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Prediction of the fixed-bed reactor behaviour using dispersion and
plug-flow models with different kinetics for immobilised enzyme
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Abstract

The behaviour of fixed-bed reactors, which have an immobilised enzyme on the packing surface, was studied considering steady-state
conditions and external mass transfer resistance in the fluid around catalyst spherical particles. Solutions were obtained by integration of the
plug-flow model equation and by the orthogonal collocation method of the second order differential equation of the axial dispersion flow
model. Both models were analysed for lactose hydrolysis with�-galactosidase immobilised on chitosan using different kinetic reaction
mechanisms after determining the specific parameters. The calculated results show the importance of the hydrodynamic and kinetic reaction
parameters for error reduction in the prediction of the experimental behaviour.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The enzyme immobilisation is a procedure for obtaining
insoluble catalyst, which has the advantage that it can be
used in continuous reactors. Then, this reaction unit is a crit-
ical point in the industrial process production, which require
the design optimisation and the operation control. Substrate
conversion is dependent of several reactor conditions and
characteristics that can be associated in mathematical mod-
els. Moreover, a variety of factors that affect the reactor per-
formance such as enzyme reactions, chemical and physical
properties of substrates and products and flow characteristics
can be defined as long as the right problem can be solved.
Therefore, the use of model solutions showing the reactor
behaviour can improve the knowledge of the process and the
selection of operating conditions[1].

Packed-bed reactors are often used for reaction system
with product inhibition. In this case the efficiency is larger
since the inhibition effect decreases due to the low difference
between substrate and product concentrations in the whole
reactor.
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For this reactor, mathematical models have taken into ac-
count mass transport equations according the operating con-
ditions, such as the hydrodynamic conditions, the plug-flow
or axial dispersion flow; the external or/and internal mass
transfer resistance and the kinetic reaction rate. Solutions of
the equation system have accurately determined experimen-
tal results and the effect of different variables and conditions.

In several previous cases, equations were often theo-
retically solved following different approaches in order to
simplify the problem. As a result, some variables were dis-
regarded or neglected to obtain a single equation that can be
solved or adjusted fitting experimental data[2]. The kinetic
constants and correlation of the mass transfer coefficient
were modified; fitting different values with the plug-flow
model in order to optimise the adjustment. On the other
hand, due to the low substrate concentration, the model was
used after the Michaelis–Menten equation, was simplified
to first-order kinetic equation[3]. In other cases the mass
transfer effect was not considered in the studies[4,5].

Numerical methods are applied to solve the partial differ-
ential equations of an axial dispersion model[6,7] or com-
plex reaction kinetics[8]. Thus, important factors, such as
difusional resistances, effects of backmixing or complex ki-
netic models, in some working ranges can be included in
order to improve the theoretical values obtained.

1385-8947/02/$ – see front matter © 2002 Elsevier Science B.V. All rights reserved.
PII: S1385-8947(02)00129-8



124 C.R. Carrara et al. / Chemical Engineering Journal 92 (2003) 123–129

Nomenclature

a surface area of particles per unit
volume (cm−1)

Ajk, Bjk coefficients of matricesA andB at
the collocation point

C constant of Chilton and Colburn equation
dp particle diameter (cm)
De axial dispersion coefficient (cm2 s−1)
DL,S substrate diffusion coefficient in

water (cm2 s−1)
E0 initial enzyme concentration

(g protein g−1 support)
g exponent ofEq. (14)
G glucose concentration
k′ intrinsic constant for first-order kinetic

equation (M s−1 g−1 protein)
k′2 intrinsic constant for Michelis–Menten

kinetic equation (M s−1 g−1 protein)
kL mass transfer coefficient (cm s−1)
K′

m intrinsic Michaelis–Menten constant (M)
k′P intrinsic inhibition constant (M)
L reactor length (cm)
n number of internal collocation point
P galactose concentration (M)
Pe Peclet number,u L/De
qi coefficient of the polynomial equation
rS reaction rate term
r2 coefficient of determination
Re Reynolds number,dp U δL/µL
S substrate concentration in bulk solution (M)
Sc Schmidt number,µL/DL,S δL
Se fit standard error
Si substrate concentration in catalyst

surface (M)
S0 substrate concentration at reactor inlet (M)
St modified Stanton number (dimensionless

mass transfer coefficient),kL a L/u
Sj polynomial defined byEq. (13)
T temperature (K)
u superficial fluid velocity (cm s−1)
V ′

max intrinsic maximum reaction rate
(M s−1), E0 k

′
2

Vinj injection volume of glucose
z axial coordinate for reactor (cm)
zj internal collocation point function
z∗ dimensionless axial coordinate,z/L

Greek symbols
α dimensionless substrate concentration,Si/S
δL solution density (g cm−3)
δp particle density (g cm−3)
ε void fraction of packed-bed reactor
µL solution viscosity (g cm−1 s−1)
ωsop weight of support (g)

The efficiency of the reactor with�-galactosidase im-
mobilised on chitosan in a tubular fixed-bed reactor for the
hydrolysis of lactose was experimentally determined and
calculated, modifying some transport parameters according
to the operation conditions[9].

The objective of this study was to apply a methodology
for determination of the best set of equations describing the
process.

2. Theory

The mathematical model for the substrate concentration
profile in one direction (z) of an isothermal tubular reactor of
a length,L with axial dispersion and external mass transfer
resistance in steady-state is the model often used[10]. The
axial dispersion coefficient,De, the superficial velocity in
the reactor,u, are also variables defined.

After using dimensionless variables,z∗ = z/L andSi by
α = Si/S, equations can be written in the following form:

1

Pe

d2S

dz∗2
− dS

dz∗
− StS(1 − α) = 0 (1)

with boundary conditions:

z∗ = 0+, S = S0 + 1

Pe

dS

dz∗
(2)

z∗ = 1,
dS

dz∗
= 0 (3)

wherePe is the Peclet number andSt the modified Stanton
number, which are defined in the nomenclature.

In the case of plug-flow model, where dS/dz∗ is constant
and d2S/dz∗2 = 0, Eqs. (1)–(3)become:

dS

dz∗
+ StS(1 − α) = 0 (4)

with the condition:

z∗ = 0+, S = S0 (5)

The substrate (S) mass balance with the substrate in the
interfaceSi, the mass transfer coefficient,kL and the specific
area of the catalyst particle,a, are controlling the reaction
raterS, by:

kLa(S − Si) = rS (6)

The equations to obtain the reaction rate considering differ-
ent kinetics are shown inTable 1. Michaelis–Menten with
inhibition (type III) equation is the most acceptable for work-
ing with product inhibition, which is the case of the proposed
enzyme[11].

The substrateS changes in both models, namely the
plug-flow and the dispersion model according to the rate of
kinetic reactions. For this reason, the main equation of each
model andEq. (6)must be solved with different equations
given in theTable 1 in order to consider theα variations
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Table 1
Reaction rate equations

Type of reaction rS

(I) First-order k′Si

(II) Michaelis–Menten
V ′

maxSi

K′
m + Si

(III) Michaelis–Menten with competitive
inhibition by product

V ′
maxSi

K′
m(1 + (P/k′P))+ Si

indicated in theAppendix A [12]. The mathematical system
is a first-order differential equation for plug-flow conditions
which can be integrated with more or less difficulty accord-
ing to the kinetic reaction considered. However, the model
for a dispersion flow in the reactor involves a second-order
partial differential equation, which can be solved with the
method of orthogonal collocation withn internal points
[13]. This method is based on expanding the variableS in
terms ofz∗j using a series of known functionsSj to obtain
an approximate solution in the domainz∗(0,1). The series
Sj is a polynomial where the first term satisfies boundary
conditions of the problem and each of the additional terms
satisfies the homogeneous boundary conditions when the
RHS is equal to zero. In the collocation method the points
are automatically picked by requiring that polynomials must
be orthogonal to each other so that at a set ofn internal
points the seriesSj are the exact solution with a weighted
residual equal zero. Then the unknown coefficientsqi of
the polynomials can be calculated for these collocation
points and the solution can be obtained. The first and sec-
ond derivatives of polynomials generate the coefficients
Ajk and Bjk of matricesA and B at the collocation point.
Eqs. (1)–(3)in this form, can be written:

Forj = 2, . . . , n+ 1
1

Pe

n+2∑
k=1

BjkSk

−
n+2∑
k=1

AjkSk − StSj(1 − αj) = 0 (10)

Forj = 1 z∗ = 0+, S1 = S0 + 1

Pe

n+2∑
k=1

A1kSk (11)

Forj = n+ 2 z∗ = 1,
n+2∑
k=1

A(n+2)kSk = 0 (12)

Sj =
n+2∑
i=1

qiz
∗(i−1)
j (13)

Usingn = 6 and weighting functionW = 1, the collocation
matricesA andB were generated[13]. TheEqs. (10)–(12),
obtained after this procedure, represent a group of non-linear
algebraic equations that were solved by Gauss method. Since
these results are used to predict experimental concentrations

obtained at the exit of the reactor, the concentration profile
inside the reactor is not necessary to know and only the
value in the outlet flow is important to calculate. Therefore,
Eqs. (10)–(12)were solved to obtain theSvalue in the last
point for different flow velocities.

2.1. Estimation of the mass transfer coefficient

The mass transfer coefficient was estimated by the Chilton
and Colburn correlation[14] as function of the superficial
velocity u, given by:

kL = C
D

2/3
L,S

d
g
p

(
δL

µL

)(2/3−g)
u(1−g) (14)

whereC is 1.09/ε andε the average void fraction,DL,S the
liquid-phase diffusivity of lactose,dp the particle diameter,
g is equal to 2/3[4], and consequentlykL is independent of
the density (δL) and viscosity (µL) of the lactose solution
as a result of an exponent value equal to zero for these
variables. These are particular values for Reynolds numbers
(Re) between 1.6 E-3 and 55 and Schmidt numbers (Sc)
between 165 and 70 600, which are ranges that correspond
to numbers calculated at experimental system conditions.
The surface area of particles per unit volume of packed-bed
was estimated asa = 6(1 − ε)/dp.

3. Materials and methods

Lactozym 3000 (Kluyveromices fragilis�-galactosidase)
was obtained from Novo (Denmark). The kit for the glucose
enzymatic determination was obtained from Wiener Lab
(Argentina). Crab Shells chitosan and Sodium tripolyphos-
phate of practical grade were obtained from Sigma (USA).
The other chemical reagents were analytical grade from
Mallinckrodt or Merck (USA).

3.1. Enzyme immobilisation and kinetic parameters

The �-galactosidase was immobilised on chitosan beads
using glutaraldehyde as it was described in a previous re-
port [15]. Beads had an average diameter (dp) of 0.22 cm
and a density (δp) of 1.102 g cm−3. The initial enzyme con-
centration (E0) was equal to 0.021 g protein g−1 support.
The kinetic parameters, fit standard errors (Se) defined in
Appendix Aand coefficients of determination (r2) were cal-
culated by non-linear regression of experimental data with
integrated equations of the reaction rate in a batch reactor
[12]. Experimental values were obtained at 43◦C with neg-
ligible diffusion effects; the maximum velocity for a support
weight,ωsop, wasV ′

max = k′2ωsopE0.

3.2. Packed-bed reactor

A (14.0 cm × 1.2 cm) column with a jacket of water
recirculation and a heating water bath were used with
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immobilised enzyme beads at 43◦C as the isothermal
packed-bed reactor. More details can be found in the study
presented previously[9]. Product (glucose) concentrations
in the outlet flow were measured after feeding at constant
flow rate in a range of 0.038–0.134 ml s−1, by means of
a peristaltic pump, solutions with different lactose con-
centrations,S0 (M): 0.073–0.146–0.219–0.292, in 0.025 M
KH2PO4 and 0.025 M Na2HPO4 buffer of pH 6.86. The
weight of catalyst beads in the reactor was 10.66 g and the
average void fractionε of the packed-bed was equal to 0.39.

3.3. Estimation of axial dispersion coefficient

The axial dispersion coefficient (De) was estimated ex-
perimentally with the method used by Levenspiel[16],
measuring the longitudinal spreading of the glucose con-
centration (G) in the output streamR(t) during the period of
time (t) that is detected. The solution of transient equation
for the dispersed model with the condition (Gz= 0 = G0)
has a Gaussian distribution function. The relationship be-
tween the variance (the second moment with respect to
the mean value) of the concentration versus the dimen-
sionless time curve and the Peclet number (Pe) is σ2 =
2/Pe[1 − 1/Pe(1 − e−Pe)]. The signal for the outlet pulse
was obtained with a differential refractometer LDC Model
1107 Milton Roy Co. (Florida, USA) on line, it is showed
in the Fig. 1 for different injection volume,Vinj of glucose
(0.050, 0.075 and 0.100 ml) at a superficial velocityu =
0.024 cm s−1. The area under the curve of response signal
versus time was obtained by integration (ΣGiti/Σti) to de-
termineσ2, which was used to calculatePe (corresponding
a meanPe equal to 8.7, with a estimate standard deviation
equal to 0.1 for the velocity ofFig. 1) and then from this
number theDe [17]. Pevalues calculated after examining the
corresponding response curves that obtained for 10 different

Fig. 1. Experimental curve of response signal vs. time obtained for different injection volumes of tracer.

Table 2
ExperimentalPe numbers obtained in the axial dispersion coefficient
determination

C0 (g l−1) Vinj (ml) t̄ (min) σ2 Pea

5.0 0.100 9.62 20.43 9.06
5.0 0.075 10.89 29.49 8.04
5.0 0.050 10.69 24.56 9.31

10.0 0.100 10.08 23.05 8.82
5.0 0.100 9.63 20.27 9.15
5.0 0.050 10.67 24.58 9.27
5.0 0.075 10.63 26.95 8.39

10.0 0.100 10.60 26.57 8.45
10.0 0.100 10.60 26.57 8.45
10.0 0.100 10.60 26.57 8.45

a Peaverage= 8.74; S.D. = 0.14.

flow conditions and tracer quantities are given inTable 2. A
De = 0.038 cm2 s−1 were obtained from the average values.

4. Results and discussion

Experimental values of the lactose conversion with im-
mobilised�-galactosidase on chitosan beads as function of
the superficial velocity in the reactor were obtained for dif-
ferent substrate concentration[9]. Theoretical values were
predicted using the same experimental conditions in the two
models with each kinetic equation. The kinetic constants,
which were determined in a work before, are inTable 3 [12].

Experimental and predicted conversion values obtained
for S0 (M): 0.073 and 0.292 are given inTable 4, with the
correspondingSe in the case of the more complex equations
[18], which is the axial dispersion model and the type III
kinetics.

Se for other cases, for different initial substrate concen-
tration and an overall standard error for all concentrations
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Table 3
Kinetics parameters

Type of reaction rS

(I) First-order k′ = 6.01 E-3 M (glucose)
s−1 g−1 protein
r2 = 0.556
Se = 0.501

(II) Michaelis–Menten k′2 = 1.01 E-2 M (glucose)
s−1 g−1 protein
K′

m = 0.141 M
r2 = 0.735
Se = 0.136

(III) Michaelis–Menten with competitive
inhibition by product

k′2 = 1.30 E-2 M (glucose)
s−1 g−1 protein
K′

m = 0.137 M
k′P = 0.234 M
r2 = 0.916
Se = 0.085

based on a dimensional conversion values (between 0 and
1) are given inTable 5. It is observed that the type III ki-
netics is the principal factor that reduces theSe values, and
improvement in the model fit is greater when using this ki-
netics than when using the axial flow model.

The combination of the axial dispersion model and the
kinetic equation of Michaelis–Menten with a competitive
product inhibition (type III) resented the smallest standard
error. Besides, grouping these equations in the solution sys-
tem, theSe errors of the results obtained were similar for
the different initial concentrations tested.

Figs. 2 and 3show the conversion of the experimental data
and calculated values for different kinetics in both models
at different flow rates. Since reaction rate is directly pro-
portional to the concentration changes, the kinetic equation
type I show the more detectable variation of substrate con-
version, which is not applied in this case. Therefore, the
conditionK′

m 	 S at the initial concentration that simpli-
fies the Michaelis–Menten equation in a kinetic equation of
first-order could not be used[8]. The conversion values cal-
culated with the kinetics equation, type II, are higher than

Table 4
Experimental and predicted conversion values obtained for the axial dispersion model with the type III kinetics

u (cm s−1) Pe kL S0 = 0.073 M S0 = 0.292 M

Experimental Predicted Residualsa Experimental Predicted Residualsb

0.034 12.66 0.0396 – – – 0.838 0.826 0.012
0.039 14.56 0.0419 0.936 0.911 0.025 0.796 0.781 0.015
0.049 18.36 0.0450 0.897 0.875 0.022 0.722 0.713 0.009
0.059 22.16 0.0478 0.855 0.836 0.019 0.630 0.647 −0.017
0.067 24.06 0.0500 0.816 0.805 0.011 – – –
0.078 27.86 0.0525 0.777 0.765 0.012 0.521 0.545 −0.024
0.097 35.46 0.0566 0.711 0.697 0.014 0.431 0.463 −0.032
0.119 45.12 0.0604 0.646 0.633 0.012 0.362 0.396 −0.034

a Se = 0.019.
b Se = 0.024.

Table 5
Fit standard error between experimental data and predicted values for
each kinetic reaction with the two models

Model S0 (M) Kinetic type

I II III

Plug-flow 0.073 0.067 0.021 0.036
0.146 0.024 0.086 0.014
0.219 0.076 0.144 0.031
0.292 0.137 0.204 0.051

Overall 0.085 0.132 0.035

Axial dispersion 0.073 0.086 0.016 0.019
0.146 0.037 0.037 0.026
0.219 0.063 0.072 0.022
0.292 0.115 0.102 0.023

Overall 0.079 0.065 0.024

experimental values since the product inhibition that reduces
the substrate access at active site of enzyme was not con-
sidered in the model. The difference is larger for the values
obtained with plug-flow model than those obtained with ax-
ial dispersion model. The latter system considered the lower
substrate concentration for the reaction term because of the
mixing flow in the reactor[19]. Finally, the best value was
estimated using a kinetic equation type III[8]. This system
also shows inFig. 3 that the behaviour was similar not only
with different substrate concentration but also with the ve-
locity in all the ranges used. This also is indicated with the
residual values shown inTable 4.

Using the combination of axial dispersion model and
type III kinetics, the experimental values with smaller errors
could be estimated for different initial concentrations. Sim-
ilar errors were presented with the same kinetics equation
in the plug-flow model when theC values in theEq. (14),
were previously adjusted with experimental values at each
concentration at low superficial velocity and small substrate
conversion[9]. The correlation of mass transfer coefficient
was modified to reduce the effect of flow rate.

For Pe ≤ 5 in a fixed-bed reactor containing a im-
mobilised enzyme with a kinetics reaction given by
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Fig. 2. Experimental data and calculated values with plug-flow model for
kinetic equations: (—) type I; (– – –) type II; (· · · ) type III.

Michaelis–Menten with product inhibition, the conversion
values should not be significantly different after using a
model that only considers plug-flow or the axial dispersion
system[10], while for 20< Pe< 100, which is the most
common situation in a tubular reactor, the axial diffusion
in the model must be considered, in order to predict exper-
imental results[19]. In the experimental assaysPe values

Fig. 3. Experimental data and calculated values with dispersion model
for kinetic equations: (—) type I; (– – –) type II; (· · · ) type III.

changed from 12.7 to 45.1 according to superficial veloc-
ity. Therefore, for the range ofPe numbers used, the axial
dispersion model predicted the experimental behaviour with
higher accuracy than the plug-flow model (Table 5, Figs. 2
and 3). The results of this study not only provided numeri-
cal solutions but also a deep understanding of the reaction
systems.
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5. Conclusions

Models for predicting fixed-bed reactor behaviour with
a immobilised enzyme were compared considering differ-
ent kinetics. The correct kinetic equation showed higher
influence on the prediction of reactor behaviour than the
characteristics assumed of the flow distribution. Besides, ex-
perimental results predicted by the axial dispersion model,
showed higher accuracy.

In this case, a model that considered different factors such
as kinetics and hydrodynamic conditions solved by numer-
ical methods using the parameters known for ideal systems
predicted the experimental behaviour in all the concentra-
tion range with small error. This result is very important for
reactor scaling up, without fitting previously the parameters
at the working condition.
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Appendix A

(a) Expressions toα for different kinetics
Kinetics of first-order (I):

α = kLa

(k′ + kLa)
(A.1)

Kinetics of Michaelis–Menten (II):

α = S + c1 +
√
(S + c1)2 + S c2

2S
(A.2)

where

c1 = −K′
m − V ′

max

(kLa)
, c2 = 4K′

m

Kinetics of Michaelis–Menten with competitive inhibi-
tion by product (III):

α = S c3 + c6 +
√
(S c3 − c6)2 + 4S(c4 − c5S)

2S
(A.3)

where

c3 = K′
m + 1, c4 = K′

m + K′
m

k′P
S0,

c5 = K′
m

k′P
, c6 = c4 + V ′

max

kLa

(b) Fit standard error

Se =
√∑n

j=1(ŷj − yj)
2

n−m
(A.4)

whereyj is they data value,̂yj the estimatedy value,
n the total number of data points andm the number of
coefficients in the equation.

(c) Coefficient of determination

r2 = 1 −
∑n
j=1(ŷj − yj)

2∑n
j=1(yj − ȳ)2

(A.5)

whereyj is they data value,̂yj the estimatedy value,
ȳj the mean of they data values andn the total number
of data points.
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