is analyzed in
Jordan and Beltran-Aguedo (2004b). In the present work, we complete the identification of
the whole system. The additional subsystems are identified with the measure of
mechanical states, the wave elevation at a certain coordinates and the reconstruction in
time of the potential-radiation force with initial hydrodynamic state equal to zero.

Due to the numerous parameters involved in the estimation, the question emerges
whether it is possible to estimate them under arbitrary conditions of the excitation. The
worst case, but also one of the most important in the application, is described by
monochromatic waves. As this kind of excitation usually possesses a poor richness of
information for identification, a rigorous study of the so-called persistency of excitation
(PE property) is needed. This analysis will categorically determine whether the estimation
algorithms employed in the parameter identification are able to converge asymptotically or
not under such poor but real conditions of excitation. Other important aspect in the
analysis is the effect of the initial hydrodynamic state of the potential-radiation force in
the parameter convergence, which is unknown. All these features will be considered in the
analysis and design of estimation algorithms.

The paper is organized as follows. In the first part, phenomenological laws for the
system dynamics are presented. Afterwards, a regression for the estimation is established
with the analysis of the initial state for the radiation hydrodynamics using concepts of the
Hyperstability Theory. Later, the design and convergence proof of suitable estimation
algorithms in continuous time are presented in form of theorems for the cases of mono-
and multichromatic waves, respectively. Finally, simulation results for the identification of
models for excitation and viscous-drag forces are exemplified for a general case of a
moored semisubmersible.

2. Dynamics of a moored floating structure
2.1. General considerations

The dynamics of a moored floating system is considered in 6 degrees of freedom.
Accordingly, three pure translations are possible along the longitudinal, transversal and
vertical directions of the structure, and three pure rotations are possible about each one of
these directions (see Fig. 2). The six motions are termed surge, sway, heave, roll, pitch and
yaw, respectively. For these motions an earthbound reference coordinating system parallel
to the main directions with the origin at the point O on the water line is selected. In this
way the position and the orientation of the structure are given by a generalized position
vector y = [x,y,z,(p,ﬁ,t//]T containing the six pure motions in the same order as introduced
above. Accordingly, y and y are the generalized velocity and acceleration vectors,
respectively. In addition, it will be useful to indicate the rotation separately as a=
(@.0.9)".

The structure is anchored to the sea bed by means of a system of symmetrically spread
mooring lines. The sea depth from the bed to the still water level is denoted by d. Regular
monochromatic waves are assumed to income from a direction with angle 8 with respect to
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Fig. 2. Conventions for coordinate frame in a semisubmersible.

the x-axis, and to be of amplitude a, frequency w and length A. An usually incorporated
ballast system enables an horizontal balance of the structure with respect to the free
surface in still water. This will be taken as a reference initial position in this work.

The mathematical description is mainly based on the moving equations of rigid body,
the interaction fluid—structure and the interaction structure—mooring system.

2.1.1. Assumptions
The modelling will rest on the following assumptions:

(a) A small wave steepness (2a/A<1/50) is considered such that Linear Potential Theory
(Airy’s Theory) can be applied.

(b) The sea depth for operation of a floating system is supposed intermediate and
constant.

(c) The structure is perfectly balanced by the ballast system at hydrostatic equilibrium,
i.e. oo="00=1v(=0 degree in still water.

(d) The mass of the structure is symmetrically distributed with respect to the plane x—z.

(e) The initial tensions of the mooring lines at hydrostatic equilibrium are equal.

(f) The mass of the set of mooring lines is negligible in comparison to the structure mass.

(g) No sloshing phenomenon in ballast system is taken into account.

The modelling of a moored ocean—engineering system can be developed in three stages.
First, the equations for the dynamics of the structure conceives as a rigid body are obtained
in generalized coordinates. Hereafter, the interaction between fluid and structure together
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with the description of the rest of the acting forces is derived. Finally, the characterization
of the complete dynamics in space state form is presented.

2.1.2. Notations

Matrices are denoted by capital letters while vectors are in bold. Variables and
constants are denoted in italic. Transforms, functional norms and sets are written in
calligraphic. The zero vector is referred to as 0, the null matrix as 0 and the identity matrix
as 1, all of them with the corresponding dimension given in the context. The symbol ‘X’ is
referred to the outer product and the symbol ‘:=" will denote a definition of a variable into
an equation. Norms of vectors and induced norms of matrices are represented by ‘|- ||”.
Finally, estimates are characterized with the symbol ‘A’ over the variable name.

2.2. Rigid body dynamics

The dynamics equations for the moored structure are determined by setting up the
change of the linear and angular momentums. Starting point for the linear momentum H;,
is the position vector r; of the gravity center rotated in « from initial position
0,0,z5,0,0, O)T. Analogously, the angular momentum H, is established with respect to
the system coordinates O. Hence

H, =mig (D

0

HAO = HAG + mrg X .I;G, (2)

with m the system mass matrix, Hy, Hy , and Hy, are the linear and angular momentums
with respect to O and G. In generalized coordinates, it results in

K i F; 3
MO + K. §) = ,
)y (y.¥) S X o 3)

where F; are the external forces, F; X ry o the moment caused by F; with respect to O in a
rotation & about it, r4 ¢ is the distance between the force application point A; and O.
The matrix M(y) is the generalized inertia matrix

(m 0 0 0 m m, i
0 m 0 —m 0 —my
0 0 m —niy ms 0
M(y) = , “)
0 —my —IMy Ixcx(; + my ms _IXGZG + meg
my 0 ms ms Ly, +my mg
_m2 —my 0 _IXGZG + meg mg IZGZG +m9 i

with I ., Lyyo» Lo, @0d I, the inertia moments with respect to the xg-, yg-, Zg-axes

which have origin at G and are parallel to the x-, y-, z-axes, and m; till mg functions of «
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having the form
my(a) = mZg cos ¢ cos 0,

my(a) = mZg(sin ¢ cos Y —cos ¢ sin 6 sin ),

ms (o) = —mZg(sin ¢ sin Y + cos ¢ sin 6 cos ¥),
my(a) = —mZ5[(sin @ cos ¥ —cos @ sin 6 sin Y)*> + cos’¢ cos>4],
ms(a) = mZZG[sin2<p sin ¥ cos ¥ —cos’¢ sin? sin Y cos ¥ )
+sin ¢ cos ¢ sinf(2 cos’>y — 1)],
mg(a) = —mz%[sin @ cos ¢ cos 0 sin ¥ + cos’¢ sin 0 cos 0 cos /],
m;(a) = mZZG[(sin @ sin ¥ + cos @ sin 0 cos ) + cos’g cos’d],
mg(a) = mZ5[sin ¢ cos @ cos  cos Y —cos?e sin 6 cos 0 sin /],
my(a) = mZ%;[coszgo sin?@ + sin’¢].
Finally, K(y, y) contains the generalized centrifugal and Coriolis forces
st mt T gl 4 md
my@* + m21/}2 —my @0 + m, 0y
K(y.y) = _mlfz _mliz + im3w ._.mzw L ©)
mgl” —mg\y me@l —mspy + my 0y
e + mey’ —mgp0 + mygpy + msfy
| msp*—ms6® | L my 190 + mggy —meby |
with m ;o and m;; also functions of & with the expression
myo(e) = —mZ5[(sin ¢ sin ¥ + cos ¢ sin 6 cos )2 —cos’¢ cos>f]
my(a) = mZ%;[coszqo sin?6(2 cos’y — 1) + 4 sin ¢ cos ¢ sin 6 sin ¥ cos ¥ @)

+sin?p(1 —2 cos?y)].

2.3. Generalized forces

In the following, the generalized forces indicated on the right side of (3) are derived.
They comprise the forces caused by mooring lines, structure weight, hydrostatic buoyancy,
hydrodynamic loads like incidental, diffraction, potential-radiation and viscous drag forces.

2.3.1. Generalized mooring forces

The mooring forces act on the structure at the attached points with coordinates (x;,,
Y1.»21,) depending on y. The force and the moment respect to O produced by each mooring
line i are obtained in the following way.
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First, if the chain length L satisfies

2H;

1

L= @y, —au)y|———
mcg(z(),- _Zli)

then the generalized force at the attached point i is

r H; cos(«;) 7
H; sin(«;)
2H;
mg(zo, —21,), [———=
m.g(zo, —z1,)
F, () = 57 , ®)
H; sin(e)ze, +me8(zo, —Z1), |,
mcg(ZO,- _ZI,-)
2H;

Hi COS(O[,')ZC’_ + mcg(ZO,- _Zl,-) 71)(:0,-
mcg(zo, —z1,)

H; cos(a;)y,, + H; sin(a;)x,,

with H; being the horizontal component of the peak tension and obtained implicitly from

H.

H,— [cosh(mcg l) —1} —(z0,—21.) =0, 9)
m.g Hi ' '

1= \J0o, =) + 0, =) (10)

where m, is the mass of the line per length units, «; the line angles in a top view with
respect to direction x, (xo., Yo, Zo,) the coordinates of the attached points at sea bed and

Xe xC/
Ye, | = Tol@) | ¥, |, a1
z, Z,

with (%, .., Z,) the coordinates of the attached points at hydrostatic equilibrium, (x,,,y.,
»Zc,) the coordinates of them after a rotation a and T a transformation matrix given by

To(a) = T,(WT(DT (o), 12)

cos(y) —sin(y) O
T.(y) = | sin(y) cos(y) O/, (13)
0 0 1
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cos(d) O sin(h)
T(0) = 0 1 0 ,
—sin(d) 0 cos()

1 0 0
T.(p) = |0 cos(p) —sin(p)
0 sin(p) cos(p)
If, on the other hand, the chain length L satisfies

2H;
o, —u) | > L2\ [P+ (20, —21,)
m.g(zo, —z1,)

H; cos(e;)
H; sin(w;)

then

m.gL

F = )
() H; sin(a;)z., + m.gLy..

H; cos(ay)z,, + m.glx,,

| H; cos(e)y, + H; sin(ey)x,, |
with

H.L L
i sinh M8
m gL H;

—

~1=0,

i

where [ is given in (10). Here, it was assumed that any line will not tear up if

L2 /o, =1, =07 + (5, =1, =) + (o, — 21, — O™

The resultant of all catenary generalized forces F,, is termed F,,.

2.3.2. Generalized structure weight

1169

(14)

5)

(16)

A7)

(18)

The action of the gravity on the structure is obtained by the structure weight force

-0 -
0
mg

F.(y) = ,
mgyg

mgxg

19)
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where

{xG:| _ l Zg(sin ¢ sin Y + cos @ sin 6 cos V) 20)

Ya Zg(—sin ¢ cos Y + cos ¢ sin 6 sin ¥)

results from a rotation in « of the vector (0,0, ZG)T.

2.3.3. Generalized hydrostatic buoyancy

Assuming calm water and the structure rotated in «, the hydrostatic force acts on the
metacentric point of coordinates referred to as ()cm,ym,z,,,)T whose position at hydrostatic
equilibrium is (0, 0, Z,,)" with Z,, the metacentric height. The hydrostatic generalized force
is

0
0

—mg — pgA,z
Fy(y) = , 21
—(mg + pgA,2)Yym
—(mg + pgA, 2)x,

0

with p the density of water, A,, the structure water plane area and

X Zu(sin ¢ sin ¢ + cos ¢ sin  cos ¥)
Ym | = | Zu(—sin @ cos ¥ + cos ¢ sin O sin y) |, (22)
Zm Zn(cos ¢ cos )

the metacentric position after rotation.

2.3.4. Generalized potential-radiation force

The induced structure motion due to wave load causes radiation. This radiation is
captured according to the linear Theory of Airy as potential-radiation loads influencing the
inertia and kinematics of the dynamics. They are associated with radiated waves in an
ideal fluid and can be stated in the time domain by means of state-space-model approaches
(Jiang, 1991; Schelin et al., 1993; Jordan and Beltran-Aguedo, 2003) or a convolution
approach (Cummins, 1962; Olgivie, 1964). This is

F,(y,sp) = —M,y + so, (23)

with M, the so-called added mass matrix or hydrodynamic mass matrix for a frequency
equal to infinite

M, = diag(a,_,a,_,a, ,a,_, a4 ,ay ), (24)
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and the vector sy accomplishing

1

So(t) = — J K(t —7)y(r)dr, (25)

—00

where K(7) is a functional matrix of the independent variable 7 containing all the memory
of the radiated fluid load response. It depends only on the geometry of the wet part of the
submersed body. It is noticing that the evolution in time of F;, depends on the past history
of the velocity of the point O, weighted by K(7) on 7&€[— o0, ,]. It is suitable to
decompose sy in a measurable and a nonmeasurable part as

So() = 81(2) +85(0), (26)
with
si(t) = —J K(t—7)y(r)dr = — J K(m)y(t—7)dr 27
0 0
0
S,(t) = — J K(t —7)y(r)dr. (28)

If y(¢) is registered up to >0 and the past evolution is considered zero, then s,(#) =0.

2.3.5. Generalized hydrodynamic viscous-drag force
Hydrodynamic viscous-drag forces acting on the moving hull are calculated from
empirical relationships. The generalized force is considered as

FV(Y) = _Ep(CDxAxlxlx’ CDyAylylya CDZAzlzlz, CDq,Aq;l@l(P’ CD9A0|0|67 CD¢A0|¢|¢)T,
(29)

where Cp are empirical drag coefficients and A; are coefficients that depend on the
geometry of the wet hull shape.

2.3.6. Generalized excitation forces

Forces acting on the structure due to incoming waves produce incidental and diffraction
loads. They are approximated by the sum of a first-order component and a second-order
slowly-varying drift component (Clauss et al., 1982). An important class of waves is the
directional stationary wave composed of a infinite number of wave harmonics at discrete
frequencies. This is of random stationary nature. Other wave type is the periodic
multichromatic wave. The evolution in time for this particular wave with components of
amplitude qa;, frequency w;, incoming direction (5, wave length 4;, initial phase ¢;, with
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respect to the coordinate system is referred to as the free surface elevation

N
E(.y. 1) = a; cos(ay), (30)
i=1
2w .
0; = 5~ (xcos(B—y) +ysin(B—y)) —wit + ¢, €Y
with (8 —v) the wave heading of the wave component i. The wave length is calculated as
2= 2ch’
w;

with ¢ the so-called wave celerity for each component.
For N components, the generalized excitation force acting on the coordinate center
point O results

N
F(y,0) = > Hya; cos(—ki(x(r) —x,)cos(8 — (1) — ki(y(1) = yp)sin(8
i=1

—Y(1) + wyt + ¢;) + Hya; sin(—k;(x() — x,)cos(B —y(1))

—k;(y(1) —y,)sin(B — (1)) + wit + ¢) + GGy, (32)

where x;, and y,, are the coordinates of the measurement point of the free surface elevation
with respect to O, k; is the wave number equal to (27t/4;), and

Hj(w;, 8—¥) = (Hlxi’Hlylezi’Hl(p,’HlBi’Hl\,//i)T’ (33)
H,i(w;, 8—V) = (Hay, Hyy Hy, Hop  Hog Hay,)' (34)
Gi(®.6—V¥) = (G,.G,.G,.G,.G;.G,)", (35)

with gains Hy;,, H;,, which are pairs of the real and imaginary parts of the frequency
transfer function vector corresponding to the first-order component of F,, at w;. They
depends also on the hull form and on the wave heading. Additionally, the gains are state-
dependent through the yaw angle, which may vary in stationary state even supposing (3
constant. It is remarking that the formulation is conceived for a estimation of gains with ¢
constant, even when the dynamics occurs in 6 degrees of freedom. Thus the gains
estimated are valid for oscillations with moderated variations of .

The term G is the frequency-dependent second-order drift force. It depends on {7
defined as

G=> d, (36)

also on the wave heading and on the hull form. For simplification G;, is evaluated only for
the central frequency ® defined as the algebraic mean of all w;.
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It is remarkable that a monochromatic wave is a special case of the approach above.
Also a stationary random wave with different 8;’s can be included in the approach.
However, this kind of wave is generally considered of minor importance in the application
in comparison to directional waves due to its relatively smaller wave energy. Finally, the
approach (32) can be extended nearly to stationary directional waves with continuous
spectra by approximating these with a spectrum of lines with finite energy spread at
regular discrete frequencies. The treatment for these approximations is given in Section 5.

2.4. System dynamics representation

Combining (3) with (8), (16), (19), (21), (23), (29) and (32), the dynamics of the
floating structure is described in the earthbound coordinate system by

(M(y) +M,l§y + K(y.y) = F,(y) + Fo(y) + F,(y) + F, + F,(y,0) +s0(r). (37)

There is another form in state-space for representing the dynamics. This will be treated
in Section 4 for further analysis.

3. Parameter estimation

3.1. Measures

Taken into account (37) and assuming that y,y and § are measurable, then M(y) and
K(y, y) can be reconstructed. Moreover, suppose that by identification of the mooring-line
coefficients according to Fig. 1, see also Jordan and Beltran-Aguedo (2003), F,,(y) can be
rebuilt. Similarly, by identifying the weighting matrix function K(7) according to the
geometry of the wet surface of the body, the component sy(¢) of the potential-radiation
force and the additive matrix M, can be determined. However, as noticed before, s is only
reproduced with null initial hydrodynamic state, i.e. so(f) =s;(¢) (see (27) and (28)).

So, using this information, one can simulate the resultant of the excitation and viscous-
drag forces by means of the first membership in the equation

(M(y) +M,1§y +K(y,y) —F,(y) —F,(y) =F,(y) —s,()
=F, +F,(y,1) +s,(0). (38)
Clearly, using s,(7) instead of sy(¢) will produce an error that influences the estimates as

shown in Section 3.2.

3.2. Regression

In the general case, with a directional stationary random wave of N harmonics w; € {wy,
...,wy}, the sum of the components for viscous-drag and excitation forces in each motion
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mode is expressed by the following regression in vector form according to (29) and (32)

[ @10, ]
&/ (10,
@ (10,
&0,
&} (10,

I @) (N0, |

=F,(¢) +F, ), (39)

with the associated scalar regressor for the mode ¢; € {x,y,z,0.0,y/}

@, (1) = ( — 401G, ay cos(—k; (x(£) —xp)cos(8 — (1) — ki (¥(1) —y3)

Xsin(B —y(1)) + wit + ¢y), ay sin(—k; (x(r) —x,)cos(8 — (1))

— kL) = yp)sin(B — (1)) + it + ¢1), ..., a cos(—ky(x(r) —x,)
X cos(B — (1) —ky(y(1) —yp)sin(B — (1)) + wyt + dy),

X ansin(—k; (y(r) —xp)cos(8 — (1)) —ky (¥() = y)

N
Xsin(B —y(0) + oyt + ¢, > a?) (40)
i=1

and the true parameter vector for the same mode

CDq.Aq,p _ T
0(],» = < ‘2 7H1q,<((*)]’i8)7H2q,(w]56)9---7qui(w’i8),H2q,(w76)7qu(w76)> . (41)

As F,(¢) and F, (¢) are unknown, e.g. nonmeasurable, it is thus required to capture them
indirectly with the help of (38) as a regression

@7 (10,
@/ (10,
! (10,
®l1)0,
@ (1)0,
&) (10,

=[M(y) +M,]y +K(y.y) —F,,(y) —F,(y) —F,(y) =8, (1) =s,(). (42)

Clearly, formulations (39) and (42) are equivalent for s,(#)=0.
The number of parameters to be estimated is 12(N+1). It depends basically on the
number of significative components present in the wave line spectrum.
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3.3. Estimation algorithms

For the estimation of the 6, s it is suitable from a mathematlcal Pomt a v1ew to use ,?
minimization procedure in norm 2 Hence for the estimate vector 6 = @4.,.,0 y OZ s 0¢, 0(, s 0\,)
consider the following scalar cost functional for the energy of the estimation error

t

~ 1 ~ ~
min J(,0) = min —JET(T, O)e(t, 0)dr, (43)
HeR 2N+ g2+ 2t

0

with the estimation error

&(r,0) = [M(y) + M1y + K(y,y) —F,,(y) —F(y) —Fy(y) —s,(0)
1 (H0,(1)
L HGUNG)
@ (H0,(1)
_ ) ) (44)
&1 (10,(1)
@ (1)0,(1)
D) (10,(1)

Now, in order to find minima of J, one employs an adaptation law. If J is uniformly globally
convex for sy(0) =0 and there exist suitable excitation conditions (see analysis in Section 6), the
unique minimum is global and given as the root of J by

dJ(t, 0)
a6
In order to reach the minimum point 6=10 many algorithms can be applied. We described
two significative classes of them.

=0, implies 6 = 0. (45)

3.3.1. Gradient-based algorithm
The parameter trajectory is forced to follow the way of steepest descending path over J
according to the adaptive law

b ——r 6]((;0 0) f J@T(T)E(T, b)dr, (46)

with @(0)=0, I'=T">0 a gain matrix, ®(7) = diag(® (1), ®1 (1), ®I (1), <I>T(T) ®! (1),
<I>¢(T)) and ¢ = (0 — 6). The trajectory will converge to the equilibrium point 6 = 6 under
necessary and sufficient conditions for #— . Also, the integral may be skipped over,
obtaining a new estimation algorithm with different convergence to the same equilibrium
point (Ioannou and Sun, 1995).
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3.3.2. Least-squares-based algorithm

Other possibility is to force the parameter trajectory from an initial condition in
direction to some estimation of the equilibrium point at every moment. This is reached by
performing the minimization of the integral of the square errors with respect to the
parameter vector at every time ¢. The parameter trajectory is given as the solution of the
following ordinary differential equations in vector and matrix forms

0(t) = —PO)D" (1)e (1), 47)

P(t) = —P(1)®" () D(D)P(1), (48)

with 9(0) and P(0) > 0. The matrix P is referred to as the covariance matrix and stands for
the variance of the parameter errors. The trajectory will converge to the equilibrium point
6 = 0 under certain necessary and sufficient conditions for t— oo,

4. Vanishing effect of the initial hydrodynamic state

The inexactitude of (42) lies only in the lack of knowledge about the initial state of the
potential-radiation force s,(#), which is supposed in the analysis before identically zero for
all #. So in using s, instead of the true sy in the regression (42), a transient difference
between (39) and (42) will be generally occur, which is zero only in the particular case that
both the environment and the floating structure are at rest at 7o=0, i.e. no excitation is
present. In the next we will study the influence of this uncertainty in the estimation.

As seen below in this section, the vanishing rate of the transient state depends mainly on
the amplitude of q. It is noticed that the dissipation of the mechanics and hydrodynamic
energy will depend mainly on two forces: the viscous-drag and the linear damping forces.
Most notably is the viscous-drag force that dissipates a significant energy with a power
proportional to the quadratic value of q. Important in accounting for the magnitude of this
force is the effective area presented to the motion direction and that |q| > 1. On the other
side, the linear damping acts more effective in low-frequency movements of the structure.

4.1. State-space approach of the dynamics

The dynamics of the floating structure plays a fundamental role in the estimation.
Consider a suitable state-space characterization of the whole dynamics given by
y=y.
¥ = M(y) + M, (K, 3) + Fo(y) + Fy(y) + s + F,,(y) +F,(3)
+F,(y.0), (49)

t

SO=% —JK(I—T)Y(T)dT s
0
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with the generalized state vector

y
Q= |y | (50)

initial condition (cf. (25)—(28))

q(0) = [y"(0), 57 (0),s5 (01" = [y"(0), 57 (0), 85 (O)1", (51)

and with the condition that [M(y) +M,] be nonsingular.
Consider (42) as an associated output equation to the state-space model

' (10 = [M(y) + M,1§ + K(y,¥) —F,,(y) —Fy(y) —Fy,(y) —$o. (52)
More compactly, (49) is
0

0
@00 = F(@) +F,(q,0),

with the initial condition (51), My(q) = diag(0, [M(q) + Ma]_l, 0) and

sl 0
flq) = |0 [q+Myq) | K(Qq,q + F,(q +Fr(q) +(0,0,1)q |. (54
sl 0

where s is the Laplace variable and / a 6 X6 identity matrix. It is also assumed that f is
bounded in the state space.

In order to analyze the system dynamics we first focus our analysis on the mooring and
excitation forces. Toward this goal, one assumes mooring lines with catenary forms during
the motion and a whole force—deformation characteristic accomplishing

with My(q)> 0 and f,.x and fi,i, being two upper and lower bounding functions of high
order in ||q]l, respectively. The nonlinear mooring forces play a fundamental role in the
stabilization of the floating structure.

4.2. Perturbed system dynamics

The data used in identification will be obtained partially by numerical simulation of the
potential-radiation hydrodynamics and partially by direct measurement of mechanical
system variables. The dynamics that reflects the data via simulation is that one with initial
hydrodynamics state so(0)=s,(0)=0. This dynamics is referred to as perturbed one and
the corresponding state referred to as ;. From this dynamics, it is practically to distinguish
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Table 1
System dynamics of a moored floating structure in two environments

(a) Dynamic non-linear 0
system at rest yo— +M F + (0,0, )6
45 = () + Mo(@) | Fu(@) +©0.0.00q | = 0 0 0)— q0),
0

@;(00=(0,0,1)q,
(b) Dynamic oscillating q; =f(qs) + My(q5),
time-varying system

0
03 (1)0=F,(45)+ F,.(q5.1) + (0,0,1)6q.

0
(Fm (qs) +F,(as) + F,(qs, 1) + (0,0, 1)6q) ,  for q;(0)=q(0),

two particular situations, namely, the dynamics at rest and that one induced by
monochromatic waves.

The perturbed dynamics can be more appropriately stated from (53) by considering the
perturbed state q; and defining an additive perturbation on the right side being

0
saqn=1| o | (56)
—$,(7)
So one can establish two perturbed systems in space state corresponding to the

dynamics mentioned before. These are indicated in Table 1
The initial condition of the states in the perturbed system is the same as in (53), it is

q5(0)=q(0) (see (51)).

y(0) y(0)
q5(0) = | yO) [ = | yO) | = q(0). (57)
$0(0) s,(0)

The dynamics (a) in Table 1 is described in blocks in Fig. 3. It is composed by the
dynamics of the unconstrained floating structure with a nonlinear feedback implemented

l q;(0)=q(0)

a5

v

9, =f(@;)

0
MO(QS)[Fm(QS)"'(OrO’ sl )5QI <

0

Fig. 3. State-space model of the perturbed moored structure at rest.
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lqo‘(o) =q(0)

0 2 q
g, =f (q,s) 5:
+
0 -
'\/IO(CLs)[Fm(%)+ F.(a;.t)+F,+(00,s)5q
0 |

Fig. 4. State-space model of the perturbed moored structure under monochromatic wave excitation.

by the mooring-lines equations. The dynamics (b) in Table 1 is similar as in (a) with an
additional nonlinear time-varying feedback reproduced by the state-depending excitation
(see Fig. 4). It is noticing that both dynamics represented by control systems have null set
points.

It is also observing from (56) and (28) that dq is depending on the past evolution of the
system dynamics and hence on the initial condition q(0). As oq is part of the
hydrodynamics, it is indicated in Figs. 3 and 4 as part of the state feedback.

4.3. Initial hydrodynamic state in the system at rest

Consider first the unperturbed dynamic system at rest. From physical principles, it is
asymptotically stable inasmuch as the initial condition does lie in the attraction domain of
the system. This concerns particularly the critic angles and their derivatives of the pitch
and roll modes. The system trajectory moves from the initial condition q(0) to the
equilibrium point q*=[0,0,25,0,0,0,0",0"]" asymptotically. The asymptotic stability is
mainly ensured due to two classes of damping, namely the nonlinear damping provided by
the viscous drag force and the linear hydrodynamic damping characterized by sq (49). The
first damping decelerates strongly the system by quick motions, while the second one
offers resistance to motion during slow motions. However, when the perturbation oq acts
on the dynamics, the hydrodynamics state so(f) behaves as s;(f) without the past
information of s,(f). The trajectory of the perturbed state qs;(f) starts from q(0) but
afterwards runs away from the unperturbed system path. Since sy(#) tends asymptotically
to s;(f), both trajectories will touch asymptotically again. Thus the effect of the
perturbation dq vanishes in time and the perturbed system is also asymptotically stable
having the same equilibrium point q* inasmuch as q(0) remains in the attractive region of
the perturbed system. The evolution of the trajectories of the perturbed and unperturbed
systems are characterized in Fig. 5 graphically.

4.4. Initial hydrodynamic state in the wave-excited system

On the other side, when the system is excited by a monochromatic wave, the dynamics
shows an oscillatory behavior of the same period as that of the wave or a more complex
one in bifurcation state with high periods including also the possibility of chaotic orbits
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4 [IM(as) Fr |
unperturbed trajectory

Fire

perturbed trajectory

las® I

195(0) I

Equilibrium point

Fig. 5. Trajectories of the perturbed and unperturbed systems at rest.

(Kreuzer et al., 2002). Simultaneously, the drift originated by the nonlinear components of
the excitation pushes asymptotically the mean point of the oscillatory motion, which
abandons the static equilibrium point to reach a new center displaced in the opposite
direction of the incoming wave and with a magnitude proportional to the wave energy.

Consider now the unperturbed system. The trajectory starts from q(0) and becomes
asymptotically a periodic orbit in a forced motion. The perturbed system, on the contrary,
behaves similarly under equal excitation, but the influence of 6q begins to drive the
trajectory on a different path as in the previous case (see Fig. 6). However, as dq vanishes
in time, the trajectory returns asymptotically to the same periodic orbit as in the
unperturbed case.

The domain of attraction is restricted by certain maximal levels of wave energy that do
not cause the structure to turn over. Usually, the capsizing is avoided by implementing a
system of many mooring lines that provide sufficiently large stabilizing moments for
relatively large angles and displacements.

4.5. Properties of the perturbed state

Consider K(7) in (25) again. For floating structures in the Ocean Engineering K is
absolutely integrable. Then

JIIK(T)II dr <, (58)
0
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unperturbed trajectory [l Mo(@s) Frull

\ perturbed trajectory

P g

>0

IlasO 1l

119501

f

max
stable orbit

Fig. 6. Trajectories of the perturbed and unperturbed systems under regular excitation.

it means K(7) € L. Thus, there exists a Fourier transform function of it with real and
imaginary components referred to as D(w) and jwM,(w), respectively. From the Riemann—
Lebesgue Lema (Olgivie, 1964), it follows

lgn JK (m)sin(wT)dT, (59)
0

lim J K(1)cos(wr)dr = 0, (60)
0

which tells about the continuity of K(7). Using this feature, (58) and the Barbalat’s Lemma
(cf. Toannou and Sun, 1995), it is valid that K(7) is bounded, i.e. K € L.

The stability of the hydrodynamics can equivalently be inferred from the property that
D(w) is continuous. So one gets (Jordan and Beltran-Aguedo, 2004b)

2
lim K(7) = lim p- JD(w)cos(wT)dw =0, 61)
0
which tells about the vanishing effect of the hydrodynamic load in response to a sudden
displacement of the structure.
Usually, the frequency transfer function of the hydrodynamics, expressed by D(w)—+
jwM (), can be fitted accurately by a rational transfer function matrix of appropriate finite
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order n (Jordan and Beltran-Aguedo, 2004b). Thus the decaying of K(r) for a linearly
increasing 7 is also exponential, i.e. there exist matrices A and Ag of dimension 6X 6 so
that for 720 it is valid

KO < 114g eIl = ag e, (62)

with «, ap>0.

Consider now the unperturbed system state q(¢) with initial condition q(0) in (51) and
the perturbed system state q;() resulting from (53) with the perturbation dq(#) in (50) and
starting from the same initial condition q(0)=qs(0). Hence the state error is

e,(N = q(1) —q,(1). (63)

As the control systems described in Figs. 3 and 4 are asymptotically stable, there exists
a scalar function V(¢) = (1/2)e£(t)eq(t) with V() < 0. Since V() is bounded from below
and is not increasing, it has a limit as t— o (see loannou and Sun, 1995), it is
1 t
lim V() = lim= | el (r)e, (r)dr = V,, < .
t— t—o D q q

0

This implies that ey(7) is quadratic integrable (i.e. e, €.L,) and bounded. Because f is

bounded and M, is nonsingular, €,(?) is also bounded on [0, ], i.c. e,, &, € L. Hence,

e,(?) is also uniformly continuous. In consequence, due to the Barbalat’s Lemma (Ioannou
and Sun, 1995) one holds

lime, () = 0. (64)
t—
The property (64) will be invoked below in Section 4.6. It is proved that the difference

between the trajectories ((f) and qs(¢) vanishes in time as indicated graphically in Figs. 5
and 6.

4.6. Properties of the measure error

Consider the perturbed measure vector as indicated in Table 1 for the time-varying
system

®; (10 = F,(4y) +F,(qs.1) +(0,0.1)dq (65)
and the corresponding unperturbed vector defined in (39) as
@' (N0 =F,(@) +F,(q.0. (66)
Taking the difference between both vectors, one gets the measure error

0
eo(t) = (D' (1) — PL(1)0 = —0,0,1)dq = — J K(t—71)(0,1,0)q(7)dT. (67)

—

According to (62), K(7) is exponentially decaying and for every element k;;, there exists

ij>
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real-valued constants «; , ay, g 1, and ;82,,!,, with ) <, and ¢ 1> ,821,/ > 0, such that
a, e Pim < k(1) < ay, e, (68)

The first 12 components of &4 are zero and the last 6 satisfy

M-

u

0
— J o e_ﬁ"‘f‘(t_T)q,-(T)dTZ 8q>q_(t)
—o0 j=1

~.
Il

= — O(zl_j eiﬁzif (t#)qi(T)dT, (69)

Z kif(t —T)g(r)dT > —

J=1

b—u-
f—o

j=1

with ¢; = y; €{x,,2, 0, , ¥/} according to the generalized velocity vector y. Equivalently

6 6

0[11_ 8, 012‘.. _a
=D el sup (qi(m) Z ep, (N2 =D e ' sup (g(r)). (70)
= By, rel0.4] i il rel0.4]

Then, it follows from (70) with sup,g (g;(7)) < e the property
limeg = 0. 71

—®©

The main conclusion that can be derived from the last equation is that the perturbation
0q can produce a false measure and its effect is exponentially decreasing in time.

4.7. Properties of the regression matrix

Consider the measure error component eq, - It is valid the relation
t t
AT A
Je%pqi dr =0,(1) J(‘I)qf(") - <I>5w () (@, (1) —<I>(;qi ()" dr 0,.). (72)
0 0
Since ep, () is bounded from below and above, this implies it is quadratic integrable,
i.e. eg, € L. In consequence the total energy of the measure error is
t
lim J E%I,,_(T)dT =c, (73)
t—
0
with ¢ a positive constant vector.
The integral in (72) represents the energy of the error in the measurements that causes

the misinformation in the estimation. Moreover, in case of convergence, &, must be
necessarily persistent exciting (see next theorems) and it is valid

t t

tim [ @, ®] a7 = lin | #;, @}, ar = ==, (74)

—®©

0 0
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and

dr
lim -2 t =0. (75)
. Pr AT

This last statement says, that the misinformation becomes asymptotically insignificant
in comparison to the information gained along the time. The parameter trajectory induced
by an estimation law based on <I>5 will be distorted temporarily in its behavior due to the
presence of &g, in comparison with the case of unperturbed measures. At the same time, as
the true 1nformat10n begins to cumulate increasingly, the trajectory will be pushed by the
adaptive law to move to the true parameter vector.

5. Identification of wave parameters

The measurement of a directional wave elevation is necessary in (40) for the
identification of excitation forces on the structure (see Fig. 1). It provides the amplitudes of
the fractionated wave components of the wave spectrum and their phases, which is needed
for applying the wave parameters in the regressor (40), namely the wave amplitude a;, the
wave number k; and the wave initial phase ¢, of every component in the wave spectrum.

The wave parameters can be estimated from the measurement of the wave elevation at a
single-point of the surface. There exist ad hoc surface buoys with instrumentation to
achieve this objective. These on-line capture the height of the primary wave above the
bottom and perform RF transmission to another reception point (see, for instance,
Grosenbaugh, 1996; Tasai et al., 1980; Borgman et al., 2003). In particular, it is assumed
here that the sensor buoy is in the neighborhood of the floating structure, which is the
receptor of the wave information.

The objective in this section is to develop an estimation method for the wave
parameters based on the measurement of the wave elevation at a single point of the ocean.
The transmitted wave signal will be synchronized with the sensors of y, y and ¥ of the
floating structure so as to exactly reproduce the excitation forces on the structure according
to (38).

Additionally, it is assumed that in the case of a continuous wave spectrum, this can be
approximated by a discrete one supported by discrete-time samples of the wave elevation
at an appropriate rate. The proper selection of the sample rate is based on following
physical arguments. First, it is a physical fact that wave spectra of different geographic
regions decrease significantly for frequencies greater than 10 rad/s. Therefore, it implies
by Shannon Theorem that the sample rate has not to be larger than 7wt/10=0.314 s. On the
other hand, too small values of the sample rate would lead to irrelevant information of the
wave at high frequencies and intolerable time-consuming computations for the spectrum
determination. An usual value for the sample time could be 0.1 s, thus the influence of
aliasing phenomena on the sampled signal due to the unconsidered portion of the spectrum
will be negligible.
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We divide our analysis into two cases, both concerning directional waves. The first case
describes regular multichromatic waves and the second one focuses realizations of
irregular stationary waves. In both cases £(,x(,yo) is referred to as the wave elevation at the
sensor buoy position, which is digitally registered from r=t, up to =1, + T, with #, the so-
called synchronization time and 7 the measurement period at the sensor buoy.

5.1. Case 1: Multichromatic waves

Consider a buoy with symmetry in the plane x—y and a periodic wave &(¢,xq,yo) With a
wave heading angle equal to § according to (30). Thus it is valid

N
E(t,x0,y0) = Y _ a; sin(ki(xg cos B + yo sin §) + w;t + ), (76)
i=1

where ¢; is a stochastic phase uniformly distributed between 0 and 27 radians, a; the
amplitude, w; the frequencies of the wave components, § the incoming angle, k; the wave
number and (xo,yo) the geographic coordinates of the buoy with respect to the floating
structure.

The set of wave parameters to be identify is

S@i = {ai,(ui, ¢i’ki}’ l = 1, ,N (77)

As the line spectrum has no information of phase, one employs consequently the
Fourier Transform of £ over the measurement interval [ty,fo+ T], with T>>27/min w;
(Bracewell, 1978). Hence, the time-discrete signal

E'(trs X0, Y0) = Wty 1o, T)E(ty, X0, ¥0)s (78)

is available from the measured signal with 7, a discrete-time, w a weighting function that
satisfies w(t;tg,T)=h(t—1t9) —h(t—ty—T) and h(f) a unit step function. Then, for N
samples in [fo,fo+ 7] the discrete Fourier transform (DFT) is

1SN
B = Bt x0.30) = D dETEDEDN - for | <i <N, (79)
k=1

where {Z;} represents a series of complex Fourier coefficients of the DFT, which can be
described equivalently in discrete time by

N
g; = gl(f,xo,yo) = Zai Sin(wit + d)i)’ (80)
i=1

where the {£/} represents the transmitted signal of the wave elevation to the floating
structure.

The estimation of a; and ¢, results from the calculus using the Fourier coefficients 5;=
a;+j0; in the following identity by means of

a; Sin(&)it + ¢l) = Sin(&)it) + 5i COS((J)it), (81)
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with
4 |04i| _ |13,| ’ (82)
cos (tan’1 %) sin (tan’1 g—)
—ta 716’+— for a; > 0,
a 27
¢ = 8. (83)
—tan™! ’+—, for a; < 0.
o; 2

The frequencies w; and the number N of them must be detected directly from the lines
of the series {&;} in (79). The criterion developed in this paper is to define the set of
significative lines as

SN ={azEDFT[g(tk’x07yO)]|al>8>O’ l = 1""’N}, (84)

with ¢ a threshold for avoiding insignificant amplitudes. Then, for all g; in the set Sy, one
picks up the frequencies w; for which (82) and (83) are calculated.

The wave numbers in (77) are univocally calculated a posteriori by means of the
implicit relation (Sorensen, 1993)

w? = k;g tanh(kd), (85)
where d is the sea depth.
5.1.1. Example

Let &(#,x0,y0) be a multichromatic periodic wave elevation as represented in Fig. 7. The
signal is composed by 10 sinus components with stochastically chosen phases and

0.8

06

AN A/
N I V

04}

-0.6

0 5 10 15 20 25 30 3 40 45
time[s)

Fig. 7. Directional periodic wave elevation.
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Fig. 8. Amplitudes of the discrete Fourier Transform for a periodic wave elevation.

reproduced with a sample time equal to 0.1 s on [0,7], with T being 30 times the signal
period.

After applying the DFT on &(#;,x0,y0), (82) and (83) and considering a threshold
e=0.1 max,—; _y(a;), then 10 harmonics are detected. The unknown amplitudes and
phases are identified with insignificant error and shown in Figs. 8 and 9, respectively.

5.2. Case 2: Irregular stationary waves

In the case of irregular stationary waves, the associated spectral density function is
continuous in the frequency. The contribution of energy of each wave component of the

[radiang]

1 2 3 4 5 6 7 8 9 10
order number of harmonic

Fig. 9. Estimated phases of the expansion for a periodic wave elevation.
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spectrum is infinitesimal. However, by the time sampling of such a wave in a finite period
T, a discrete spectrum is generated. For N time samples in 7, the spectral lines are placed at
discrete frequencies (i27)/T, with i=0,+1,1+2,...,
discrete spectrum tends asymptotically to the continuous one. For all discrete frequencies
the DFT computes the spectral density lines with amplitudes and phases which are
equivalent to the pseudo-stochastic signal £(f)=£&(¢+T), where £(¢) on [0,7] is the portion
of the sampled irregular wave behavior. Once T and N are fixed, one defines a set of
significative lines in the spectrum according to (84).
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Fig. 11. Amplitudes of the discrete Fourier Transform for a random wave elevation.
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Fig. 10. Directional random wave elevation.
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Fig. 12. Estimated phases of the expansion for a random wave elevation.

5.2.1. Example

In Fig. 10 a stationary random wave elevation £(#,xo,yo) is generated as a stochastic
process with the typical wave spectrum of Pierson-Moskowitz. The signal course on a
period of T=700 s is depicted in Fig. 10.

After applying DFT on &(f4,x0,y0), (82) and (83) and considering a threshold
£=0.05 max, _y(a;), then 60 harmonics are detected as meaningful. The identified
amplitudes and phases are shown in Figs. 11 and 12, respectively. With these estimates,
the wave can be reconstructed with minor errors through the expression (76) for N=060.

5.3. Insertion of the wave at the structure sensor point

The information of the buoy sensor has to be transmitted to the estimator, which computes
herefrom the wave elevation at the structure site. If the sensor buoy is located on the
downstream side with respect to the structure, then the estimator must predict backwards the
evolution of the wave elevation at the site of the structure. On the other hand, if the buoy is on
the upstream side, the estimator must predict forwards the evolution from the buoy sensor.
Only in the particular case when structure and buoy are located in a line, which is
perpendicular to the incoming wave direction, the wave elevation is the same at both sites.

If the wave is irregular, the wave elevation is not predictable anywhere. On the
contrary, for regular waves a prediction is possible. The problem of prediction the wave
elevation at different geographic coordinates is not simple because the wave may
propagate with different celerities for each frequency component, i.e.

_ Ao o

AW Wi 86
= X, (86)

Hence the predictions does not imply a simple time delay of the elevation £(f) because
the initial phases ¢; change with the location. However, if the measurement of the wave
elevation is made at two different points simultaneously with relative coordinates (xo,yo)
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and corresponding signals

N

£1(,0,00 = > ay; sin(it + ¢yy), (87)
i=1
N

£(1,0,0) = > ay sin(wt + ¢2), (88)
i=1

then, according to (76), the initial phases ¢;; and ¢,; are related together through

$1i = ki(xo cos B + yo sin ) + ¢y, (89)
and for each harmonic detected by means of the criterium (84) it is valid
P1i — P

P xgcos B+ ypsin B

Finally, for the prediction of &, it is supposed that the transmitted data are synchronized
with the on-board sensors of the structure. Let the structure sensor position O have planar
coordinates (x(¢),y(¢)) and the coordinates of the buoy in the fixed frame have coordinates
(xp,yp)- This synchronization is accomplished for the received wave elevation £(#;,x,y),
which is transformed by means of the DFT and rearranged for the new coordinates of the
sensor position O accordingly to

N
E(tx.3) = Y asc03 (il = 6,)c08(8 = Y1) —ki(y() —yp)sin(B—Y(0) + it + by + 7 ).
i=1

(90)

This periodic signal is the excitation that accounts for the dynamics of the platform
reproduced by the measures y, y and §. Moreover, the coefficients a;, w;, k; and ¢; are
needed in the regressor (40) for the intended on-line identification of the excitation-force
and drag-force models. For pseudo-periodic signals as described in the Case 2, the
prediction for another geographic point is only approximately valid, since the signal is not
repeatable after t>T.

6. Convergence

The analysis here is concerned with the ability of the estimation algorithms developed
in Section 3.3, to converge asymptotically to the true values under important classes of sea
excitations. The convergence of the estimation for the incident, diffraction and viscous-
drag parameters is first demonstrated for monochromatic excitation and then generalized
for directional regular multichromatic waves.

An important part of the convergence proof is based on the concept of persistent of
excitation (PE) for finite period of arbitrary length in continuous time, which is necessary
condition for analysis of asymptotic and exponential stable adaptive systems. The
literature in this area is quite diverse and vast, see for instance, Kreisselmeier and Rietze-
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Augst (1990), Narendra and Annaswamy (1987), Ioannou and Sun (1995) and Jordan
(2002).

Per definition, a piecewise continuous signal vector @ : R* — R" is referred to as PE in
[0,T] with a so-called level of excitation an>0 if there exists constants «y, 7o>0 and
To<€(0,T] such that

t+T,
1
ol = J ®(r)® (1)dr > oyl o1
0

t

The results of this section are presented in form of theorems for a general moored
structure described by (37). First it is proved that the regressor vector @, (¢) in (40) is PE.
Afterwards, the convergence of the algorithms (46), (47) and (48) are proved with the PE
condition satisfied.

Theorem 1 (Persistency of excitation—Case: monochromatic wave). If the floating
structure is excited by a monochromatic wave

§(t,x,y) = ag cos(—ko(x —x,)c08(B — ) —ko(y —y,)8In(B —¥) + wot + o),  (92)
then the regressor ®,(t) in (40) with N=1 is PE.

Proof. Consider @, € R* according to (39) for N=1 with g; an arbitrary mode. Using the
definition in (91), for @, to be PE it must satisfy

t+T,
a, Tyl > J @, (N®] (1)dr > ayTyl, (93)

t

for some level of persistency o> 0, some constant «; >0 and some period 7> 0. The
former condition is equivalent to

span{®, (1), for7 E[1,1 + Tyl} = R, (94)

which corresponds to generate four vectors @, (7;) for arbitrary and distinct 7; € [£,+T)]
from the functional basis

B(71) = {by(7), by(7), b3(7), bs(7)}, 95)
with
by (1) = —q:(n)lg:(1)l, (96)
by(1) = a; cos(—k; (x(1) —x;)c08(8 — (1)) — ki (¥(1) — yp)sin(B — (7))
+(1)17'+¢1), (97)

by(1) = ay sin(—k; (x(1) — xp)cos8(8 — (7)) —k; ()(T) — yp)sin(B — (7))
+(U1T+¢1), (98)



1192 M.A. Jorddn / Ocean Engineering 33 (2006) 1161-1213

2
b4(7') =dap, (99)
4
and to demand for {7,7,,73,74} €[1,t + T] that Z <I>q,,(T,~)<I>,£(T,-) > (), i.e. to be positive
definite. More generally, for the last statement t& be valid, there must not exist nonzero
constants c; other than zero such that one attains

by (1) = c1by(7), (100)
by(7) = c2b3(7), (101)
bi(1) = c3b4(7), (102)
by(1) = cybs(7), (103)
by (1) = c5by(7), (104)
b3(1) = csby(7). (105)

For (100), the following differential equation is produced with (96) and (97)
—4;(Dg,(T)| = c1a; cos(—k; (x(7) —x,)c08(8 — Y(1)) — ki (¥(1) — y,)sin(B
—Y(7)) + 01T+ ¢y). (106)

In the case g; = x the proportionality between the left and right members for every 7 is
impossible, i.e. there is no solution for all &[0, %] except for a set of values {7;} of
measure zero. The main reason is that the right member of (106) describes an oscillating
function with crossings by zero, mainly due to the monotonically increasing argument w7
with bounded signals x(7), y(r) and (7). For x(7)|x(7)| to change oscillatory also the
modes y(7) and y/(7) will be varied in particular forms in 7. But these will result from the
fundamental constrain represented by the dynamic equation (49). The same argumentation
can be concluded for the other cases ¢; € {J,2,, 0, }.

On the other side, (101) concerns other differential equation of the same characteristic
as (106). It is thus straightforward to conclude that this new equation has no solution for all
7€ [0, ] except for a set of values {7} of measure zero.

For (102), the following differential equation

—4i(MGi(7)] = czai, (107)
is established and the solution for this is

co>0, ¢y =—/c3a%,
gi(7) =c07={ ’ 0 o (108)

_ 2
<0, c¢o=+/c3ai,
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with ¢3>0. But this solution corresponds to an unbounded trajectory, which contradicts
the stable solutions of the fundamental dynamic Eq. (49). So, we can infer that no state g;
can behave as cyf and hence (102) cannot be satisfied for all 7 &[0, o ] except for a set of
measure zero. The same is inferred for (104) and (105).

It remains (103). This condition generates the constrain

c08(—k; (x(7) —xp)c08(8 — (7)) =k (¥(7) —yp)sin(B — (7)) + 7 + ¢1)
= ¢y sin(—k; (x(7) —xp)cos(8 —Y(7)) — ki (Y(7) = yp)sin(B —Y(7)) + w7
+ ¢, (109)
which leads to
cos(P(x(7), y(7), Y(7)) + 17 + ¢y)
= ¢y sin(Hx(7), (1), Y(7)) + 17 + ¢y), (110)
with
Dx, y, ) = —ki (x —xp)cos(B — ) — ki (y —y,)sin(B — ), (111

a common function of the states in both arguments. Clearly, for every c, there exists a
solution only for

Fx(7), y(1), Y(7)) + w7 + ¢ = tan”! (L) s (112)

Cq

which is satisfied by a set of countable 7,’s with measure zero in [0, ].

So one can infer that properties (100)—(105) cannot be fulfilled, unless ¢;=0in 7 €[z,
t+Tp], for every t€[0,%] and To>0. Finally on concludes that the regressor spans
uniformly the space R* in r€ 1,1+ Tyl for t€[0,] and T,> 0.

|

Theorem 2 (Persistency of Excitation—Case multichromatic waves). If the floating
structure is excited by a multichromatic wave elevation

N
E(t,x,y) =Y a; cos(—ki(x(t) —x,)c0s(8 — (1)) — ki(y() = yp)sin(8 — (1))

i=1

+ it + ¢o), (113)

then the regressor (40) is PE.

Proof. The PE condition of ®, (1) on 7 E[t,t+To] is equivalent to
span{®, (1) on 7 E[t,t + Tyl} = RNV, (114)

for every T,>0 and 2(N + 1) being the dimension of the parameter vector. Let the function
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basis

B(t) = {by(7), ... bay 12}, (115)

be defined for generating vectors in R2V D for specific 7.
The condition (114) is not satisfied if at least one of the following equations is fulfilled
with ¢;=constant#0 in 7 € [t,t+ Tp]

bi(1) = c1by(7), (116)
bi(7) = coy1ban+2(7), (117)
by(1) = can42b5(7), (118)
by (1) = can+1Dan+2(7), (119)
bon+1(T) = conrqay 41 ban42(T). (120)

Many of these conditions are similar to those already analyzed in Theorem 1, where it
was shown that those concerning trigonometric functions are not satisfied, unless ¢;=0.
Therefore, these similar ones are also valid here. The rest of the conditions, however,
involves two trigonometric functions of different frequencies and phases. They are, for
instance, b,(7) = con+3b4(T), bo(T)=con+4b5(T), etc. In general, this class of equations
can be put into

sin(P(x(7), y(7), Y(7)) + ;7 + ¢;) = ¢; sin(@(x, (NY(7), Y(7)) + ;7 + ¢, (121)

with ¢ defined in (111) and w;> w;. Invoking the boundedness of x(7), y(7) and y(t), there
are in general a countable number of real values 7, in [0, % ] that are solution of (121). The
set of 7;’s has measure zero.

Therefore, it can be concluded that the regressor ®, spans the dimension of the
parameter vector on [z,t+ Tg]. As this will occur for every T, >0 and ¢ € [0, o0 |, this span is
uniform in [0, ]. Then @, is PE.

O

Now the proof of the convergence of the parameter trajectories @, (¢) is given. The
demonstration is based on stability analysis via Lyapunov functions (see loannou and Sun,
1995). The analysis of both the asymptotic and the exponential convergence is placed
under a common formalism. This in turn is related below to the fundamental estimators
described before, namely the least squares-based and the gradient-based algorithms.

Theorem 3 (Asymptotic convergence). [f @, (¢) of (40) is PE, then the pure least squares
estimation of (47) and (48) gives asymptotically error-free estimates provided that the
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measures in the set
m; =14¢, 4,41 G Fy.}, (122)

are noise free, for g;€ {x,y,z,0,0,¢}, with the exception of F,, which constitutes the

perturbed component g; of the measure vector in the left member of (38).

Proof. Let a Lyapunov function be

t

V() = J (@] (1, (1)*dr = (123)
0
0,(nHP, (00, (1) (128)
R R

with éqf(t) =—0, —0,.(?) the error of the estimate and 9%_ the true estimate. Then

t+T
V(it+T)=V()— J (@] (8, (1) dr, (125)

t

for any ¢ and T>0. Using CD;(T)éqi(T): ®. (10, 1)+ ®! ()0, (r)—0,(1) and the

inequality (x+y)*>(1/2)x*—y?, it follows
t+T
J (@] (1, (1) dr> (126)
t+T
% J (®,(1)0,,(1)" dr— (127)
t+T
J (@] (7)(0,,(1)—0,,(1))* dr. (128)

t

Since P, is PE, one holds

t+T,
J @, (NP (1)dr > ayTyl (129)

t
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with ap>0 and some T, >0, it follows from (124)
+T,
J (@5, (8, (1)) dr = ag Ty, (18, (). (130)

t

On the other hand, the covariance matrix of the regressor D, is

g9 4’

P, =—P,®,® P P, (0) =P, , (131)

with P <0, ie. P,(t)<P, . Moreover as P,(#) is nonincreasing and bounded from
below, ie. P, ()= PT = O Vt>0, it is vahd

lim P, (1) = (132)

11—

= =T . .
where P, =P, > 0 is a constant matrix. Because
-1

P, () = || ®, ") (Ddr| | (133)

[S]

and ®,_ uniformly spans a space of the parameter vector dimension on [0, ], then Pq,- =0.
Hence

Amin(DI < Py (1) < Apax (DI, (134)
with
lim Apyin(#) = 1im A,y (1) = 0, (135)

and there also exist two bounds

A1) < Din (1) < Amax (1) < AQD), (136)

with the properties
A > At + ), (137)

Ab) < At + e), (138)

for >0, i.e. A() and A(r) are monotonically increasing functions.
Using (124) and (134) in (130) one gets

t+T,

(@] (10, (1) dr, (139)

>2a0ToA)V(2). (140)
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On the other side, it is valid from (47)

I
— J P, (0)®, (0)®, (0)8,(0)do,
t
and it follows

@/ (1)(0,(1)—0,(1) = —J é;(a)% ()@, (1)P, ()@, (0)do.

t
Using the Schwarz inequality on (128) with (144)

1+Ty
(@] (7)(0,,(1)—0,,(1) dr

t t t

+Ty /7 T
< J (J (®] (PP, ()@, (0)) da) (J (@] ()8, (0)) da) dr,

t+T) T
<B*2(1) J (r—1) J(<I>,§i(a)6~’qi(o))dadr,

with 8= sup,>( |®,,(7)|. Changing the sequence of integration in (147), it is valid

1+T,
J (@] (7)(0,,(1)—0,,(1))* dr,

t

+T, +T,

<g* ) J (@] ()8, () J(T—t)dea,

t o

1197

(141)

(142)

(143)

(144)

(145)

(146)

(147)

(148)

(149)
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t+Ty DY
<470 | @i, @ [W] o, (150)
gron [
sf" J (@] (0)0,(0))do. (151)
T

Using (140) and (151) as new bounds for (127) and (128) in (126) and making T=Ty,
one achieves

t+T,

(®,,(1)0,,(1))* dr, (152)
6412(1‘)T2 1+T, )
ZaOTOA(t)V(t)—#O J (®! (08, (0))* do, (153)
T
which leads to

t+T,

(@] (18, (1) dr, (154)
=20 To A1)

(155)

2+ BT (D)V (1),

Us_ing this inequation in (125) for T=T, and denoting v (t) = QayTyA())/(2+
[5‘4T§}{2(t)) one attains finally

Vit +To) <A =yiV (D) = yOV(©). (156)

Because v,(#)>0 and V(z+T;) >0, then we have 0 <y(r)<1.
Since (156) holds for all #> 0, we can take samples of V() equally spaced at time points
equal to nTy, n=0,1,..., and use (156) successively to obtain

V() < V(nTy) < y(0)y(1) - y((n—1)Tp)V(0), (157)
for all t>nT,, and 0 < v(0), v(Ty), ..., y((n —1)T) < 1 with y(#) — 1 for t— . Certainly,

n—l

asn— o, [ v(iTy) = 0, and the convergence is reached asymptotically, i.e. V(r)— 0 for
=0

t— o asymptotically fast. This implies in turn that é‘]i(t) — 0 forz— oo asymptotically fast.

O
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Remark 1 (Exponential Convergence). As A(r) and A(f) are not guaranteed to be constant
or time-variable with the same order of magnitude, then one can not ensure an exponential
decay of V() in time as in the case of a gradient-based algorithm, where P, (¢) is replaced
by a fixed positive definite matrix I" in the adaptation law (46). As y(¢) will tend to 1
asymptotically fast for 7 tending to infinity, a rapid approximation of the parameter
trajectory is expected in the initial phase, while the convergence will go decelerating in
time. On the contrary, for a gradient-based algorithm the descent of the error trajectory
éQi(t) is uniform in time and takes place exponentially.

This can be drawn out directly from the last result in former theorem. If we replace
P, (¢) in the adaptation law by a constant, positive definite matrix I' with constant
eigenvalues Apax and Ay, then v = 1 — ((RagTyAmin /(2 + 64T§/12max)) = constant and it is
valid

V() < V(nTy) < v"'V(0), for Yi>nTy, n=0,1,..., (158)

for all t>nTy, 0<v" <1, and the convergence occurs exponentially fast.

7. Case study: identification of a semisubmersible

In order to test the proposed estimation algorithms in Section 3, the model of a moored
semisubmersible called Thialf (DB102) is taken as case study (see Fig. 13). The main
geometric measures and operating parameters of the dynamic system are given in the
table 2.

This kind of system has a complex hydrodynamics represented by the induced
radiation, diffraction and incident forces. It disposes of six thrusters for pitch control
during operation of the twin cranes. The structure is maintained at a fixed position by
means of a system of mooring lines with symmetric balance of the initial tensions. For the

Fig. 13. Twin crane semisubmersible Thialf.



1200 M.A. Jorddn / Ocean Engineering 33 (2006) 1161-1213

Table 2
Basic information of the semisubmersible model Thialf

Length (m) Breadth (m) Weight (ton) Max. load (ton) Min. draught (m)  Max. draught (m)
201.6 88.4 136,709 14,200 11.8 31.6

simulation of the whole dynamics, a geometric model was constructed in the program
Advanced Quantitative Wave Analysis® (AQWA, 2002), see Fig. 2. The CAD program
enables the calculation of the hydrodynamic forces by means of finite elements and the
simulation of the behavior under external perturbations like regular waves. In all
simulations it is assumed that the pitch control remains inactive and the structure stands at
a static equilibrium before the wave action comes into effect on the system behavior.
Moreover, a perfect symmetry in geometry and mass distribution about the plane x—z is
assumed.

The simulations are divided into case (a) monochromatic excitation and case (b)
multichromatic excitation. In the first case, the system is subject to a planar motion
involving three modes of motion. In the second case, the system is free to move in six
degrees of freedoms. The simulation provides all the measures, i.e. the signals on the first
membership of (38) and the elevation of the free surface at the point O on the water line, so
as the regression (39) for the parameter estimation can be built up with s,(#)=0. The
estimation algorithm used in the simulation is based on quadratic norm and described in
(47) and (48).

7.1. Parameter identification under monochromatic waves

Under symmetric distribution of mass and volume about the x—z plane, an incident
angle for the monochromatic wave equal to zero will produced a planar motion of the
system in the modes surge, heave and pitch. This kind of wave constitutes the most
unfavorable case for the estimation from the viewpoint of the richness of the excitation.

In Table 3 the parameters of the monochromatic wave are given.

The steepness of the selected wave, i.e. 2a/4, is small enough (2a/A = 0.0186 < 1/50) so
as to consider the Potential Theory of Airy for the hydrodynamics valid. According to (41),
the parameters to be identified are

0x = [CD',(AX Hlx H2x G)c ]T, (159)
0.=[CpA. H,, Hy G, (160)
Table 3
Wave parameters
Frequency  Period T Amplitude Number k& Phase ¢ Angle Length 4 Depth d
wg (rad/s)  (s) a (m) (rad/m) (rad) (rad) (m) (m)

0.445 14.1354 2.8190 2.0237X1072 1.5736 0 302.34 100
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Fig. 14. Induced surge motion under monochromatic excitation.

0, =[Cp,Ay Hy, H, Gyl

2500

1201

(161)

Figs. 14-16 depict the evolution of the modes surge, heave and pitch of the
semisubmersible, beginning from the static equilibrium up to practically the steady state. It
is appreciated a transitory of great intensity and duration with a weak damping,

12 T T T

10

8

Heave [m]

0 500 1000 1500 2000
Time [s]

Fig. 15. Induced heave motion under monochromatic excitation.

2500
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4

Pitch [degrees]

0 500 1000 1500 2000 2500

Time [s]
Fig. 16. Induced pitch motion under monochromatic excitation.
particularly in the surge mode. The long persistence of the transitions is mainly due to the
large inertia and the weak potential-radiation and viscous damping under slow motions.

The transient duration is approximately 170 times longer that the period of the wave in the
surge mode, but about the half shorter in the heave and pitch modes.

x 10

—— estimated
- true

X X

2.
CoA, [m]
..

"20 5000 } 10000 15000
Time [s]

Fig. 17. Evolution of the estimate Cp A,.
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Fig. 18. Evolution of the estimate Cp A..

Figs. 17-19 reproduce the evolution of the estimates which contain the drag coefficients
in the different modes. The true values of the Cp,’s can indirectly be obtained if the
effective areas A,, A, and Ay are calculated beforehand. The convergence is fast in the first
phase and then the evolution tends slowly to the true values with exception of the estimate
Cp,Ay, which shows a small bias at end of the identification period.

10 T :
estimated
9r --- true .
B - -
7 . o

2
Cpg Ay [M’]
[$)]

0 5000 10000 15000
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Fig. 19. Evolution of the estimate Cp Ay.
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In Figs. 20-23, the behavior of the estimates for the incident force transfer function in

x 10

M.A. Jorddn / Ocean Engineering 33 (2006) 1161-1213
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Fig. 20. Evolution of the estimate H,.

15000

the x—y plane are exposed. One sees the convergence takes place asymptotically.

The estimation of the constant parameters of the second-order drift force, are given in

Figs. 24 and 25. A slow convergence is however observed in the estimate G,.

H,, [N/m]

x 10

5000 10000
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Fig. 21. Evolution of the estimate H,.
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Fig. 22. Evolution of the estimate H,.

In general, the transient behavior has enabled a fast approximation of the estimates to
the true values, yet for some parameters the asymptotic convergence takes place slow in
steady state. The reason is that the level of excitation drops in time as it is verified from the
evolution of the eigenvalues of the covariance matrix of the least-squares estimator for the

H,, [N/m]
R

0 5000 10000 15000
Time [s]

Fi

&

g. 23. Evolution of the estimate H,..
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Fig. 24. Evolution of the estimate G,.
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Fig. 25. Evolution of the estimate G..
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mode g;
P -1
Pl = Jtl)qi(T)tbgi(T)dT : (162)
0

and from its relation with the property of persistence of excitation PE (cf. (91))

LTO @, (N®] (ndr =P, (1) — P, (t —T)). (163)

In Fig. 26, the behavior in time of the eigenvalues of the covariance matrix for the
parameter vector 6, are shown as part of the validation for P,(¢) > 0.

All eigenvalues remain positive during the estimation. From them, the second and the
forth constitute the minimal and maximal values (referred to as A and Z), respectively.
From (162) and (163) and the evolutions of A and A it is proved that there always exists an
instant 7, so that >, for which it is valid

[£4(1) — (r = To) At — To) )l

t

< J @, (N®] (Ndr < [tA(1) — (t — T) At — Ty)L, (164)
=T,
First eigenvalue Second eigenvalue
15 1.5
10 1
5 L\U 0.5
0 0
0 500 1000 1500 2000 0 5000 10000 15000
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300 8000
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o 2000 L
0 L= 0
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Fig. 26. Evolution of the eigenvalues of (1/£)P~ L.
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and there exist a,a9>0 such that

ay = [tA(t) = (t = To)At — Tp)1 > [tA(t) — (t — To) Mt — Tp)] = «,

(165)

for every To>0. The same is verified for the eigenvalues of the minors of first, second and
third order. Then, for t— oo it is expected an asymptotic convergence of the estimates

from 6,(0).

7.2. Parameter identification under multichromatic waves

In this case a multichromatic wave with an incident angle of 45° is applied to excite the
floating structure in 6 degrees of freedom. The wave parameters are summarized in

Table 4.

For this case there are 72 parameters involved to be estimated. They are described in the

parameter vectors

™ T
0x (wO’ﬁ = Z) = [CDXAx Hlx, "'Hlxm H2x1 "'H2x]0 Gx] 5 (166)
™ A T
0}' (w()’ g = Z) = [CDv y H1Y1 . 'Hl}’m HZ.VI . 'HZ)'lo G.V ] P (167)
T T
0Z(w0,5 :Z) = [CDZAZ HIZI"'HIZIO szl"'szlo GZ] . (168)
™\ =[CpA, Hy,..Hy,, Hy, .. Hy,, G,
0‘P (w()’ﬁ :Z) = [ D, o Lo+ Hlgo 21+ 2010 <P] > (169)
U T
05(&)0,6 = Z) = I:CDﬁAﬁ le"'thlO H291"'H2010 Gg] . (170)
™\ =[Cp Ay, Hy ..Hy, Hy. . Hy, G,
0w<wo’ﬁ :z> = [Cp Ay Hy,..Hy, Hy,..Hy, Gy]. (171)
Table 4
Harmonic components of a multichromatic wave for simulation
Comp.j  Freq. w Period T Amplit.a Number k Phase ¢  Angle 3  Length A Depth d
(rad/s) (s) (m) (rad/m) (rad) (rad) (m) (m)
1 0.272 23.099 0.312 8.743 X103 1.572  w/4 632.292 100
2 0.309 20.333 0.433 1.058 1072 48923  w/4 533.637 100
3 0.334 18.811 0.325 1204X1072  273.587 w4 478.082 100
4 0.358 17.550 0.404 1357X1072  166.684 w/4 431.353 100
5 0.384 16.362 0.304 1.534X1072 193366 /4 386.756 100
6 0.413 15.213 0.290 17571072 80.395 m/4 343.233 100
7 0.448 14.025 0.424 2.059%x 1072 18.506  m/4 298.165 100
8 0.496 12.667 0.334 2.518X107% 245961 /4 247416 100
9 0.575 10.927 0.286 3373X107%  246.116 /4 185986 100
10 0.852 7.376 0.296 7.415X1072  338.059 w4 84.943 100




M.A. Jorddn / Ocean Engineering 33 (2006) 1161-1213

Amplitude [m]

-3

[o] 100

200 300 400 500 600 700 800 900 1000
Time [s]

Fig. 27. Multichromatic wave excitation of 10 components.
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Fig. 28. Evolution of the surge mode.
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Fig. 29. Evolution of the estimate H|,,.
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Fig. 30. Evolution of the estimate H,.,.
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Fig. 31. Evolution of the estimate Gy.

The surface elevation is given in Fig. 27. From this excitation it results the surge
displacement x as shown in Fig. 28.

In the next figures a part of the estimations are depicted. All evolutions
corresponding to the first-order components of the exciting force parameters are
characterized by a fast convergence after starting the estimation followed by a jittery
behavior of the estimates about a fixed value. The variance of the estimates however
fades away in time. These features can be observed in Figs. 29 and 30 for the
parameters corresponding to the third harmonic of the wave in the sway mode.

The evolution of the estimations corresponding to the second-order components of
the exciting force parameters is, in opposite to those of the first-order components,
smooth and faster. As example of these features the estimate for the surge mode is
reproduced in Fig. 31.

8. Conclusions

In this work an approach to identify hydrodynamic models for incident, diffraction and
viscous forces acting on a moored floating structure is presented. It is based on measures of
the mechanical state and of the mooring forces. This contribution, together with the
identification of models for the mooring lines attached to the structure (Jordan and
Beltran-Aguedo, 2004a) and the estimation of potential-radiation models (Jordan and
Beltran-Aguedo, 2004b) complete the parameter estimation of the whole dynamic system.
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An important aspect in the approach has consisted in the analysis of the unknown initial
condition of the hydrodynamic state for the potential-radiation force. It has been proved
that its influence on the parameter convergence is vanishing and has no long-term effect.
The number of parameters of the hydrodynamics involved in the estimation is relatively
large. Due to the nonlinear nature of the model structure, it is possible to satisfy a complete
span of the regressor (PE property) even in the case of poor excitation conditions. This
work has provided theoretical results that show that asymptotic convergence of the
estimates takes place under arbitrary conditions of the wave excitation. The proof was
given first for the case of monochromatic waves, which can be considered as the worst
case from the viewpoint of the richness of information. This result was also generalized for
the case of multichromatic waves. A case study consisting in the identification of a moored
semisubmersible shows the application of the approach by means of numerical
simulations.
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