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Abstract

The simultaneous diffusion of NaCl, lactic acid and water in cheese during brining, were experimentally and theoretically

evaluated using multicomponent and pseudobinary mass transport models. The average concentration data of each solute in the

solid at different process times were correlated with theoretical models determining the diffusion coefficients values for each solute.

Applying a ternary model, main and cross diffusion coefficient values for NaCl and lactic acid showed a non-reciprocal flux in-

teraction. The NaCl diffusion rate resulted independent of the lactic acid concentration gradient, while the lactic acid diffusion rate

was increased 12 times due to NaCl concentration changes in the cheese. The results established the importance of using multi-

component mass transport models to evaluate the flux variation of solute in the global flux value.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the food processing the transfer of solutes between

solid and liquid is used to modify food characteristics

such as taste, colour, nutritional value, and preservation

capacity. Thereby soaking products in aqueous solu-

tions to leach or infuse solutes in the foodstuffs, is an

usual manufacturing operation in food elaboration

process. The mass transport between the solid food and
the soaking solution, is generally controlled by the dif-

fusion rate of solutes in the foodstuff. Diffusion veloci-

ties are calculated using effective diffusion coefficients of

solutes in the solid (Luna & Bressan, 1986; Schwartz-

berg & Chao, 1982; Turhan & Kaletunc�, 1992).
Models of solute diffusion in solid–liquid systems

were generally developed for the component with larger

concentration or for a group of solutes considered as one
pseudocomponent, without considering the minor sol-

utes. According to this, pseudobinary diffusion models
of the mass transfer process were used to calculate the

main solute flux and the diffusion coefficient as a binary

solute–solid system (Bailey, 1975; Bressan, Carroad,

Merson, & Dunkley, 1981).

Mostly solid foods showed complex structure with

cellulosic or proteic framework that occludes an aque-

ous solution with major and minor components. Minor

concentration solutes have an important role in the food
characteristics, which are associated to the quality of the

product and its preservation. However, the diffusion rate

for the components in minor quantities during leaching

or infusion processes in foods was almost not modelled.

Multicomponent mass transfer in cheese during

brining is a case of interest. In this process, not only the

water content in cheese is reduced and the salt concen-

tration is increased but also the lactic acid concentration
is modified. The lactic acid concentration change in the

cheese during salting process (Lawrence & Gilles, 1982)

and its detection in the brine can be explained by the

lactic acid diffusion. The final acid concentration in

cheese after brining influences physicochemical and mi-

crobiological changes in the cheese and consequently the

quality of the product (Fox, 1987). Lactic acid is formed
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by milk bacterias from the milk lactose remained in the

water hold by the curd. In spite of this, lactic acid dif-

fusion in cheese during brining has not been presented

yet. Reported models for solutes transfer in cheese have
considered movement of salts (NaCl; NaCl–KCl) and

water without considering components in minor con-

centration as lactic acid which is present in a small

weight fraction (1% w/w) (Geurts, Walstra, & Mulder,

1980; Luna & Bressan, 1986; Turhan & Kaletunc�, 1992;
Zorrilla & Rubiolo, 1994).

In addition, studies on pH changes in biological

systems, as serum albumin gels soaked in aqueous so-
lutions, have pointed out that gel lactic acid loss is in-

creased in presence of NaCl (Chu, Speiss, & Wolf, 1992).

This fact suggests a possible interaction between both

solute fluxes in the mass transport process. Interaction

effects in the transfer rate of each solute in ternary or

multicomponent systems, were theoretically and exper-

imentally studied for gases and liquid mixtures (Cussler

& Lightfoot, 1963; Toor, 1964). The second Fick’s law
generalized form developed by Onsager was the con-

stitutive equation of the solute mass fluxes used to

model the diffusion process. For diffusion in solids

Zorrilla and Rubiolo (1994) considered a ternary model

in cheese salting with equal concentration of NaCl and

KCl in brine. In this case solute sizes, properties and

concentrations are similar, then, the diffusion coefficient

determined using a diffusion cell showed that there were
no strong interactions between solutes.

The aim of this work was to study the multicompo-

nent mass transport in a solid–liquid system, and de-

fined physical model equations to determine the main

and cross effective diffusion coefficients of each solute,

for simultaneous diffusion with interactions between

fluxes in a complex solid like foodstuff.

Cheese brining process was the experimental system
to determine lactic acid and NaCl effective main and

cross diffusion coefficients in order to predict acid con-

centration changes during salting time in cheeses for

different conditions.

2. Theory

The general form of the second Fick’s law for mul-
ticomponent systems was considered as the constitutive

equation for the flux Ji of the solute i, with the con-

centration gradients rxi and constant diffusion coeffi-

Nomenclature

ai relation defined by Eq. (7)

bji relation defined by Eq. (8)

Bi Biot number

Cn parameter of the ternary model mass trans-

port defined by Eq. (A.16)
Dij diffusion coefficient of solutes (i) in a multi-

component system, cm2/s

Dib diffusion coefficient of solute (i) in a binary

systems, cm2/s

Dipb pseudobinary diffusion coefficient of solute (i)

in a multicomponent system, cm2/s

di deviation for solute (i), defined by Eq. (14)

Ji diffusion flux of solute (i), g/cm2 s
Jib diffusion flux of solute (i) in a binary system,

g/cm2 s

ki partition factor of solute (i)

L liquid phase length, cm

m number of experimental data

N number of species

qn relation defined by Eq. (A.18)

r axial coordinate, cm
S solid slab half thickness, cm

VL liquid phase volume, cm3

VS solid phase volume, cm3

x punctual concentration, g/cm3

�xx average concentration, g/cm3

ai partition relation, defined as kiðVL=VSÞ
bn relation defined by Eq. (A.17)

dij delta de Kronecker

k eigenvalue

h time, s
w transformation variable

/ diameter of the cylindrical samples

Superscript

– bulk average

Subscripts

b binary system

i, j solutes i and j

pb pseudobinary model

0 at initial time

1 at infinite time or equilibrium conditions
k auxiliary subindex

Operators

D increment operator

r gradient operator

r2 Laplace operator
j j determinant

erfc complementary error function

eerfc exponential complementary error function de-

fined by Eq. (A.20)
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cients. The following equations express the mass flux of
the (N � 1) solutes and the solvent, in a solid in contact

with a well stirred solution, when homogeneous and

rigid solid structure, no chemical reaction and negligible

convective mass flux, were assumed (Cussler, 1976).

Ji ¼ �
XN�1

j¼1

Dijrxj ð1Þ

Diffusion coefficients Dii and Dij, respectively called

main and cross coefficients, are independent of concen-

tration gradients, rxi, of any one solute in the system.

This equation can be applied in solids where the mass
density is constant. Therefore, the mass average velocity

is taken as reference and one of the N components is

chosen as solvent.

In Eq. (1) the term that includes the main coefficient

Dii is the contribution to the total diffusive flux of solute

i, originated by its own concentration gradient. The

terms with cross coefficients Dij represent the contribu-

tion of the concentration gradients of the other solutes
in the system to the Ji flux.

In the case of one diffusing solute, i, the system is

binary, the diffusion coefficient Dib is the main coeffi-

cient, Dii in Eq. (1), and the flux Jib of the solute ac-

cording to Fick’s law is:

Jib ¼ �Dibrxi i ¼ 1; . . . ;N � 1 ð2Þ
Then, Eq. (1) can be evaluated in function of Eq. (2) as
follows:

Ji ¼ Jib þ
XN�1

j¼1

Jjb
Dij

Djb
i; j ¼ 1; . . . ;N � 1; i 6¼ j ð3Þ

A pseudobinary model in which the diffusive flux

of the solute i is exclusively associated to its own con-

centration gradient can be apply in a multicomponent

system. For this model the pseudobinary diffusion co-

efficient of the solute i, Dipb, results functionally de-

pendent on the flux of the other solutes in the system.

According to the second Fick’s law in a pseudobinary
system, the expression to relate each solute flux with its

concentration gradients is:

Ji ¼ �Dipbrxi i ¼ 1; . . . ;N � 1 ð4Þ

2.1. Ternary diffusion model

The diffusion model for mass transport in a solid–

liquid system was developed in terms of solute concen-

tration in the solid as a whole (Schwartzberg & Chao,

1982). A partial differential equation (PDE) system was

obtained for the variation with the time of local con-

centration, xi, of each solute, in function of every solute
gradients, after applying the continuity equation with

Eq. (1). For three components, the PDE system is given

by Eqs. (A.1)–(A.5) and the method for solving by Eqs.

(A.6)–(A.14) in the appendix. The solution for calcu-
lating the concentration of each solute in the solid, at

any particular position and time, using Eqs. (A.11)–

(A.14) results:

Dxi ¼
X2
j¼1

X2
k¼1

f ðkkÞ

Q2
j¼1
j 6¼k

ðkjdij � DijÞ

Q2
j¼1
j 6¼k

ðkj � kkÞ

2
666664

3
777775Dxj0

2
666664

3
777775 i ¼ 1; 2

ð5Þ

where the eigenvalues ki are expressed in function of the

Dij coefficients by:

ki ¼
1

2
D11

	
þ D22 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD11 � D22Þ2 þ 4D12D21

q �
i ¼ 1; 2 ð6Þ

Defining ai and bji as:

ai ¼
Dii � kj þ bjiDij

ki � kj
i; j ¼ 1; 2; i 6¼ j ð7Þ

bji ¼
Dxj0
Dxi0

i; j ¼ 1; 2; i 6¼ j ð8Þ

then, the explicit expression for solutes concentration
which is Eq. (5) results:

Dxi
Dxi0

¼ aif ðkiÞ þ ð1� aiÞf ðkjÞ i; j ¼ 1; 2; i 6¼ j ð9Þ

The solvent concentration (third component) in the solid

with a constant density and volume, is obtained from

the mass balance, by:

X3
i¼1

ðDxi � Dxi1Þ ¼ 0 ð10Þ

and using Eq. (10) in Eq. (9), the variation of solvent

concentration is:

Dx3
Dx30

¼
X2
i¼1

½aif ðkiÞ þ ð1� aiÞf ðkjÞ�
1

ð1þ bjiÞ
i; j ¼ 1; 2; i 6¼ j ð11Þ

Considering a non-homogeneous microstructure of food

products, equations to calculate the average concentra-

tion for each solute and the solvent in a solid volume

after different immersion times are necessary. Average

concentrations of the solute i in the whole solid volume,
�xxi and D�xxi ¼ �xxi � �xxi1 values, were obtained integrating

Eqs. (9) and (11) over the thickness of the slab, when the
mass transfer is in one-dimension. The solutions values

were obtained replacing f ðkiÞ by its average values,
�ff ðkiÞ, calculated by:

�ff ðkiÞ ¼
1

L

Z L

0

f ðkiÞdr ð12Þ
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For the case of infinite Biot Number, (Bi ! 1) and a
finite value of the partition relation ai, the solution for
�ff ðkiÞ is given by Eqs. (A.15)–(A.20) and ternary explicit

solutions for concentrations in a solid slab in contact

with a well stirred liquid, are showed in the appendix

(Eqs. (A.21)–(A.24)).

2.2. Pseudobinary diffusion model

For a system of three components, when is assuming

the pseudobinary mass transfer model, the correspon-

dent set of PDE equations, results after applying the

continuity equation with Eq. (4).

For these case, the explicit solution for average sol-

utes and solvent concentrations can be directly obtained

from the ternary model solutions (Eqs. (A.21)–(A.24) of

appendix) substituting ai ¼ 1 and ki ¼ Dipb.

2.3. Binary diffusion model

For a system of one solute in a solvent, the flux is

given by Eq. (2) with a diffusion coefficient Dib. For this

case Dib ¼ Dipb ¼ Dii. Equations are those with this

change and ai ¼ 1.

3. Experimental and computational method

The experimental system to estimate the lactic acid
and NaCl diffusion coefficients, was Pategras cheese.

The cheese was elaborated in a commercial factory

with lactic ferments (Streptococcus thermophilus and

Lactobacillus bulgaricus) and the curd in 33 cm�
12 cm� 12 cm sieved moulds transported to the labo-

ratory. The moulds were kept in a humidity saturated

chamber at 20 �C during 24 h, to reproduce industrial

lag conditions before salting, Initial cheese composition
was determined. Fat content was assessed using the

Standard International Dairy Federation method (IDF

5A, 1969). Total protein content was determined with an

automatic digestor model 430, a distillation unit model

322 (B€uuchi, Flawil, Switzerland). NaCl concentration,

was determined following the method indicated by Fox

(1963), using an automatic titrator DL40RC (Mettler

Instrument AG, Greifensee, Switzerland). Moisture was
determined using a microwave oven CEM AVC 80

(CEM, Mattheus, NC, USA) according to the equip-

ment specifications. Cheese samples were assayed for

lactic acid, lactose, galactose and glucose by high pres-

sure liquid chromatography (HPLC) (Waters, Milli-

pore, MA, USA) (Gerla, 1994) modifying the technique

proposed by Marsili, Ostapenko, Simmons, and Green

(1985). All measurements were carried out by tripli-
cate.

Cheeses were cut into rectangular slices (11.1

cm� 9:4 cm) of 1.9 cm thickness (VS). Cheese slices were

immersed in a volume of specific solution five times the

solid volume. CaCl2 was added to the correspondent

solution in order to get the same concentration of Ca2þ

that the cheese initially had and the superficial rigidity of

the cheese structure during the brining without loss of

Ca2þ (Geurts et al., 1980). Cl� contribution from the

stirred solution is negligible since the charge equilibrium

is maintained. Fig. 1 shows the arrangement used in the

experimental system.

The solute concentration in cheese samples was de-

termined at different times. A cheese slice was taken out,
cutting from the central zone two cylindrical samples

(/ ¼ 2 cm) with a length equal to the thickness of the

slice. Cylindrical samples had only two parallel faces

that were change solutes with the solution during the

immersion time. The remaining slice was returned to the

bath to maintain approximated solution level. Simulta-

neously, a solution volume five times the volume of

cylindrical cheese samples, was withdrawn from the bath
to keep the relation between solid and solution volumes

in the system equal five (VL=VS ¼ 5).

Each slice dimension was measured before sampling,

verifying that the cheese slab maintains its shape during

the brining.

Three tests, A, B and C, with different initial con-

centrations of solutes in the cheese slices and in the

solution were performed in a thermostatic chamber at
13 �C and 90 relative humidity.

Fig. 1. (A) Schematic cross section view of the experimental A, B and C

systems. (B) Schematic upper view of the same experimental systems:

(a) immersion bath, (b) foodstuff slabs, (c) solution, (d) support for the

foodstuff slabs, (e) agitation system.
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For experience A, 13 unsalted cheese slices were im-
mersed for 48 h in a salting solution similar to the in-

dustrial process brine (NaCl 20% w/w, CaCl2 0.5% w/w)

and pH ¼ 5:3. The NaCl, lactic acid and were deter-

mined.

Experience B was exactly performed as experience A,

but without NaCl in the solution being lactic acid and

water the principal diffusion components. Concentra-

tion values of lactic acid and water in cheese were ob-
tained.

Experience C was performed with the same solution

used in experience A but with washed cheese slices (free

of lactic acid). These slices, obtained by immersion in

water with CaCl2 during 48 h, were salted in the brining

solution, so that the diffusion components were NaCl

and water. The concentration values of NaCl and water

in cheese were determined.
Cylindrical samples from the slab were grounded and

assayed for moisture, lactic acid and NaCl average

concentration. HPLC determinations in cheese before

salting confirmed the absence of sugars (lactose, galac-

tose and glucose) and acids (except lactic acid) in sig-

nificant concentration and allowed to verify the total

lactose hydrolysis and lactic fermentation of sugars be-

fore the brining stage in this type of cheese.
Mass transport of solutes is considered one-direction

diffusion process in the solid rigid medium for the ex-

perimental conditions and with the sampling procedure

applied.

Using average concentrations the number of variables

was reduced, applying simpler expressions for theoreti-

cal models. Another simplification was achieved since

both solutes were completely dissolved in the aqueous
solution entrapped in the proteic framework of the solid

and in the immersion solution. In this case, the partition

relation for the solutes i and j results of equal value,

ai ¼ aj ¼ a. Therefore, the number of parameters in

equations is reduced to the diffusion coefficients and the

partition relation value. Computational programs were

developed for non-linear multiparametric regression

using the Simplex method based in the Nelder–Mead
algorithm for optimization (Kuester & Mize, 1973;

Reklaitis, Ravnidran, & Ragsdell, 1983).

4. Results and discussion

Table 1 shows the initial cheese composition. Figs. 2–

4 indicate experimental and theoretical values for solutes

and solvent. Table 2 presents the optimization parame-

ters of experiences A, B and C calculated with the cor-

responding solution equation models for each system.

Diffusion coefficients and partition relation values for
the ternary and binary experimental systems were ob-

tained after fitness. NaCl diffusion coefficients deter-

mined (Table 2) were similar to corresponding values of

3:8� 10�6 cm2/s, estimated using cheese composition

(Geurts, Walstra, & Mulder, 1974).

The solid size and density variations were detectable

after relatively long immersion times. After 72 h, expe-
riences showed maximum difference of 6% in the volume

Table 1

Average initial composition of cheeses

Component % (w/w) Standard deviation

Moisture 45.58 0.01

Protein 27.50 0.36

Fat 23.60 0.15

NaCl 0.14 0.01

Lactic acid 1.31 0.04

Lactose Not detected –

Galactose Not detected –

Glucose Not detected –

Fig. 2. Experimental data and fitting curve of theoretical models for

variation of NaCl average concentration in cheese with immersion

time, in ternary and binary systems (A and C). In system A, the the-

oretical curves for both model are superposed.

Fig. 3. Experimental data and fitting curve of theoretical models for

variation of lactic acid average concentration in cheese with immersion

time, in ternary and binary systems (A and B). In system A, the the-

oretical curves for both model are superposed.
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of slices while the density varies less than 2%. When the

equilibrium conditions were reached, at least 72 h, the

solid volume was different to the initial value, and
therefore partition relation. For times shorter than 14 h,

the solid thickness (2S) is constant. Consequently, in

that period the solid is rigid and the density practically

constant for diffusion direction.

Table 2 shows a small variation of the partition re-

lation (a), according to effusion or infusion in the solid

during different experiences. However, a does not affect

the diffusion coefficient since solutions are indepen-
dent from a values when a > 10 (Schwartzberg & Chao,

1982).

The Simplex direct search method was more adequate

for fitness than the gradient optimization method or the

combination of both. The problem in the last methods

were that ternary model solutions converge for infinite
trivial solutions when D11 ¼ D22 and D12 ¼ D21 ¼ 0.

Table 3 shows the equilibrium values obtained from

mass balance of solutes in the solid–liquid system with

the liquid concentration which variation is practically

negligible after 72 h of immersion and a values obtained

from the model.

Less than 4% deviations between predicted and ex-

perimental values of solutes and solvent average con-
centrations were obtained. The percent deviation were

calculated by:

%di ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

�xxi;calc: � �xxi;exp :
�xxi exp :

 !
k

" #2
1

m� 1

vuut
i ¼ 1; 2; 3 ð13Þ

where m is the number of experimental data.

Similar values for solutes and solvent concentrations,
calculated through short time solution could be ob-

tained with the function series, when more than 30 terms

were used.

A negative value for the cross diffusion coefficient D12

and 1010 times smaller than the other solutes coefficients

(D11, D22 and D21) was obtained. Therefore, D12 is con-

sidered zero with negative sign.

The effective diffusion coefficient for NaCl (i ¼ 1) and
for lactic acid (i ¼ 2) in the solid, shows that:

(1) ðD11Þexp :A � ðD1pbÞexp :A; ðD12Þexp :A ! 0�

ðD22Þexp :A 6¼ ðD2pbÞexp :A; ðD21Þexp :A < 0

(2) ðD1bÞexp :C � ðD11Þexp :A
(3) ðD2bÞexp :B � ðD22Þexp :A

Fig. 4. Experimental data and fitting curve of theoretical models for

variation of the solvent (water) average concentration in cheese with

immersion time in binary and ternary systems (A, B and C). In system

A, the theoretical curves for both model are superposed.

Table 2

Diffusion coefficients determined with corresponding theoretical models and different experimental systemsa

Experimental

system

Theoretical

model

Percent deviation (%di) Diffusion coefficients (�106 cm2/s) Partition relation

(a)
Series solutionb Short time solutionc Series solutionb Short time solutionc

A: cheese–brine Ternary %d1 ¼ 4:9 %d1 ¼ 3:2 D11 ¼ 3:20 D11 ¼ 3:51 14.0

%d2 ¼ 2:4 %d2 ¼ 3:9 D22 ¼ 0:93 D22 ¼ 0:99

%d3 ¼ 1:2 %d3 ¼ 1:5 D12 ¼ �0:00 D12 ¼ �0:00

D21 ¼ �1:15 D21 ¼ �1:26

Pseudobinaryd %d1 ¼ 5:4 %d1 ¼ 2:7 D1pb ¼ 3:20 D1pb ¼ 3:51 14.0

%d2 ¼ 1:7 %d2 ¼ 3:2 D2pb ¼ 12:8 D2pb ¼ 12:9

%d3 ¼ 1:2 %d3 ¼ 1:2

B: cheese–water Binarye %d2 ¼ 1:4 %d2 ¼ 1:4 D2b ¼ 0:96 D2b ¼ 1:09 12.2

%d3 ¼ 0:7 %d3 ¼ 0:7

C: washed

cheese–brine

Binarye %d1 ¼ 2:6

%d3 ¼ 1:1

%d1 ¼ 2:1

%d3 ¼ 1:0

D1b ¼ 3:25 D1b ¼ 3:79 14.6

a 1: NaCl; 2: lactic acid and 3: solvent (water).
b Series solutions truncated at 30 terms (Eq. (A.21)).
c Short time solution (Eq. (A.23)).
d Pseudobinary solution: ai ¼ 1, ki ¼ Dipb in Eq. (A.21) or Eq. (A.23).
e Binary solution: ai ¼ 1, ki ¼ Dib in Eq. (A.21) or Eq. (A.23).
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The NaCl diffusion coefficients values that results for

A (D11 ¼ D1pb; D12 ! 0) indicate that the NaCl diffusion
occurs exclusively under its own concentration gradient

showing similar values of D11 and D1b. NaCl concen-

tration changes in experiences A and C (Fig. 2), indi-

cates that the solute behaviour is practically equal in

both systems.

D21, the negative interaction coefficient for lactic acid,

and the main lactic acid diffusion coefficient, D22, are

values of the same order. Therefore, due to the NaCl
large concentration gradient, the counter-diffusion pro-

cess is an important contribution to the lactic acid total

flux.

The experimental system A, is a non-reciprocal in-

teraction case, since only acid lactic flux, J2, is changed
due to the gradient of NaCl in the system, rx1. The
concentration gradients, rx1 and rx2, have opposite

signs, then, in the total flux the terms J1b and J2b have
opposite directions.

Results in Fig. 3, shows a diffusion rate of the lactic

acid in system A higher than in system B. This experi-

mental conclusion is in agreement with the multicom-

ponent diffusion theory, that relates the main and cross

diffusion coefficients for ternary model, D22 and D21,

with the coefficient for pseudobinary model, D2pb, by

the following expression obtained from Eqs. (1)–(4):

D2pb ¼ D21

rx1
rx2

þ D22 ð14Þ

Therefore, D2pb was 12 times higher than D22 in experi-

mental system A, or D2b in experimental system B,
which are diffusion coefficients of lactic acid flux exclu-

sively under its own gradient.

The lactic acid concentration in the cheese used in

experience B (Fig. 3) was smaller in the beginning of

salting (short time test) because water in these cheese

was also smaller than in the samples of experience A.

The whey remained in the curd after pressing was dif-

ferent, 43.5% w/w in experience B and 46.9% w/w in
experience A, according loading on the cheeses in the

production process. Therefore lactic acid concentrations

in the solid moisture were very similar, 24.9 and 29.6 g/l

respectively, but different in the whole solid for the

different cheeses.
In Eq. (14) the negative gradient ratio is multiply by

the negative cross diffusion coefficient D21, while D22 is

always positive, resulting for system A that D2pb >
D22 > 0. The increase in the lactic acid diffusion rate was

also detected by Chu et al. (1992), although not deter-

mined, in the study of the pH influence in the lactic

fermentation of gels containing NaCl.

Results obtained from systems A and C show that the
diffusion rate of NaCl is independent from the lactic acid

gradient in the solid and there were no errors for salt

concentration estimated with a binary model.

For the flux of water, common solvent to both pha-

ses, the mass balance in system A is:

J3 ¼ �ðJ1 þ J2Þ ð15Þ

The solvent net flux, J3, is opposite to the net flux,

J1 þ J2, of the solutes 1 and 2. In system A, solutes are in
counter diffusion and therefore, J3 is opposite to the

highest solute flux. In the counter-diffusion process

during cheese salting studied in this work, the NaCl

concentration gradient is clearly higher than the lactic

acid gradient and the NaCl flux is which determines

the water variation in the solid. Fig. 4 shows theoretical

curves and experimental values for the water concen-

tration variation in cheese at experience A, B and C.

5. Conclusions

Solutes effective diffusion coefficients in the solid were

obtained. The effect of their interactions among solutes
in the flux on the ternary system A was determined.

There was a strong interaction of NaCl on lactic acid

flux but, a reciprocal effect was not detected. Therefore,

D2pb is strongly dependent on the NaCl concentration

gradient, rx1 but the cross coefficient D12 is zero, then,

D11, D1pb and D1b, for NaCl are almost equal and in-

dependent of the lactic acid concentration gradient, rx2
and consequently independent of gradients of all solutes
in the system.

The main and cross effective diffusion coefficients for

NaCl and lactic acid, D11, D22, D12 and D21, determined

Table 3

Equilibrium concentrations in solid and liquid phases of the experimental systems

Experimental system Solutes and solvent equilibrium concentrations 103 (g/cm3) Partition

factor ka

Solid phase Liquid phase

NaCl Lactic acid Water NaCl Lactic acid Water

A: cheese–brine 81.2 0.94 308.5 226.8 2.64 948.5 2.80

B: cheese–water – 0.92 601.1 – 2.23 998.1 2.46

C: washed cheese–brine 76.7 – 367.9 224.3 – 942.9 2.92

a k ¼ a=ðVL=VSÞ; (g solute in liquid phase/cm3 of liquid solution)/(g solute in solid phase/cm3 of solid).
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by the ternary models can be used to predict concen-
trations for similar systems with different initial condi-

tions and fluxes.

The experimental process considered in this work

showed that a solute in low concentration as lactic acid,

presented a larger variation due to the driving force of

another solute gradient, which is in a high concentration

in the system. Therefore, in processes involving simul-

taneous diffusion of solutes, the largest solute gradient
can cause concentration changes on the minor solutes,

which are important for the sensorial properties of the

food product.

The method, based on the use of average experi-

mental concentrations data with multicomponent equa-

tion models fitted with a computational optimization

system, described in this work, allows to obtain the

diffusion coefficients and a phenomenological descrip-
tion of the mass transfer process, specially for minor

components, being able to apply it in other solid–liquid

systems.

Appendix A

For ternary mass transfer model, the PDE system

is:

oxi=oh ¼
X2
j¼1

Dijr2xj i; j ¼ 1; 2 ðA:1Þ

considering Dij independent of the concentration.

For one-dimensional diffusion in a solid slab of

thickness 2S, �S6 r6 S, in a solution volume limited
by �S � L < r < �S and S < r < S þ L, Eq. (A.1) be-

comes:

oxi=oh ¼
X2
j¼1

Dijo
2xj=o2r � S < r < S; h > 0;

i; j ¼ 1; 2 ðA:2Þ

with the following initial and boundary conditions:

xi ¼ xi0 � S < r < S; h ¼ 0; i ¼ 1; 2 ðA:3Þ

aiðoxi=ohÞ ¼ 

X2
j¼1

ðDij=SÞðoxi=orÞ r ¼ 
S; h > 0;

i ¼ 1; 2 ðA:4Þ

oxi=or ¼ 0 r ¼ 0; h > 0; i ¼ 1; 2 ðA:5Þ

where the partition relation, ai, is ki (VL=VS), being VS
and VL the solid and solution volumes for a rigid solid

with constant density and ki the solute partition factor.
The PDE, can be transformed using the eigenvalue

and eigenvector matrixes method developed by Toor

(1964), resulting a PDE linearized system in transformed

variables wi, equivalent to a set of binary uncoupled
problems for each value of i, as follows:

owi=oh ¼ kio
2wi=or

2 i ¼ 1; 2 ðA:6Þ
with the transformed initial and boundary conditions:

wi ¼ wi0 � S < r < S; h ¼ 0; i ¼ 1; 2 ðA:7Þ

aiðowi=ohÞ ¼ 
ðki=SÞðowi=orÞ r ¼ 
S; h > 0; i ¼ 1; 2

ðA:8Þ

owi=or ¼ 0 r ¼ 0; h > 0; i ¼ 1; 2 ðA:9Þ
where ki are the eigenvalues associated to the matrix of

elements Dij, that verifies:

jDij � kidijj ¼ 0 ðA:10Þ
where dij is Kronecker’s delta.

The solution of PDE system in the original variables

(concentrations and diffusion coefficients Dij), is ob-

tained by the inverse transformation of the solution

wi ¼ fiðkiÞ of the problem (Eqs. (A.6)–(A.9)), which is
achieved multiplying the wi solution by the eigenvector

matrix associated with the diffusion coefficients matrix.

The general solution in the original variables is given by:

Dxi ¼
X2
j¼1

fiðDijÞDxi0 i; j ¼ 1; 2 ðA:11Þ

where

Dxi ¼ xi � xi1 i ¼ 1; 2 ðA:12Þ
Dxi0 ¼ xi0 � xi1 i ¼ 1; 2 ðA:13Þ
identifying with subscripts ‘‘0’’ and ‘‘1’’ the initial and

the equilibrium conditions respectively.

If the eigenvalues ki are different, the function fiðDijÞ
in Eq. (9) is obtained applying the Sylvester’s theorem to

the solutions fiðkiÞ of the set of binary problems Eqs.

(A.6)–(A.9) (Frazer & Collar, 1965):

fiðDijÞ ¼
X2
k¼1

f ðkkÞ

Q2
j¼1
j 6¼k

ðkjdij � DijÞ

Q2
j¼1
j 6¼k

ðkj � kkÞ
i ¼ 1; 2 ðA:14Þ

where k is a auxiliary subindex.
In a similar form it can be obtained the average so-

lution �ffiðDijÞ by substituing in Eq. (A.14) f ðkkÞ by its

average value �ff ðkkÞ. The coefficients of �ff ðkkÞ will be the
same and named ak. The solution in the transform

variables is (Carslaw & Jaeger, 1959; Crank, 1975):

�ff ðkiÞ ¼
X1
n¼1

Cnie
�kibni h i ¼ 1; 2 ðA:15Þ

where

Cni ¼
2aið1þ aiÞ

1þ ai þ a2
i q2ni

i ¼ 1; 2; n ¼ 1; . . . ;1 ðA:16Þ
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bni ¼ q2ni=S
2 i ¼ 1; 2; n ¼ 1; . . . ;1 ðA:17Þ

tan qni ¼ �aiqni i ¼ 1; 2; n ¼ 1; . . . ;1 ðA:18Þ
being qni the non-zero positive roots of Eq. (A.18).

An alternative solution with the advantage of fast

convergence for short salting times, is:

�ff ðkiÞ ¼ 1� ð1þ aiÞ 1

�
� eerfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kih=ðaiSÞ2

q �
i ¼ 1; 2

ðA:19Þ
where

eerfc ¼ ez
2

erfcðzÞ with z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kih=ðaiSÞ2

q
ðA:20Þ

and substituting in the integrated form of the Eq. (A.11),

the explicit solution for the average concentration of

each solutes is obtained as:

D�xxi
D�xxi0

¼ ai
X1
n¼1

Cnie
�kibni h þ ð1� aiÞ

X1
n¼1

Cnje
�kjbnj h

i; j ¼ 1; 2; i 6¼ j ðA:21Þ

and for the solvent results:

D�xx3
D�xx30

¼
X2
i¼1

ai
X1
n¼1

Cnie
�kibni h

"
þ ð1� aiÞ

X1
n¼1

Cnje
�kjbnjh

#

� 1

ð1þ bjiÞ
i; j ¼ 1; 2; i 6¼ j ðA:22Þ

The alternative explicit expressions of average con-

centration solutions for short process times are obtained

by susbstituing Eq. (A.19) in the integrated form of

Eq. (A.11), resulting:

D�xxi
D�xxi0

¼ ai 1

�
� ð1þ aiÞ 1

�
� eerfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kih=ðaiSÞ2

q ��

þ ð1� aiÞ 1

�
� ð1þ ajÞ 1

�
� eerfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kjh=ðajSÞ2

q ��
i; j ¼ 1; 2; i 6¼ j ðA:23Þ

D�xx3
D�xx30

¼
X2
i¼1

ai 1

��
� ð1þ aiÞ 1

�
� eerfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kih=ðaiSÞ2

q ��

þ ð1� aiÞ 1

�
� ð1þ ajÞ 1

�
� eerfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kjh=ðajSÞ2

q ���

� 1

ð1þ bjiÞ
i; j ¼ 1;2; i 6¼ j ðA:24Þ

For pseudobinary-diffusion mass transfer model, the
PDE system is:

oxi=oh ¼ Dipbr2xi i ¼ 1; 2 ðA:25Þ
where Dipb is assumed constant by the model, but it is

strictly function of the concentration gradients of the

others solutes in the system.
The PDE system is formally equal to the one ex-

pressed in Eqs. (A.6)–(A.9). They are two independent

problems with the same functional form for the both

solutes, and consequently the pseudobinary problem
solution will be the same, when the following substitu-

tions are made:

wi;wi0;wi1 by xi; xi0; xi1 i ¼ 1; 2

�wwi; by �xxi i ¼ 1; 2

ki by Dipb i ¼ 1; 2

The solution of the pseudobinary model for the ternary

system average concentrations, can be directly obtained

from Eq. (A.15) or Eq. (A.19) changing the corre-

sponding variables.
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