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An efficient MILP continuous-time formulation for short-term
scheduling of multiproduct continuous facilities
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Abstract

This paper presents a new MILP mathematical formulation for the scheduling of resource-constrained multiproduct plants
involving continuous processes. In such facilities, a sequence of continuous processing steps is usually carried out to produce a
significant number of final products and required intermediates. In order to reduce equipment idle time due to unbalanced stage
capacities, storage tanks are available for temporary inventory of intermediates. The problem goal is to maximize the plant
economic output while satisfying specified minimum product requirements. The proposed approach relies on a continuous time
domain representation that accounts for sequence-dependent changeover times and storage limitations without considering
additional tasks. The MILP formulation was applied to a real-world manufacturing facility producing seven intermediates and
fifteen final products. Compared with previous scheduling methodologies, the proposed approach yields a much simpler problem
representation with a significant saving in 0–1 variables and sequencing constraints. Moreover, it provides a more realistic and
profitable production schedule at lower computational cost. © 2002 Elsevier Science Ltd. All rights reserved.
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Nomenclature

(a) Sets

production runsI
campaigns that can be processed in unit j (Ij�I)Ij

campaigns producing or consuming state s (Is�I)Is

campaigns producing state s (Is
+�Is)Is

+

Is
− campaigns consuming state s (Is

−�Is)
J continuous processing units

available units to run tasks producing state s (Ji=Js, for any campaign i�Is
+)Js

available units to run tasks producing state s or state s � (Jii�=Jss�, for campaigns i�Is
+ and i ��Is�

+)Jss�

S states (intermediates or final states)
SI intermediate states (SI�S)

final states (SP�S)SP

storage tanks for intermediatesT
Ts available tanks to store the intermediate s�SI (TI=Ts for any campaign i�Is

+)
available tanks to store both states s and s � (Tii�=Tss� for any pair of campaigns i�Is

+ and i ��Is�
+)Tss�
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0098-1354/02/$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved.
PII: S0098 -1354 (01 )00789 -X

mailto:jcerda@intec.unl.edu.ar
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(b) Parameters
minimum requirement of final product s�SPds

time horizon lengthH
lsj

min minimum allowed length of a campaign i�Is
+ producing state s and running at unit j

a very large numberM
amount of state s required per unit size of campaign i�Is

−�is

ps price of final state s�SP

minimum production rate of state s at any campaign i�Is
+ running at unit jr sj

min

maximum production rate of state s at any campaign i�Is
+ running at unit jr sj

max

ruj ready time of unit j
release time for any campaign producing state sros

�ss�j changeover time between runs i�Is
+ and i ��Is�

+ at unit j (�ii�j=�ss�j for a pair of campaigns i�Is
+ and i ��Is�

+)
changeover time between campaigns i�Is

+ and i ��Is�
+, both assigned to tank t�Tss��ii�t

�t maximum capacity of tank t�T

(c) Variables
Ci completion time for campaign i

completion time for the storage task of intermediate s provided by campaign i�Is
+CTi

amount of intermediate s supplied by run i�Is
+ to the consuming campaign i ��Is

−Fii�

ITi starting time for the storage task of intermediate s supplied by campaign i�Is
+

length of campaign i�Is
+ in unit j�JsLij

makespanMK
Qi production size of campaign i

binary variable denoting that campaign i�Is
+ supplies intermediate s to campaign i ��Is

−Uii�

Vii� accumulated amount of state s consumed by campaign i ��Is
− at the completion time of run i�Is

+

binary variable denoting that the intermediate s�SI produced by run i�Is
+ has been assigned to tank t�TsWit

binary variable denoting that campaign i is run/stored before (Xii�=1) or after (Xii�=0) campaign i � inXii�

some available unit/tank
Yij binary variable denoting that campaign i�Is

+ is run in unit j�Js

Zii� binary variable denoting that campaign i ��Is
− starts after campaign i�Is

+ has ended

1. Introduction

Much of the work in the area of production schedul-
ing has been focused on batch processing facilities.
Recently, however, several publications have paid at-
tention to the scheduling of multiproduct facilities in-
volving continuous processes. Continuous time
formulations for the short-term scheduling of continu-
ous processes, all of them based on the RTN/STN
representation, have been developed by Schilling and
Pantelides (1996), Ierapetritou and Floudas (1998),
Zhang and Sargent (1998). Though proposed as gen-
eral-purpose frameworks that can be applied to mixed
production facilities involving batch and continuous
processes, they present two major drawbacks when real
industrial problems are tackled. First, they provide
large-size problem formulations with a high number of
0–1 variables and constraints that considerably in-
creases with the number of event points or event-times

being used. Second, they have a weak control on the
number of campaigns being run for each production
task. As a result, non-realistic production schedules
involving an excessive, non-economic number of cam-
paigns for every required task are usually generated.
This happens even if no intermediate due dates are to
be satisfied. Many of such runs are consecutively ac-
complished in the same unit, but at different processing
rates. This is not a usual industrial practice since it
implies a much higher demand of manpower and costly
equipment idle time. Instead, a quite few campaigns per
task are weekly run in industry. In turn, Karimi and
McDonald (1997) proposed a couple of slot-based
MILP formulations to deal with the scheduling of
single-stage multiproduct facilities involving no storage
requirements and multiple product demands at specified
due dates. The present work generalizes the MILP
algorithmic methodology for the short-term scheduling
of batch processing facilities, introduced by Méndez
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and Cerdá (2000), to now account for continuous pro-
cessing units. Rather than relying on the notion of
time-slots or event points, the model basic block is the
set of (direct/non-direct) predecessors for any campaign
at each processing/storage unit. Therefore, no effort
should be applied to properly select the number of slots
or event times and a better control on the number of
campaigns is achieved.

2. Problem definition

The short-term scheduling problem considered in this
work can be stated as follows. Given are: (a) a process-
ing facility that involves a set of continuous operations
producing intermediate or final products; (b) a set of
available equipment items performing the required pro-
cessing tasks; (c) a set of tanks of limited capacity for
temporary storage of intermediates; (d) a predefined set
of runs for each intermediate and final product; (e)
minimum demands of final products to be satisfied; (f)
a given scheduling horizon. The problem objective is to
find: (i) the optimal sequence of runs to be executed in
every continuous unit; (ii) the production task being
performed and the amount of intermediate/final
product yielded by each one; and (iii) the campaign
starting and completion times, in order to maximize the
economic return from production sales while satisfying
allocation constraints, storage limitations and end-
product minimum requirements.

3. Model assumptions

(a) Several intermediates can be required to run a
continuous processing task but each task just pro-
duces a single intermediate/final product.

(b) A sth-producing run i�Is
+ can supply intermediate

s to one or several production tasks i ��Is
− consum-

ing s.
(c) An intermediate s required by a production task

i ��Is
− can be directly provided by run i�Is

+ bypass-
ing storage and/or taken from the tank assigned to
run i.

(d) Minimum run lengths can vary with the product
being manufactured and the unit assigned.

(e) Minimum and maximum equipment processing
rates can vary with the product and the unit
assigned.

(f) Changeover times between campaigns are se-
quence-dependent in processing units and storage
tanks.

(g) The time interval during which a suitable tank t�Ts

is assigned to a particular campaign i�Is
+ (i.e. the

time interval for the storage task) begins at the

starting time of run i and ends as soon as the
amount of intermediate s produced by run i has
been totally consumed.

(h) No initial inventory of any intermediate s�SI is on
hand.

(i) Unlimited storage capacity is available for final
products whereas tanks for intermediates have lim-
ited capacities.

(j) The plant is operated on a closed-shop mode.

4. The mathematical model

4.1. Problem constraints

4.1.1. Scheduling horizon constraints
Every production run should be completed within the

specified scheduling horizon of length H.

Ci�H �i�I (1)

4.1.2. Campaign/unit allocation constraints
A single unit can at most be assigned to campaign i.

�
j�Js

Yij�1 �i�Is
+, s�S. (2)

4.1.3. Minimum run length constraint
Every campaign producing an intermediate or a final

product s in unit j�Js should have a length Lij never
lower than the specified minimum duration l sj

min.

l sj
minYij�Lij�HYij �i�Is

+, j�Js, s�S. (3)

4.1.4. Considering finite product release times and unit
ready times to compute the starting times of initial
campaigns

Ci− �
j�Js

Lij� �
j�Js

max[ruj, ros ]Yij �i�Is
+, s�S. (4)

4.1.5. Relationship between the length Lij and the
amount of material s produced by campaign i�Is

+

The amount of material s produced by a campaign
i�Is

+ running at unit j�Js not only depends on its
duration Lij but also on the selected unit processing rate
lying within the feasible range [rsj

min, rsj
max].

�
j�Js

r sj
minLij�Qi� �

j�Js

r sj
maxLij �i�Is

+, s�S. (5)

4.1.6. Final product demand constraints
One or several production campaigns can be run to

meet the specified minimum demand for each final
product.

ds� �
i�Is

+

Qi �s�SP. (6)
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4.1.7. Production run sequencing constraints
The completion time of any precedence campaign i

running before in the same unit j�J is a lower bound
on the starting time of a production run i �. The se-
quencing variable Xii� will be equal to one whenever
both campaigns i and i � are assigned to the same unit
j�Jii�=Ji�Ji� and, in addition, campaign i is run be-
fore. In such a case, constraint (7) is enforced while Eq.
(8) becomes redundant. If the assignment variables Yij

and Yi�j are still equal to 1 but campaign i � is first
executed, then Xii�=0 and, consequently, constraint (8)
will be enforced. In any other case, the value of Xii� is
meaningless. By considering the pair of Eqs. (7) and (8)
rather than only constraint (7), a single variable Xii� is
just needed to describe the relative locations of runs
(i, i �) in the same processing sequence. In this way, the
number of sequencing variables Xii� is reduced by half.
In addition, sequencing constraints (7)– (8) explicitly
account for sequence-dependent transition times.

Ci�−Li�j�Ci+�ii�j−H(1−Xii�)−H(2−Yij−Yi�j)

�i, i ��I, i� i �, j�Jii�, (7)

Ci−Lij�Ci�+�i�ij−HXii�−H(2−Yij−Yi�j)

�i, i ��I, i� i �, j�Jii�. (8)

4.1.8. Material balances
Material balances are included to guarantee that

enough material s�SI is produced to run every cam-
paign i�Is

− requiring s.

4.1.8.1. Sinks for the intermediate s produced by cam-
paign i�Is

+. The amount of intermediate s produced by
campaign i�Is

+ can be supplied to one or several sth-
consuming runs i ��Is

− featuring Fii��0. The continuous
variable Fii� denotes the amount of material s provided
by run i to campaign i �.

Qi= �
i��Is

−

Fii� �i�Is
+, s�SI. (9)

4.1.8.2. Sources of intermediate s for campaign i�Is
−.

The amount of intermediate s required by production
run i�Is

− is provided by those campaigns i ��Is
+ featur-

ing Fi�i�0.

�isQi= �
i��Is

+

Fi�i �i�Is
−, s�S, (10)

�si is the amount of s consumed by unit size of run i.

4.1.9. Source/sink campaign matching conditions
If run i�Is

+ supplies intermediate s to campaign
i ��Is

−, then the matching 0–1 variable Uii� is made
equal to one and Fii��0.

Fii��MUii� �i�Is
+,i ��Is

−, s�S. (11)

In addition, the pair of timing conditions (12) and (13)
given below are to be satisfied.

(i) A run i�Is
+ supplying material s to campaign

i ��Is
− should not start later than i �.

Ci− �
j�Ji

Lij�Ci�− �
j�Ji �

Li�j+H(1−Uii�)

�i�Is
+, i ��Is

−, s�S. (12)

Let us consider a campaign i ��Is
− being supplied by

a pair of production runs (i, i�)�Is
+, with run i starting

before and run i� beginning later than i �. Such a
campaign i � is regarded by the model as being com-
posed by two successive campaigns, the earlier one
receiving intermediate s from campaign i and the other
one from both i and i�.

(ii) A run i�Is
+ supplying intermediate s to campaign

i ��Is
− should never end later than i �.

Ci�Ci�+H(1−Uii�) �i�Is
+, i ��Is

−, s�S (13)

Condition (13) can be omitted if the overall con-
sumption rate of intermediate s by any set of parallel
campaigns i ��Is

− never surpasses the production rate of
the source campaign i�Is

+. In any case, constraint (13)
prevents from running out of intermediate s while
executing any sink campaign i ��Is

−.

4.1.10. Duration of storage tasks
The storage task for campaign i�Is

+ delivering part
of its production to tank t (Wit=1) is assumed to begin
at the starting time of run i (ITi). Moreover, it will
finish as soon as the latest campaign i ��Is

− receiving
intermediate s from run i (Uii�=1) has been completed.
Then,

ITi=Ci− �
j�Js

Lij �i�Is
+, s�SI, (14)

CTi�Ci�−H(1−Uii�) �i�Is
+, i ��Is

−, s�S. (15)

Contrarily, Ierapetritou and Floudas (1998) assumed
that the storage task can end at the start of the related
consuming runs, e.g. a very high consuming rate by the
sink campaigns i ��Is

−. Their formulation included some
constraints enforcing that the end times of storage tasks
should be greater than or equal to the starting time of
any associated consumption task. By doing so, the
storage capacity constraints are relaxed and non-feasi-
ble production schedules featuring profits even larger
than the optimal one may be generated. Fortunately,
the proposed MILP formulation does not rely on such
an assumption.

4.1.11. Storage task sequencing constraints
The storage task for run i ��Is

+ in tank t (Wi�t=1)
cannot be started until any precedence storage task i
has been completed. However, no further sequencing
variable for the storage stage is usually required. The
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reason is rather simple. If both campaigns {i, i �} were
run in the same unit j�Jii� at the previous production
stage and run i was accomplished before, then Xii�=1
and run i is also stored before in tank t. Consequently,
the same sequencing variable Xii� can be re-used to
denote the task sequencing at the next storage stage. If
campaigns {i, i �} are instead run in different units but
both are still assigned to tank t and run i is stored
before, then Xii� is made equal to one just for the
storage stage since its value is meaningless for the
precedence production stage. In short, whenever the
runs {i, i �} are assigned to the same tank t (Wit=
Wi�t=1), then campaign i is stored either before
(Xii�=1) or after (Xii�=0) campaign i � in tank t. If Xii�

is equal to one, then Eq. (16) applies to sequence the
storage tasks and Eq. (17) becomes redundant. The
reverse situation arises if Xii�=0; i.e. Eq. (17) is en-
forced while Eq. (16) becomes redundant. In this way,
it is very likely to have no further requirement of
binary variables to sequence the storage tasks, thus
achieving a significant saving in 0–1 variables. Addi-
tional 0–1 variables for sequencing storage tasks will
be necessary only if a pair of runs {i, i �} with Jii�=�
can share a storage tank. Moreover, constraints (16)–
(17) account for sequence-dependent transition times
�ii� between any pair of successive campaigns {i, i �}
assigned to the same tank t.

ITi��CTi+�ii�t−H(1−Xii�)−H(2−Wit−Wi�t)

�i, i ��I, i� i �, t�Tii�, (16)

ITi�CTi�+�i�it−HXii�−H(2−Wit−Wi�t)

�i, i ��I, i� i �, t�Tii�. (17)

Values for the starting (ITi) and the completion time
(CTi) of the storage task for campaign i in tank t have
no meaning at all unless the storage task does really
exist and consequently the tank t has been assigned to
run i. In fact, the storage tasks for the source cam-
paigns {i, i �} in tank t are sequenced by constraints
(16)– (17) involving variables {ITi, ITi�, CTi, CTi�} only
if tank t has been really assigned to both runs (Wit=
1, Wi�t=1). Otherwise, CTi or CTi� can take any value
and therefore Eq. (15) becomes redundant.

4.1.12. Storage capacity constraints
Since the tanks for intermediates have finite capac-

ities, then the net amount of material stored in a tank
t can never exceed its capacity �t. Assuming that the
rate of production of intermediate s by campaign i�Is

+

is greater than the overall consumption rate from runs
i ��Is

− featuring Fii��0, then the capacity constraints
are just to be enforced at the completion time of
campaign i(Ci) producing s. To establish the amount
of material in the tank assigned to run i�Is

+ at time

Ci, it should first be known the sth-consuming runs
i ��Is

− starting after Ci. To this end, a new binary
variable Zii� is to be defined denoting that campaign i �
starts after Ci whenever Zii�=1.

4.1.12.1. Definition of the �ariable Zii�.

Ci�− �
j�Ji �

Li�j−Ci�HZii� �i�Is
+, i ��Is

−, s�S (18)

4.1.12.2. A bound on the amount of intermediate Vii�

transferred from i�Is
+ to i ��Is

− at the completion time
of run i(Ci). As stated by Eq. (19), the amount of
intermediate Vii� transferred from i�Is

+ to i ��Is
− at Ci

should be equal zero if the consuming campaign i �
starts later than Ci (Zii�=1). Moreover, Vii� should
also be equal to zero if there is no match between runs
{i, i �}. In such a case, Uii�=0 and, consequently, Fii�=
0 (Eq. (20)). Otherwise, Vii� may be finite but it never
exceed the total amount of material supplied by the
production run i to the consuming run i �(Fii�) as spe-
cified by Eq. (20). Furthermore, Eq. (21) provides a
conservative bound on the value of Vii� in case Uii�=1
and run i � is still running at Ci(Zii�=0). By underesti-
mating the value of Vii�, the inventory of state s at
time Ci and the duration of the related storage task
are, in the worst case, both overestimated, thus pre-
venting from storage infeasibilities. However, the acti-
vation of unnecessary storage tasks is not expected.

Vii��M(1−Zii�) �i�Is
+, i ��Is

−, s�S, (19)

Vii��Fii� �i�Is
+, i ��Is

−, s�S, (20)

Vii���i�s r i�j
min �Ci−Ci�+ �

i�Ji�

Li�j
�

+MZii�+M(1−Yi�j)

�i�Is
+, i ��Is

−, s�S, j�Ji�. (21)

4.1.12.3. The amount of material s stored in tank t at
the completion time of run i�Is

+ should be less than the
tank capacity �t. The LHS of constraint (22) gives the
amount of material produced by run i�Is

+ not yet
transferred to the matching campaigns i ��Is

− at Ci.

Qi− �
i��Is

−

Vii�� �
t�Ts

�tWit �i�Is
+, s�S (22)

Eq. (22) forces to assign a tank t�Ti to run i only if
an inventory of intermediate produced by i is to be
stored (Qi�� Vii�). In the more general case, one can-
not guarantee that the rate of production will be
greater than or equal to the overall consumption rate
for any state s. Then, the capacity constraints must
also be enforced at the starting time of every sink
campaign i ��Is

−. To do that, a similar treatment
should be made to establish the amount of material i
in the tank assigned to run i�Is

+ at the starting time
of campaign i ��Is

−, i.e. at time (Ci−�j�Ji �
Li�j).
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Fig. 1. Schematic representation of the plant.

4.2. Objecti�e function

The problem objective is to maximize the economic
return from production sales, whereas meeting either
the constraint set (1)– (13) for the UIS case or the
constraint set (1)– (22) for the FIS case.

max �
s�S P

ps �
i�Is

+

Qi. (23)

However, different scheduling targets can alternatively
be considered such as the minimum makespan.

MK�Ci �i�Is
+, s�SP, (24)

min MK. (25)

5. Results and discussion

The proposed MILP scheduling methodology has
been applied to a couple of medium-size case studies
both based on an industrial fast moving consumer
goods manufacturing plant (Schilling & Pantelides,
1996). Fifteen final products are manufactured in the
facility following a common production sequence: mix-
ing, storage and packing (Fig. 1). The mixing stage
comprises three parallel mixers operating in a continu-
ous mode and producing seven intermediates from
three different base materials available as required.
Such intermediates are then stored in three storage
tanks or directly packed in five continuous packing
lines. The STN representation of the plant is shown in
Fig. 2. Problem data are given in Tables 1 and 2. Case
I assumes an unlimited intermediate storage (UIS pol-
icy), i.e. storage capacity constraints are ignored. In
turn, limited capacities of storage tanks (FIS policy) are
taken into account in Case II. Assuming a single cam-
paign per product at any available unit, the optimal
schedules for Cases I and II are depicted in Figs. 3 and
4, respectively. They were found by using ILOG OPL
Studio 2.1 with the embedded CPLEX Mixed-Integer
Optimizer 6.5.2 release (Ilog, 1999). Additional infor-
mation on the optimal schedules is shown in Tables 3
and 4.

Fig. 2. State-task network representation of the plant.

Table 1
Equipment data

SuitabilityRate/capacity (ton/h or ton)Units Change-over requirements

17.00M1 I1, I2 –
–12.24M2, M3 I5, I6, I7

17.00 I3, I4 –
–T1,T2,T3 Store all intermediates60
Between {P2, P3} and {P7}—1 hL1 P2, P3, P75.8333
Between {P4, P5} and {P8, P9}—4 hP4, P5, P8, P9L2 2.7083

5.5714 P1, P6L3 Between {P1} and {P6}—1 h
2.2410,L4 P12, P13, Between {P12, P13} and {P14, P15}—2 h
3.3333 P14, P15

5.3571L5 P10, P11 –
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Table 2
Minimum production requirements

Product Demand (ton)

P1 220
P2 251
P3 15

116P4

P5 7
47P6

144P7

42.5P8

13.5P9

114.5P10

53P11

P12 16.5
8.5P13

2.5P14

17.5P15

(a) a one-order-of magnitude reduction in binary vari-
ables and constraints; (b) an almost two-order-of mag-
nitude reduction in continuous variables; (c) an
improvement in the optimal solution found; and (d) a
significant saving in CPU time requirements. Similarly
to Schilling and Pantelides (1996), Ierapetritou and
Floudas (1998), the LP relaxation for the FIS Case was
2724. When two campaigns for each state can be run at
each unit, then the number of sequencing and assign-
ment variables increase to 112 and 20, respectively.

Since the tank capacities are relatively small (60 tons)
compared with the amounts of intermediates to be
produced ranging from 152 to 587 tons, the FIS
scheduling problem becomes hardly restrained by the
tank limited capacities and, consequently, rather short
campaigns appear as better options. Despite that, the
proposed production schedule comprising a single cam-
paign per product yields an economic return of 2670.28

Fig. 3. Optimal schedule with UIS policy.

Fig. 4. Optimal schedule with FIS policy and storage profile of
intermediates.

For the UIS case, the proposed problem formulation
includes 28 sequencing variables and 10 assignment
variables, i.e. a total of 38 binary variables. In addition,
44 continuous variables denoting campaign lengths (22)
and completion times (22) are to be defined. Case I
provides an upper bound on the feasible economic
return since the packing lines can be run at full
capacity.

For the FIS case, the number of binary variables
rises to 84 as long as 10 storage task sequencing vari-
ables, 21 state-tank assignment variables and 15 Zii�-
variables are to be incorporated. In both cases, the
model sizes are well below those reported by other
authors and the optimal solutions found are much
better. Table 5 compares the size of the proposed MILP
formulation, the optimal objective value and the com-
putational requirements when applied to Cases I and II
with results reported in previous work. It is observed:



C.A. Méndez, J. Cerdá / Computers and Chemical Engineering 26 (2002) 687–695694

Table 3
Optimal production schedule for Case I

StateUnit Starting time Completion Production
(ton)time (h)(h)

Mixers
M1 0.00I1 34.53 587.00

42.42 65.56I2 393.26

0.00 30.00M2 367.14I7

0.00M3 33.44I5 409.31
33.44I3 59.50 443.00
59.50 87.53I6 343.11

I4 95.31 104.28 152.50

Packing lines
L1 0.00P2 43.03 251.00

43.03P3 94.31 299.16
95.31 120.00P7 144.00

0.00L2 33.44P8 90.57
33.44 38.42P9 13.50
42.42 77.17 94.10P5

77.17 120.00P4 116.00

L3 P1 0.00 39.49 220.00
P6 40.49 120.00 443.00

0.00L4 106.09P15 353.64
P14 106.09 106.84 2.50

108.84 116.21P12 16.50
116.21 120.00 8.50P13

0.00L5 59.50P10 318.74
P11 59.50 120.00 324.11

profitable than the best one reported by Zhang and
Sargent (1998). Fig. 4 also shows the change of the
intermediate inventory with time as well as the sequence
of intermediates assigned to every storage tank. Maxi-
mum allowable intermediate inventory of 60 tons is
reached four times over the time horizon for intermedi-
ates {I1, I2, I5, I6}, but in any case it immediately
decreases.

The best schedule reported by Zhang and Sargent
(1998) for the same example involved a total of 204
campaigns, 77 for the production of intermediates and
127 for final products, and 14 changeovers. Despite the
runs are obviously much shorter, the maximum allow-
able intermediate inventory of 60 tons is reached five
times and, in each case, the tank remains full during
some finite interval. Therefore, constraint (22) seems to
be working properly. In turn, Ierapetritou and Floudas
(1998) using an improved approximation of the storage
timings found an optimal solution for the FIS case that
yielded a profit of 2695.25 and comprised 40 cam-
paigns, 15 for intermediates and 25 for final products.
Curiously, such a profit is even larger than the maxi-
mum one reported by the authors for the UIS case.

Table 4
Optimal production schedule for Case II

Starting time ProductionUnit State Completion
(ton)(h) time (h)

Mixers
I1M1 0.00 79.94 1128.22
I2 92.74 109.71 145.00

M2 I4 70.66 178.2392.73
183.8793.61I5 110.89

110.89I7 118.15 43.88

0.00 85.49M3 I6 798.82
I3 85.49 120.00 192.26

Packing lines
P2L1 0.00 69.66 406.33

144.00P7 95.3470.66
96.34 120.00P3 138.00

P4 0.00 92.74 251.16L2

7.0095.3292.74P5

115.0299.32 42.50P8

P9 115.02 120.00 13.50

P1L3 0.00 84.49 470.73
192.26120.0085.49P6

P14L4 0.00 84.25 280.83
86.25 93.61 16.50P12

P13 93.61 108.89 34.23
P15 110.89 120.00 30.38

P11L5 0.00 93.61 501.49
141.37120.0093.61P10

slightly lower than the optimal one for Case I, i.e. it
decreases by only 0.93%. Though two campaigns can at
most be run for producing intermediates I3–I7 at mix-
ers M2–M3, a single one for each intermediate is
merely accomplished at the optimal solution. So, there
is no economic incentive to run additional campaigns.

Compared with prior approaches, the number of
campaigns (22) and the number of changeovers (6) both
drastically drop. Full utilization of the production ca-
pacity through longer campaigns is achieved by running
parallel campaigns in the packing lines all of them
consuming the intermediate being at the time produced
in the mixers. This is especially true when the interme-
diate production rate is relatively high. Indeed, the
optimal schedule includes several source and sink cam-
paigns of a particular intermediate s starting at the
same time. For instance, Fig. 4 indicates that the source
campaign producing I3 in mixer M3 and the sink
campaign consuming I3 to produce P6 in the packing
line L3 both start at the same and no storage tank for
I3 is required. Despite constraint (22) may give rise to
shorter campaigns and storage bottlenecks, the pro-
posed approach generates a feasible schedule more
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Table 5
Comparison of results

Objective function CPU timeExample Binary vars, cont. vars, rows

UIS policy (Case I)
2604 3407Schilling & Pantelides, 1996 1042, 2746, 4981
2689.42280, 1089, 2873 540Ierapetritou & Floudas, 1998

38, 44, 140This approach 2695.32 4.77a

FIS policy (Case II)
25561318, 4555, 4801 1085Zhang & Sargent, 1998

360, 1337, 3260Ierapetritou & Floudas, 1998b 2695.25 –
This approach 84, 73, 361 2670.28 398.92a

a Seconds on a Pentium II PC (400 MHz) with ILOG/CPLEX.
b With improved approximation of storage timings.

6. Conclusions

A highly computationally efficient continuous-time
MILP algorithmic approach to the short-term schedul-
ing of multiproduct facilities involving continuous pro-
cesses has been presented. When applied to a
medium-size fast moving consumer goods manufactur-
ing plant, it provides a better production schedule
through a simpler MILP formulation in a much lower
CPU time than previous approaches.
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