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Abstract

We review in this paper a series of constitutive equations that describe the behavior of steels at elevated temperatures, laying emphasis upon
continuous casting processes. The different laws are situated in an appropriate thermodynamic context, enabling the straightforward
multiaxial generalization of uniaxial relationships proposed on a pure experimental basis. Plastic and viscoplastic standard materials are
mainly considered, including models that split the instantaneous and creep components of the irreversible deformation. Unified models
without a yield criterion are also treated. Predictions of different models for steels with the same carbon content are shown throughout the

work.
© 2002 Published by Elsevier Science B.V.
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1. Introduction

One of the major challenges of an accurate thermome-
chanical analysis of continuous casting processes is to obtain
an adequate description of the complex relationships
between stress, strain and time at elevated temperatures.

The simplest models take into account only the thermal
deformation in the study of strand shrinkage and mold
distortion, neglecting the mutual and external restrictions
on the displacement field (and hence, on the total strain field).

Thermoelastic models satisfy these restrictions on total
strain by considering a reversible (elastic) deformation,
which is completely defined by the local current stress
and temperature state. However, metals exhibit elastic
response just within a region of the stress space. This so-
called elastic region diminishes continuously as temperature
increases, and disappears at the melting point. Therefore,
modeling the high-temperature behavior of metals as elastic
is but a rough approximation.

An improved model is achieved by considering an irre-
versible or inelastic strain, which is not only a function of the
local current stress and temperature, but also of the history of
stress (or strain) and temperature recorded at the considered
point during the whole process.

Plasticity theory assumes that deformation is indepen-
dent of the velocity at which deformation takes place.
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Plastic behavior is commonly observed in most metals at
room temperature, that is, below one third of the absolute
melting temperature. It is widely accepted that copper
alloys that conform the mold may be modeled as plastic
materials.

At elevated temperatures, materials become highly rate-
sensitive. Viscoplastic models try to account for the strain
rate dependence of irreversible deformation and constitute
the most sophisticated laws to describe the response of cast
metals.

The objective of this paper is to review a series of
constitutive equations proposed for steel at high temperature
by putting them in a thermodynamic framework. Thus, we
develop the background for the multiaxial generalization of
relationships defined from observation in uniaxial tests.

2. Thermodynamic framework

Following the theory of local state [1], we postulate that
the thermodynamic state of a material at a given point and
instant is completely defined by the so-called state variables
at this point and instant. In this work we chose as state
variables the total strain &, the absolute temperature 7', the
inelastic strain &' and two strain-like hardening variables: a
scalar, denoted r, that measures isotropic hardening, and a
tensor, denoted a, that describes kinematic hardening. The
isotropic hardening variable r is assumed to be equal to the
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Nomenclature

f yield function

k universal gas constant (=8.314 J mol~! K=1)
t time variable

A consistency parameter

dissipation potential
thermodynamic potential

< S

State variables

r strain-like isotropic hardening variable (scalar)
R stress-like isotropic hardening variable (scalar)
s Cauchy stress deviator

T temperature

To reference temperature

X stress-like kinematic hardening variable (tensor)
o strain-like kinematic hardening variable (tensor)
total strain tensor

elastic strain tensor

inelastic strain tensor

0 temperature variation (=7 — Ty)

c Cauchy stress tensor

Oeq von Mises equivalent stress

oy initial yield stress

Material properties
A coefficient in exponential and hyperbolic laws
c carbon content

E young modulus

Er elastoplastic Young’s modulus

K reference stress in Norton law

K, plastic resistance

M hardening exponent

N exponent in Norton law

(0] activation energy

o thermal expansion coefficient
A U Lamé coefficients

K bulk modulus

0 density

equivalent inelastic strain accumulated in the time interval
[0, 7], that is

t 2 .
r:/ \é 180 | dr, (1)
0

| & ||= ,/éi.jé}j being the Euclidean norm of the second-
order tensor &'. A dotted variable denotes its time derivative.

When defining the relationships between these variables,
we must keep in mind the thermodynamic restrictions
imposed by the Clausius—Duhem inequality:

o-éfp(WsT)f%q.gzo, )

where & is the stress tensor, s the entropy, p the density, i the
specific Helmholtz free energy, ¢ the heat flux vector, and

g = grad T the thermal gradient. Dots between two tensors
denote the scalar product, defined either as the double
contraction when applied to second-order tensors (e.g.
6 -&=0;¢;) or the simple contraction when applied to
vectors (e.g2. 4 - g8 = qi8i)-

Continuum thermodynamics [2] gives the basis to write
thermodynamically admissible or stable constitutive equa-
tions. First, we postulate the existence of a thermodynamic
potential, whose gradient defines the state laws. Our choice
is Helmholtz energy, defined as a function of the state
variables:

V(e T,era) =y (e — &, T) +y'(r,aT). )

This definition is consistent with the common assumption
valid for small strains, namely the additive decomposition of
the strain tensor:

e=¢—+¢, 4

where ¢° is the elastic (reversible) strain, including thermal
expansion. Notice that the small strains assumption is widely
accepted in the simulation of continuous casting processes,
where total strains are usually below 2% [3]. Further, by
virtue of Eq. (4), the elastic strain may take the place of the
inelastic one as internal state variable.

From definition (3), the state laws take the form:

0

o-:pa_:i7 (5)

_ %

- ©)
0

R:pa—‘f, @)
0

X:pa—)‘i, ®)

with R and X denoting the thermodynamic forces associated
to the internal variables r and a, respectively. Notice that the
specification of i as a scalar function that is concave with
respect to T and convex with respect to the other variables
guarantees a priori the fulfillment of the Clausius—Duhem
inequality.

2.1. Thermoelastic materials

For linear elastic isotropic materials, the thermodynamic
potential takes the form

b=y = A[Tr(e)]* + 2uTr(e?) — 6Korr0 Tr(e) G 0,
2p 2Ty
)
so that
o = ATr(&%)l + 2ue® — 3ol (10)

where 4 and u are the Lamé constants, k = (31 4 2u)/3 the
bulk modulus, T a reference temperature, 0 =T — Ty, C,
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the specific heat at constant strain, oy the thermal expansion
coefficient, and I is the second-order identity tensor.

Eq. (9) implies small temperature variations (0/Ty < 1)
and hence its validity for continuous casting applications is
questionable, specially for low carbon steels that suffer
important volume changes during the d—y transformation.
Thus, the thermal expansion a6 is usually replaced by the
linear expansion function [4]

T

TLE(T,Ty) = / or(9) d9, (11)
To

that produces the former equation (10) for constant or.

The choice of purely thermoelastic models to characterize
metal behavior at high temperatures leads to a simplified
analysis. However, the thermoelastic solution can be used as
an starting point for the iterative solution of the non-linear
equations governing inelastic deformation processes, as
done by Kelly et al. [5].

A thermoelastic model was also used by Ridolfi et al. [6]
when studying the shrinkage of a continuously cast steel
round billet to optimize mold taper. They determined the
strand deformation by means of a purely thermal analysis
with an empirical argument: they assumed the surface
thermal strain matched the total strain averaged through
the entire solidified shell thickness.

2.2. Elastic domain

It is often assumed that a material behaves elastically only
within a limited region in the stress domain. This so-called
elastic region is bounded by the yield surface, which is
defined here using the von Mises criterion:

f(6,R.X) =3 ]Is ~ X || ~(ox + R) =0, (12)

where s = dev(a) is the deviatoric part of the stress tensor,
oy is the initial yield stress under tensile test conditions, R
controls the size of the elastic domain and X defines its
center in the stress-deviator space.

2.3. Characterization of dissipative processes

When deformation is no longer elastic, we need com-
plementary constitutive equations that describe the evolu-
tion of the internal variables &, r and «. To this end, we
postulate the existence of a new potential, the so-called
dissipation potential

¢ =0¢(0,R,X,g), (13)

from which the evolution laws are derived by means of the
normality rule:

s

& = 9 (14)
. Oop
—r—a—R, (15)

_ 99
—a=, (16)

q OJ¢
-7 (17)

By requiring ¢(a, R, X, g) to be a convex function of @, r, a,
and g, so that ¢ = 0 at the origin, the normality rule forces
the Clausius—Duhem inequality to hold automatically.
Therefore, the normality rule is a sufficient (but not neces-
sary) condition for thermodynamic stability.

In the following analysis, the heat flow law, Eq. (17), will
not be taken into account. Furthermore, temperature 7" will
not be considered as a state variable but as a parameter upon
which the material properties depend in the formulation of
constitutive equations.

Materials whose evolution is completely defined by the
normality rule, i.e. Eqs. (14)—(16), are called generalized
standard materials. If only its flow rule is verified, Eq. (14),
the material is simply called standard. We should mention
that when describing the standard material formulation, we
closely follow the work by Lemaitre and Chaboche [1].

3. Plasticity

For rate-independent behavior, the dissipation potential ¢
is non-differentiable, but we can think of ¢ as the indicator
function of the convex set defined by f = 0 (the closure of
the elastic domain), and then rewrite the evolution laws
(14)—(16), as follows:

i OF
87/160" (18)
. OF
S (19)
. . OF
—a= o, (20)

where F is the flow potential, and J is the consistency
parameter, satisfying the Kuhn—Tucker conditions:

2>0, <0, Af=0, 1)
and the consistency condition

if = 0. (22)
From now on, we restrict ourselves to the associative theory
of plasticity adopting the yield function f as flow potential.

3.1. Plasticity with isotropic hardening

This hypothesis implies X = 0. As aforementioned, the
equivalent accumulated plastic strain plays the role of hard-
ening variable. Let us assume that the material obeys the von
Mises yield criterion, while the hardening curve R(r) is
defined by the Ramberg—Osgood law [1]

R(r) = Kpr'/™, (23)
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where K, and M are thermodependent material properties
called plastic resistance and hardening exponent, respec-
tively. After using the consistency condition, Eq. (22), the
following flow law is obtained:

. §M<Geq — 0y

M-1 . s
& = 2Kp Kp > <0eq> R (24)

Oeq
where oeq = /3/2 || s || is the equivalent von Mises stress,
and (x) = (1/2)(x + |x|) is the so-called ramp function ({-)
are also known as Macauley brackets) [7].

We do not need to invoke the evolution equation (19) for
the hardening variable r; in fact, since r has been assimilated
to the equivalent inelastic strain defined by Eq. (1), its
evolution equation

. 2. M [Geq—ax\"" .
r:\/;||s||:Fp<equ> (6ea), (25)

can be straightforwardly derived from the flow rule (24).

Applications: Whenever models of this kind are used, a
single characteristic value of strain rate is adopted for the
analysis, which may range from 107> to 10~ s~! in con-
tinuous casting processes.

Uehara et al. [8] applied an elastoplastic model with non-
linear isotropic hardening (M # 1 in the Ramberg—Osgood
law) for the study of bulging and unbending in steel slabs
produced by a low-head bow type continuous casting
machine. For low carbon steels, they assumed that the initial
yield stress oy depends on temperature, while the plastic
resistance K, is constant. On the other hand, the strain
exponent 1/M was assumed to depend on the Zener-Hol-
lomon parameter:

Z = éexp[%},

Q being the material activation energy and k the universal
gas constant. Z was determined from estimates of the strain
rate ¢ and temperature. Unfortunately, numerical data for
this model were not published, so that we could not take it
into account for comparison purposes.

The rest of the plastic laws we found in the literature of
continuous casting processes assumed linear isotropic hard-
ening (M = 1) and followed the work of Kelly et al. [5]. In
most cases, the analysis was devoted to the simulation of the
early stages of steel round billet continuous casting pro-
cesses. The characteristic strain rate was usually estimated in
the order of 10~*s~!. Since the consistency condition is
amenable to closed-form solution, this formulation is very
convenient from the computational point of view [7].

In the widely quoted work of Kelly et al., the proposed
model was addressed to describe the behavior of several
carbon steels (0.1, 0.4, and 0.7 wt.% C) under the above
mentioned conditions. The initial yield stress oy, the elas-
toplastic tangent modulus Et, and the Young modulus E,
were calculated using Wray’s tensile test data [9] at a
constant strain rate of 4 x 10~* s~!. The plastic resistance
K, which is equal to the hardening modulus R’ = dR/dr in
the linear hardening case, may then be computed as
K, = EEr/(E — Er).

Dvorkin and Canga [10], Huespe et al. [11], and Cardona
et al. [12] applied Kelly’s model to represent a 0.4 wt.% C
steel (in the latter work, a 0.1 wt.% C steel was also
modeled). The same model has been applied by Rugonyi
et al. [13], who fitted Wray’s data at a strain rate of
1.5 x 10~*s~! using a linear isotropic hardening model
to describe the behavior of a (0.28 wt.% C, 1.30 wt.%
Mn) steel. Also, Huespe et al. [14] represented a plain
carbon steel (0.4 wt.% C) as a plastic material with linear
isotropic hardening, and in this case material properties were

0.09-0.10wt%C steels, 1473 K, 4.0 x 10/sec

18 . . . .

Stress [MPa]

Kozlowski et al. (model 1A) [3]
----- Kozlowski et al. (model I1) [3]
--------- Kelly et al. (plastic) [5]

—mrmes Kristiansson [20] -

0 . , : ,

0.000 0.005 0.010

T T T T
0.015 0.020 0.025

Total strain

Fig. 1. Tensile curves for low carbon steels.
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0.4wt%C steels, 1473 K, 4.0 x 10™/sec

12 T T T T T d T d
o
o
g .
» i
%] i !
o i ,
& 4l Kozlowski et al. (model I1) [3] _
_" ----- Kozlowski et al. (model Ill) [3] |
--------- Kelly et al. (plastic) [5]
2] ——— Kristiansson [18] 7]
0 T T T T T T T T
0.000 0.005 0.010 0.015 0.020 0.025
Total strain

Fig. 2. Tensile curves for medium carbon steels.

adjusted to best-fit Kozlowski et al.’s viscoplastic model
IIT [3] (see Table 1) under tensile test conditions at
1.4 x 1074571,

Fig. 1 plots the tensile curve for 0.09-0.1 wt.% C steels at
a temperature of 1473 K, as predicted by Kelly’s plastic (P)
model, compared to those produced by several viscoplastic
(VP) models at the characteristic strain rate of 4 x 10 s~!
assumed by Kelly et al. Fig. 2 shows curves by models of the
same authors, but for 0.4 wt.% C steels.

Fig. 3 compares results of the Huespe et al.’s elastic/plastic
model, which was proposed for a strain rate of 1.4 x 1074 s,
with those given by viscoplastic models of steel.

In Fig. 4, Kelly et al.’s prediction of the behavior of
0.7 wt.% C (eutectic) steels at 1373 Kis compared to Wray’s
experimental data and to a viscoplastic solution for a strain
rate of 4.0 x 107* s,

4. Viscoplasticity

4.1. Perfect viscoplasticity

This model assumes that inelastic flow occurs at constant
rate, which is typical of the secondary creep phase. In such

0.4wt%C steels, 1473 K, 1.4 x 10"/sec

Stress [MPa]

Kozlowski et al. (model ) [3]
————— Kozlowski et al. (model Il1) [3]
o e Huespe et al. (plastic) [14] 4
== Kristiansson [18]

0 . . - .

0.000 0.005 0.010

0.015 0.020 0.025

Total strain

Fig. 3. Tensile curves for medium carbon steels.
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0.7wt%C steels, 1373 K, 1.4-6.0 x 10" /sec

16 T T T = T T
14
12 4
= 107
e A
o
E e A//
% 5 - > Kozlowski et al. (model 1), 1.4x10"/sec [3] ]
n |y | ---- Kozlowski et al. (model I1), 6.0x10/sec [3] 1
R Kelly et al. (plastic), 4.0x10/sec [5] -
®  Wray (experimental), 1.4x10*/sec [9]
2 - —
A Wray (experimental), 6.0x10/sec [9]
0 T T T T T T T T
0.000 0.005 0.010 0.015 0.020 0.025
Total strain

Fig. 4. Tensile curves for eutectic steels.

case, hardening variables are not necessary. Odqvist’s law is
written:

g 3 aeq)N s
== =) — 26
73 ( K/ 0o’ (26)
and can be derived from the potential
K (Geq\N !
=—(=— . 27
PTNTI (%) @7)

This law describes a perfectly viscoplastic material; K and N
are material properties that may depend on temperature.
Odgqvist’s law is the multiaxial generalization of the well-
known Norton law:

i Teq\N

i = ( = ) . (28)
Here, tensors are represented in bold, while their counterpart in
italics represent the same quantity in a uniaxial condition; e.g.
&' is the inelastic strain and &' is the deformation measured in a
uniaxial test. Under monotonic loads, the absolute value of &
equals the equivalent inelastic strain r, justifying the inclusion
of the factor 4/ 2/3 in definition (1). Furthermore, the uniaxial
stress o equals o4 for arbitrary uniaxial loading. Whenever we
refer to uniaxial constitutive laws, their multiaxial extension
implies the assimilation of ¢ to g¢q and &' to r, which is only
valid under monotonic loading.

Applications: Sakui and Sakai [15] modeled a low carbon
steel (0.16 wt.% C, 0.31 wt.% Si, 0.52 wt.% Mn, 0.008 wt.%
P, 0.006 wt.% S) within the austenitic range and a wide range
of strain rates (1.43 x 107! to 2.73 x 1073 s~!) (conditions
that apply in continuous casting processes) using the follow-
ing secondary creep law:

&= Cexp (— %) o, (29)

where C =3.996 MPa " s7!, N=54, and Q =286.74
kJ mol~! are constant material properties. The latter equa-
tion becomes the Norton law either by the usual hypothesis
of fully-developed flow (¢ ~ &) or by neglecting elastic
deformation, and making:

K=C"VNexp <z%) . (30)

Eq. (29) exhibits a common feature of a wide class of
viscoplastic models that define creep as a thermally acti-
vated phenomenon governed by the Arrhenius law:

&l ocexp(—%). 3D

Remark. From now on, units of stress are MPa, the strain is
given in m/m (non-dimensional), the strain rate in s~!, the
ratio Q/k and the temperature are given in K, and units of the
coefficient C are such that the concerned equation is dimen-
sionally correct.

Grill and Sorimachi [16] referred to Sakui and Sakai in
the study of bulging of continuously cast steel slabs. They
also applied a secondary creep law identical in form to
Eq. (29) for a ferritic iron (Fe-3Si), where C = 1566,
Q/k = 24264, and N = 3.77. They reported that the for-
mer model underestimates the slab bulging, while the
latter exaggerates it, when compared to experimental
measurements.

Dalin and Chenot [17] also employed a secondary creep
law when studying bulging in continuous casting of steel
slabs of a 18M5 steel (0.18 wt.% C, 1.37 wt.% Mn). Their
model turns out to be the Odqvist’s law under the assumption
of fully-developed flow or negligible elastic strains. The
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strain rate sensitivity 1/N is assumed constant (=0.141),
while K is defined as

7680
K =0.389exp (T) 2182,

£y ~ 0.003 being an average strain dependent on the refine-
ment of the finite element mesh used for computations.

Kristiansson [18] used the Odqvist’s law for the analysis
of the thermal stresses that arise during the early stages of
solidification of steels, specifically for 0.09 and 0.40 wt.% C
steels. A distinctive feature of Kristiansson’s model, is that
the material property B = K~ (usually called fluidity, or
inverse viscosity) is defined as a piece-wise linear mono-
tonically increasing function of temperature, instead of the
exponential activation energy term defined by the Arrhenius
law. Fig. 1 shows a comparison between this model and other
models applied to 0.4 wt.% C steels.

Kozlowski et al’s model TA [3] for steels at elevated
temperatures (austenitic range) and low strain rates (1073
to 1070 s71), is very similar in form to Eq. (29), in which the
inelastic strain ¢' takes the place of the total strain &. In this
model, as well as in the other models by Kozlowski et al. to be
introduced later, material property c¢ takes into account the
carbon content C and plays the role of a scaling factor to
adjust the constitutive equations to a wide range of plain
carbon steels (0.005-1.54 wt.% C). This feature allows us to

Table 1
Kozlowski et al.’s standard viscoplastic models for steel [3]

apply Kozlowski et al.’s models as test cases for comparison
purposes, as it can be seen in all plots in this work. Kozlowski
et al.’s standard viscoplastic models are listed in Table 1.

El-Bealy [19] proposed a secondary creep law with
N =3313 and K = 7.27 x 107 (Tiiq — 7)™, Tiiq being
the liquidus temperature, to represent the behavior of low
alloy carbon steels (0.12, 0.136, and 0.143 wt.% C) from the
beginning of the unbending of continuously cast slabs. Here,
the power law (Tjiq — T)""™! replaces the Arrhenius expo-
nential law for the description of thermally activated creep
flows. For the early stages of casting, El-Bealy chose a
primary creep material law that will be described later when
dealing with multiplicative viscosity-hardening models.

Fig. 5 shows the constant strain rate (1.4 x 107*s71)
hardening curves for 0.12-0.15 wt.% C steels at 1573 K,
including the laws of El-Bealy and Thomas et al. previously
described.

Figs. 6 and 7 display tensile curves for low carbon steels
(0.16-0.19 wt.% C content) at constant temperatures (1373
and 1473 K) and strain rate (1.4 x 10~* s~1). In these figures,
the Norton-type models of Sakui and Sakai, Dalin and Chenot
(with gy = 0.003) and Kozlowski et al. are compared.

4.1.1. Odgqvist’s law with elastic range
In this model, the existence of a (constant) elastic domain
whose size is defined by the initial yield stress oy is

Perfect viscoplasticity
Model IA: Norton law
Flow rule
Material parameters

Model IB: hyperbolic law
Flow rule
Material parameters

Model IC: hyperbolic law
Flow rule
Material parameters

Viscoplasticity with hardening
Model II: multiplicative-viscosity hardening law
Flow rule
Material parameters

Model III: additive-viscosity hardening law
Flow rule
Material parameters

& = Cexp[—Q/(kT)]o"

Q/k = 49890

N =5331+4.116 x 10T — 2.116 x 107672
C = 24333 +49973¢ + 48757¢2

# = Cexp[—Q/(kT)] sinh (a,0)

Q/k = 56423

ay = 1.5403 +5.913 x 107°T — 5.538 x 107772

C =2.602 x 100 +2.265 x 10'2¢ — 1.332 x 10'2¢?

&' = Cexp[—Q/(kT)]sinh N (a,0)

Q/k = 44809

N = 0.200 4 3.966 x 10°4T

ay = 1.068 +1.702 x 10747 — 2.808 x 10~772
C =1.802 x 10° + 1.742 x 103¢ — 6.503 x 107¢?

& = Cexp[—Q/(kT))a"t"

Q/k =17160

n=6.365—4.521 x 10737 4 1.439 x 10~°7?
m=—1362+5.761 x 1074T + 1.982 x 107872
C = 0.3091 + 0.2090¢ + 0.1773¢2

i = Cexp[~Q/(KT)){0eq — are™ )"
Q/k = 44650

N =8.132 — 1.540 x 1073T

. = 130.5 —5.128 x 1073T

n, = —0.6289 + 1.114 x 1073T

C = 46550 + 71 400c + 12000c?
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0.12-0.15wt%C steels, 1573 K, 1.4 x 10™/sec

14 T T T T

124

104

©
1

Stress [MPa]

Kozlowski et al. (model IC) [3] 7
————— Thomas et al. [4] ]
--------- El-Bealy (primary creep law) [19] .
——e-e- El-Bealy (secondary creep law) [19] 1

T T T
0.005 0.010

T T T T
0.015 0.020 0.025

Total strain

Fig. 5. Tensile curves for low carbon steels.

assumed. Odqvist’s law can be extended to this case as
follows:

3 Geq—Uy>NS
i Z (7 7Y\ 7 32
& 2< K Ocq (32)

This definition is consistent with a dissipation potential
expressed as

K <aeq _O-Y>N+1

TN+ K (33)

@

Applications: Williams et al. [20], Lewis et al. [21], and
Inoue [22], proposed a simplified form of Eq. (33), assuming
N = 1, for the study of metal casting problems. Bellet et al. [23]
also proposed an extended Odqvist’s law for the thermomecha-
nical analysis of metals during the cooling stage of casting
processes, although their model is applied to aluminum casting.

4.1.2. Exponential and hyperbolic laws
In many cases, experimental evidence shows that the net-
stress exponent N tends to increase for low values of stress.

0.16-0.19wt%C steels, 1373 K, 1.4 x 10™/sec

Stress [MPa]

Kozlowski et al. (model IA) [3] E
Sakui and Sakai [15] -
Grill and Schwerdtfeger [16] ]
- Dalin and Chenot [17] 7]
- - Susuki et al. [26] |

T
0.010

T T
0.015 0.020 0.025

Total strain

Fig. 6. Tensile curves for low carbon steels.
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0.16-0.19wt%C steels, 1473 K, 1.4 x 10*/sec

12 1 I 1 ' 1
&
=
@
o Kozlowski et al. (model 1A) [3]
I | (S Sakui and Sakai [15] .
-------- Grill and Schwerdtfeger [16]
5 == Dalin and Chenot [17] _
== - Susuki et al. [26]
0 T T T T T T T T
0.000 0.005 0.010 0.015 0.020 0.025
Total strain

Fig. 7. Tensile curves for low carbon steels.

Odgqvist’s law, Eq. (26), may be modified to account for this
phenomenon by writing the potential as

exp(Aal)

AN+ DKV’ (34)

(p:

where A is the material property. The following flow rule is
then obtained:

. 3.5

d=2i (35)
2 0

_ (%Y N+1

r= (K) exp(Aay,™). (36)

An alternative to the exponential law is the hyperbolic law
. . O\ N

- A( h —) . 37
r sin X 37

Applications: Kozlowski et al.’s models IB and IC [3] can
be thought of as uniaxial expressions of the hyperbolic law
under monotonic loads:

& = Cexp (— %) [sinh(a,0)]", (38)
where coefficients in Eq. (37) are

Q -1
A—Cexp[ kT]’ K=a,.
Material properties for both models are listed in Table 1.
Fig. 5 shows an application of model IC.
Other hyperbolic laws, with N > 1, were applied in the
work of Thomas et al. [4] to simulate medium carbon steels
(0.46 wt.% C) in the austenitic range,

41938
F=9.07 x 10" exp (— T) [sinh(0.0350)]*%.  (39)

To simulate low carbon steels (0.15 wt.% C), the same work
proposed

600
F = Agexp <_ ”T) [sinh(0.07410¢4)]>%, (40)

with
B {4.2 x 102 for T < Ary,
T 1 42x10° for T > Ars,

Ary and Ar; are the start and finish temperatures of the
austenite to ferrite/pearlite transformation during the cooling
process. Therefore, Eq. (40) aims to simulate the accelerated
creep in the softer ferrite phase of low carbon steels. Fig. 5
shows this law evaluated at 1.4 x 10~ s~! and 1573 K.

Li and Ruan [24] developed a similar model for thermal
stress analysis in continuous casting, assuming all material
properties in Eq. (38) to be constant. Still, their model is not
particularly addressed to steel but to aluminum casting.

4.2. Viscoplasticity with isotropic hardening

4.2.1. Additive viscosity-hardening law

So far, we considered a constant elastic range of size oy in
the potential (33) by defining an extended Odqvist’s law.
Now, we define a potential that accounts for a variable elastic
range, whose size is measured by oy + R, where R gives the
value of hardening:

K Jogq—R-—o0y N @n
PNt K '
Normality rules produce then the following flow rule:
PP (42)

2 0eq
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N
i = <7aeq - I’; - “Y> . (43)

Applications: The additive law has been used by Huespe
et al. [25] to model high temperature steel behavior, in the
form

i = Cexp (— %) (Oeq — agr" )", (44)
where the Ramberg—Osgood hardening law, Eq. (23), is
implied. The initial elastic limit is assumed to be negligible
(oy = 0) and K is defined by Eq. (30). Material parameters
in Eq. (44) were taken from Kozlowski et al.’s model III [3],
which is detailed in Table 1. In fact, Huespe et al.’s model is
a modification of Kozlowski et al.’s model III, to which it is
reduced in the case of monotonic loading. Reasons for this
modification will be discussed later in the context of kine-
matic hardening models.

4.2.2. Multiplicative viscosity-hardening law
We postulate a dissipation potential as:

¢ = ¢ (0eg = R— oy + 1 (r))(r) (45)

with the thermodynamic potential:

. 1
=y +;h(r)7 (46)
and K = dh/dr. Here, h(r)/p = is the inelastic free

energy (see Eq. (3)).
Usually, ¢* and ¢ are power functions,

K [oeq—R—oy+H(r)\""
TN X r, 47)

@

from which the following flow rule is derived:

. 09  [oqq—R—oy+H(r) N},
r—ﬁ< X r, (48)
g0 35, (49)

o 2ou

Using Eq. (7), we realize that R = /'(r) and then the flow
law results:

. <O'eq - UY>Nr"", (50)

where we note that term &(r) =1’ acts as a term that
modulates hardening.

Note also that, as opposed to previous formulations, the
strain-like isotropic hardening r appears now as a parameter
in the dissipation potential ¢.

Applications: Grill and Sorimachi [16], reported that the
best agreement between finite-element and experimental
results when studying bulging in continuous casting of steel
slabs, was given by means of the primary creep law obtained

from constant-load isothermal tests:

e= Cexp<— k%)a"tm. (51)

By differentiating this expression with respect to time, and
after eliminating ¢, it yields:

o Al/m _ 0 n/mgo(m—1)/m
& =mC exp< ka)a 3 , (52)

which can be identified with Eq. (48) assuming neg-
ligible elastic deformation, monotonic loading, oy =0,
y=(m—1)/m, N=n/m, and K expressed by Eq. (30)
for C=mC'" and 0= Q/m Material properties were
determined for a low-alloy carbon steel (0.18 wt.% C),

for which Eq. (52) takes the explicit form:

49 496
&£ =0.8171exp (— T) 6073, (53)

Susuki et al. [26] proposed a strain-hardening law, identical
in form to Eq. (52), to describe the behavior of the ST52 steel
(0.19 wt.% C, 0.30 wt.% Si, 1.19 wt.% Mn, 0.012 wt.% P,
0.032 wt.% S, 0.11 wt.% Cr, 0.032 wt.% Mo, 0.093 wt.%
Ni, 0.035wt.% Al, 0.18wt.% Cu, 0.0058 wt.% N,
<0.004 wt.% Nb, and 0.005 wt.% V). Such relationship
was established on the basis of constant-load isothermal
tests, conditions that yield ¢ = &. The explicit form of
Susuki et al.’s law is

& =2.209 x 10% exp (—52364

> 05.222870.7762' (54)

Susuki et al.’s and Grill and Sorimachi’s primary creep
curves, under particular conditions, are depicted in Fig. 7.

Kozlowski et al.’s model II [3], assuming tensile test
conditions (constant strain rate) and fully developed flow,
can be seen as the multiplicative law:

~1/(m+1)

d=C )O-ﬂ/(mwtl)gi'"/(’”“)' (55)

Analogy between this equation and Eq. (48) is achieved
assuming monotonic loading, oy =0, y=m/(m+ 1),

N =n/(m+1), and K given by Eq. (30) for ¢ = ¢"/""*"

and Q = Q/(m + 1). Table 1 lists the values of the material
properties C, Q /k, n, and m. An application of this model to
the thermomechanical analysis of the solidified shell of a
continuously cast 304 stainless steel (0.06 wt.% C, 18 wt.%
Cr, 8 wt.% Ni) inside the cooling mold is shown in the work of
Moitra et al. [27]. See also Figs. 1-4.

El-Bealy [19], who had defined the material (low alloy
carbon steel) behavior as steady creep from the beginning of
the straightening zone in continuous casting of slabs, sug-
gested the primary creep law

F=17.9595 x 10°(Tyq — T)** a3, 0 (56)
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for the early stages. Such law, under the above considera-
tions, takes the multiplicative form

i =6.3354 x 10" (Tjjg — 7)™ "*065%r 1. (57)
El-Bealy’s primary and secondary creep laws are compared
in Fig. 5.

4.3. Kinematic hardening

This hypothesis is barely mentioned in continuous casting
applications. In fact, we did not find any kinematic hard-
ening law fitting the standard formulation in the continuous
casting bibliography.

Anand [28] avoided the kinematic hardening hypothesis
by considering that in many metals structural strengthening
is dominated by forest dislocations and subgrains, therefore
assuming an isotropic resistance of the microstructure to
inelastic flow.

Kinematic hardening should not be neglected in cyclic
loading conditions because of the Bauschinger and ratchet-
ting effects on the material. But alternating loads may only
be developed when the strand is passing through the rolls,
and therefore the isotropic hardening hypothesis remains
acceptable to simulate the initial solidification stages in
continuous casting. Furthermore, when the study involves
the rolling zone, e.g. while studying unbending and bulging,
authors either restricted the analysis to a segment of the
strand between two rolls [16,17,19,29] or neglected the
strand motion [30] (or assimilated it to discontinuous shifts
[8]), thus avoiding to account for cyclic loads.

A standard viscoplastic model with combined isotropic
and kinematic hardening was applied by Aliaga et al. [31] to
characterize the behavior of steel during heat treatment
processes, which involve temperatures lower than those
we are concerned with in continuous casting applications.

On the other hand, Kozlowski et al.’s model III [3], which
was modified by Huespe et al. [25] to fit the standard
formulation, does not treat the Ramberg—Osgood law,
Eq. (23), as the definition of a stress-like isotropic hardening
variable R but as the uniaxial expression of a stress-like
kinematic hardening variable X (also called the back-stress
term). However, Kozlowski et al.’s model III cannot be
extended to multiaxial states using the typical strain-like
tensor variable « associated to X, since non-linear kinematic
hardening laws like that of Eq. (44) are not allowed. An
alternative consists in adding particular values of the stress
and the strain to the set of internal variables to compute
hardening. (Usually, those values corresponding to the stress
reversal points in loading-unloading processes are used.)
Such a procedure, known as modeling with updating of
characteristic coefficients [1], is out of the scope of the
present work.

Kozlowski et al.’s model III was widely used in steel slab
continuous casting simulations, e.g. in the study of the
formation of shape defects such as longitudinal off-corner
depressions and near-meniscus shell distortion, the separa-

tion of the strand from the mold, cracking, and other
mechanisms that can be explained from strain and stress
analysis [32-36].

5. Split of rate-dependent and rate-independent
deformations

Some models distinguish between the instantaneous
(plastic) and creep deformations in the whole inelastic
deformation process, decomposing the inelastic strain as
follows:

g =¢ +¢, (58)

where the instantaneous strain & is governed by plasticity
theory (Section 3), while the creep strain & obeys the
viscoplasticity theory (Section 4). Therefore, the evolution
of this model is controlled by

PR . . Of 0@

1: P C: _— _—

=8 +& Aao_—&-aa, (59
. 5 0f 0o

A T (60)
._ 9 Oe

*= ;{8)( ox’ ©61)

where the consistency parameter J is determined from the
consistency condition (22).

Applications: In the context of high-temperature steel
modeling, the present representation has been chosen by
Okamura and Kawashima [29] to study bulging in continu-
ously cast steel slabs. The material (a low carbon steel, with
0.07 wt.% C, 0.21 wt.% Si, 0.26 wt.% Mn, 0.020 wt.% P,
0.008 wt.% S) is assumed to suffer plastic deformation
instantaneously, followed by creep with the time-hardening
law:

& =3.686 x 107 7¢333¢705%66  for t < 1s, (62)

which it is equivalent to the strain-hardening law

&= 1.432 x 10715678377 for 1 < 1. (63)

The following law was preferred for longer periods:

8

d=2.943 x 10715672 for > 1s. (64)

As it can be seen, they assumed that the flow is approxi-
mately twice faster after + = 1 s than before r =1 s.

Bohemer et al. [37] defined creep strain using either of the
following laws:

7700 7.134
¢ =1.418 x 10’ [exp (— o3 273) aeq} f, (65)
& = 21.022(1250 — T) ¥ 62395,03, (66)
—5.328 3. .
& = 2365(1227 — T) a3 1%, (67)
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which were originally proposed by Palmaers et al., Piihrin-
ger, and Bramerdorfer et al., respectively (see references in
[37]). The first one derives from a Norton law

7.134

.C Oeq
_ 68
© = 10,0994 exp(7700/(T — 273))] (68)

while the latter are equivalent to the following multiplicative
laws:

8.790 .
2Co__ €q T
& = 44192W60 5 (69)
6.398 »
# =559 x10°———- s (70)

(1227 _ T) 10.656

Unfortunately, we were not able to reproduce any prediction
of these models because of the lack of data concerning the
instantaneous plastic response.

6. Unified models

Following Bodner and Partom [38], several authors
assumed that elastic and inelastic strain rates are gen-
erally different from zero at all stages of loading and
unloading, disregarding the existence of the yield
surface postulated by the classical theories of plasticity
and viscoplasticity (Sections 3 and 4). Furthermore, the
irreversible deformation is accounted for in a single
variable, in contrast to the development of Section 5,
giving rise to the term unified that identifies these visco-
plastic models.

Unified models usually make use of stress-like hardening
variables, such as the drag-stress op and the back-stress X

for isotropic and kinematic hardening, respectively. For
isotropic hardening, we can define a general flow rule as [39]

.3 .
,if:_(ﬁ(&)i_ 71
2 0p /) Ocq
Function ¢ has the dimensions of an inverse time and
increases rapidly with this argument.
Applications: Anand [28] has formulated a unified visco-

plastic model for metals at high temperatures, whose expres-
sion is

1/m
§ = Cexp <— %) (%) . (72)

The drag-stress op < ¢ is determined by integrating the rate
equation

o = ho {é" - <Cexp < %)) Z—EE'"}, (73)

subject to the initial condition op = op,, that depends on the
thermal history. Material properties C, m, n, hy, and ¢p are
(eventually) thermal dependent, and were determined for a
low carbon steel (0.05 wt.% C) by means of isothermal
(within the austenitic range) constant strain rate
(1.4 x 107* to 2.3 x 107%2s7") tensile tests. Predictions
from this model are compared with experimental data and
results from Kozlowski et al.’s models in Fig. 8.

Anand’s model was used by Ebisu et al. [40] to describe
the behavior of a high carbon low-alloy steel during the
entire ingot casting process.

The constitutive equation used by Lee et al. [41] and Han
et al. [42] defined as:

1/m
= Aexp <— %) (sinh @) : (74)

0.05wt%C steels, 1373 K, 1.4 x 10™/sec

Stress [MPa]

Kozlowski et al. (model IA) [3]
----- Kozlowski et al. (model IB) [3]
--------- Kozlowski et al. (model IC) [3]
—emeee Kozlowski et al. (model Il) [3]
- - Kozlowski et al. (model Il1) [3]
-~ Anand [28]

®  Wray (experimental) [9]

T T T T T
0.010 0.015 0.020

Total strain

Fig. 8. Tensile curves for low carbon steels.
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can also be seen as a unified viscoplastic model by identify-
ing the drag-stress with ', and therefore its evolution is
controlled by the flow rule itself.

7. Conclusions

Different material models of steel at high temperature
have been analyzed and compared, placing emphasis on
continuous casting processes. Laws have been put in an
appropriate thermodynamic context. Several plastic and
viscoplastic standard materials were considered.

This study has shown the great influence of the strain rate
on the behavior of steel at elevated temperature. Therefore,
considering the wide range of strain rates involved in con-
tinuous casting, rate-dependent viscoplastic models seem to
be the most appropriate ones. Since hardening has been
observed in all the experimental results, models allowing
this phenomenon should be preferred.

However, the computational cost of viscoplastic models is
usually higher than that of plastic models. Plastic models
with linear isotropic hardening are particularly used in
continuous casting modeling due to their easy computational
implementation.

Results from different authors seem to give a wide dis-
persion. There is still a need for more experimental results in
order to arrive to a material model that allows to predict the
kind of defects that the industry is demanding (i.e. prediction
of cracks formation).
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