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On the strong discontinuity approach in finite
deformation settings
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SUMMARY

Taking the strong discontinuity approach as a framework for modelling displacement discontinuities and
strain localization phenomena, this work extends previous results in infinitesimal strain settings to finite
deformation scenarios.

By means of the strong discontinuity analysis, and taking isotropic damage models as target contin-
uum (stress—strain) constitutive equation, projected discrete (tractions—displacement jumps) constitutive
models are derived, together with the strong discontinuity conditions that restrict the stress states at the
discontinuous regime. A variable bandwidth model, to automatically induce those strong discontinuity
conditions, and a discontinuous bifurcation procedure, to determine the initiation and propagation of
the discontinuity, are briefly sketched. The large strain counterpart of a non-symmetric finite element
with embedded discontinuities, frequently considered in the strong discontinuity approach for infinites-
imal strains, is then presented. Finally, some numerical experiments display the theoretical issues, and
emphasize the role of the large strain kinematics in the obtained results. Copyright © 2003 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Modelling the onset and development of material discontinuities (fractures, cracks, slip lines,
etc.) has been the object of intense research in solid mechanics during the last decades.
Besides the classical non-linear fracture mechanics approaches [1], one common way of mod-
elling displacement discontinuities, from the continuum mechanics point of view, has been
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1052 J. OLIVER ET AL.

the simulation of the strain localization phenomenon by resorting to material models equipped
with strain-softening. This can be justified not only from the physical point of view, since this
mode of deformation can be observed either in ductile materials (see, for example, Reference
[2] and references therein and Reference [3]) or in quasibrittle materials [4], but also from
the kinematic point of view, since strain localization induces relative displacements at both
side of the localization band that can be interpreted as displacement jumps. However, it is
nowadays well known that classical continuum inviscid dissipative models featuring strain
softening lead to ill-posed boundary value problems. This becomes particularly evident in
numerical simulation contexts since the obtained finite element results exhibit strong mesh
dependence and no convergence with mesh refinement.

Different remedies for this behaviour have been presented in the literature. Basically, they
are based on the modification of the classical inviscid constitutive response, by adding, to the
stress—strain constitutive equation, higher-order deformation gradients, non-local dependence
or rate dependence [5].

In recent years, a second group of procedures that resort to the strong discontinuity concept
have been developed. They advocate the introduction of the strong discontinuity kinematics,
i.e. the modification of the standard continuum kinematical descriptions to take into account
the appearance of discontinuous displacement fields through material interfaces in the solid
[6-11]. A common issue associated to these procedures is the finite element technology, which
should enable to capture jumps in the displacement field. For such purposes, new families of
elements with embedded discontinuities have been developed [12-16].

Considering the aforementioned strong discontinuity kinematics has some interesting con-
sequences. In fact, it turns out [17] that under such a kinematics standard continuum (stress—
strain) constitutive models induce discrete (traction—displacement jump) constitutive models
on the interface of discontinuity.Y Those discrete models can then be regarded as projections
of the original constitutive model on that discontinuity interface, and inherit the basic features
of the parent continuum model [17, 18]. However, they can be only induced when a particular
stress state has been reached at the interface, which is therefore restricted by the so-called
strong discontinuity conditions [17].

Consequently, and regarding the way that different models make use of those induced
discrete models, and the format in which they are introduced into the analysis, they can be
classified into:

1. Discrete approaches [11-13,19]: They introduce a discrete constitutive model at the
interface that is completely independent from the continuum one. Their connection with
the strong discontinuity kinematics lies in numerical aspects, essentially in the use of
finite elements with embedded discontinuities.

2. Discrete-continuum approaches [8,10,20,21]: They make use of the continuum induced
discrete constitutive equation introducing it into the problem in a discrete format: i.e. the
discrete constitutive equation is analytically derived and then introduced, as a separation
law, at the discontinuous interface regardless the fulfillment of the strong discontinuity
conditions.

YA crucial condition for this to happen is that the strong discontinuity kinematics is linked to the continuum
constitutive model through a constitutive regularization of the hardening/softening parameter. This allows the model
to return bounded tractions for input unbounded strains.
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Figure 1. (a) Strong discontinuity kinematics; (b) regularized kinematics; and
(c) multiplicative decomposition.

3. Continuum approaches: A full use of the connections between the continuum and the
induced discrete constitutive models is made. As a matter of fact the latter is never
explicitly introduced at the discontinuous interface, but it is implicitly induced from the
former as a consequence of the activation of the strong discontinuity kinematics once the
strong discontinuity conditions are fulfilled. As a result, the whole analysis and simulation
is kept in the continuum format.

This paper focuses on this last continuum approach that, from now on, will be termed the
strong discontinuity approach (SDA). Its analysis and implications for infinitesimal strains
settings have been analysed by the authors in the past [7,14,17,18,22-25], and here we
extend them to the finite deformation setting.

The aim of this work is then to explore the requirements and consequences of using a full
continuum approach for modelling strong discontinuities in the large strain scenario. It is not
intended to make a comparative study between the aforementioned approaches or to state the
possible benefits of the SDA in comparison with other modelling tools, but to show that the
SDA methodology and concepts, previously developed for the infinitesimal strain case, can
be generalized to finite strains.

The remaining of this paper is organized as follows: Section 2 introduces the strong dis-
continuity kinematics in the large strain context. Then, in Section 3, a strong discontinuity
analysis is done for an isotropic continuum damage model and the induced discrete constitu-
tive model and the corresponding strong discontinuity conditions are derived. In Section 4 a
description of the finite element technology, for the large strain kinematics case, is provided.
Section 5 is devoted to present a set of numerical simulations in the context of the SDA.
Finally some concluding remarks close the work.

2. STRONG DISCONTINUITY KINEMATICS

Let Q€ R3 be a body undergoing a mechanical process which displays a displacement field
that is discontinuous across a material surface ¥ C ) (see Figure 1(a)) with a jump in the
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velocity field given by [a]=u(Xs+) — u(Xs-). The velocity field at the material point X at
time ¢ is described by

| . . 0 vXeQ
WX ) =0+ A0 AX) =9 (1)

ii(X) and [i1] being two continuous fields, #; is the step function (Heaviside function) and Q~,
Q0" each one of the body’s disjunct parts of 2 obtained from its division by the surface .
This mode is characterized by a material velocity gradient F:

F=u@V=F+d,(uoN) 2)

where F is a bounded (regular) term, J the Dirac’s delta function on ., and N a material
(fixed) unit vector orthogonal to . The deformation gradient F(X,¢), at time ¢, comes from
the integration of Equation (2) along time:

t . t _
F(X,t):ﬂ+/th+/ S, @ Nydi= B +5,(BN) 3)
0 fsp bEn/;d

where #5p(X) stands for the onset time of the strong discontinuity mode at the material point
X, and B(X,?) is the incremental displacement jump between the current time, ¢, and #sp:

p=0; t<Isp

B=[u), —[u]p; ?=tsp

4)

where [u], stands for the apparent displacement jump at the end of the weak discontinuity
regime (f=tsp) described in Section 3.2. Notice that in Equation (3), the regular term F
remains bounded during all the process.

2.1. Multiplicative decomposition of the deformation gradient

For the subsequent analysis it is convenient to adopt, from Equation (3), the multiplicative
decomposition of the deformation gradient (see Figure 1(c)) proposed in Reference [8]:

F=F F=(1+0sp®n) F;, a=F' N (5)

which introduces the concept of a regular intermediate configuration €, described by a R?
mapping whose gradient of deformation is regular and given by F. Notice that, in accordance
with Equation (5) n, the normal vector to the surface % convected by F# 1, is not a unit
vector.

For the sake of simplicity in the subsequent mathematical analysis, we shall regularize the
Dirac’s delta function by defining a slice of the body &, (see Figure 1(b)), of finite thickness
h, which contains the surface & (< C %). Then we consider the A-sequence of regular
functions:

R (6)
‘ h’ 1 vXe9

so that, in the limit, as #— 0 then dy, — 0.
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Using this regularization, and after some algebraic manipulation, the following identities
are obtained:

Fh:ﬁ+“hﬁ(ﬁ®N) 7)
F=F+ 22 BaN)=(1+%@on)F=FF ®)
h —
P

,1_-7 Shn—1 _ T Hy -

F' =F . (F")"'=F h(nhH}_ﬁ(ﬂ@n)) 9)
J" = det(F") = det(F)<1 + “”g'ﬁ) =JJ" (10)
J=det(F); J"= det(F")= <1+“’h'3“> (11)

We also define n as the normal vector N convected by the total motion,

=

n=FT.N=F'"T.7i=— (12)

<
=

where Equations (8), (11) and (5) have been used.!l

3. STRONG DISCONTINUITY ANALYSIS

In addition to the kinematics described in previous sections, the SDA lies on several as-
sumptions and ingredients, some of them trying to match the physical aspects associated to
the formation of a displacement discontinuity and some others of more mathematical nature.
Those assumptions and their implications will be described in the following sections.

3.1. Traction continuity. stress boundedness

Let us consider the material configuration of the solid, §2, with boundary 02 =T}, UT,, where
I, is the part of that boundary where displacements are prescribed and I, the one were
tractions are given (see Figure 2), crossed by the discontinuity interface & that splits {2 into
the domains Q* and Q. The local equilibrium of the body is described by the following
equations:

P-Vx+pB=0 for (X,1)eQ\¥ x[0,T] (a)
P-N=g° for (X,1)el, x[0,7]  (b) (13)
Py -N=P, -N for (X,1)e ¥ x[0,T] (c)

IFrom now on superindex (-)" to indicate the A-regularized version of entity (-) will be omitted.

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:1051-1082



1056 J. OLIVER ET AL.

T ext

Figure 2. Strong discontinuity in a body.

where P(X,?) is the nominal (first Piola—Kirchhoff) stress tensor (Po: and Pq- being its
values at the domains 2" and Q~, respectively), po(X) is the density, B(X,¢) are the body
forces, 7 (X, ¢) stands for the external forces applied at the boundary I, and [0, 7] is the
time interval of interest.

In the context of the SDA and the regularized kinematics of Section 2.1 we extend, as an
‘ad hoc’ hypothesis, the traction continuity equation (13c) to the interior of the discontinuity
interface %, of Figure 1(b):

f:PQJF-N:PQf-N:Py'N (14)

where 7 stands for the nominal traction vector and Py =P(X,?)|xcs is the first Piola—
Kirchhoff stress tensor evaluated at .. This hypothesis is sustained on the physical perception
that if there are material points in between 2" and 2~ the traction continuity (equilibrium)
should be also extended to those points.

The nominal traction continuity condition (14) leads to the requirement of a bounded
character for the Cauchy stress tensor at the interior of the discontinuity interface, ¢,
and also for its time derivative 6. This requirements emerge from the following
reasonings:

1. Since the deformation at Q\.% is determined by F (that is bounded by definition,
according to Equation (3)), and the continuum constitutive equation is supposed to re-
turn bounded stresses for bounded strains, then the Piola—Kirchhoff stresses Pqo:(F) and
Po- (F) must be bounded at any time of the analysis.

2. If Py and Py- are bounded, so must be the nominal traction vector J in Equation
(14) since N is bounded (|N|=1).

3. Rewriting the last Equation (14) in terms of the Cauchy stresses 6 one gets:

T =Py -N=Joy -n=Joy-i (15)

where Equations (10) and (12) have been used. Hence, since, J and i are bounded
entities, if all the components of 64 were bounded so would be their linear combinations
T:=Jayii; defining Equation (15).

4. Similar arguments, now on rate entities, lead to require the bounded character of 6.
In fact, if Po: and Pq- are assumed to be bounded on the same above arguments, time
derivation of Equation (15), considering the material character of % (N =0), leads to
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(h)

(c) E (d)

Figure 3. From (a) to (c): mechanism of formation of a strong discontinuity by collapse of a weak
discontinuity; and (d) variable bandwidth law.

the bounded character of 7

7 =Joy i+J6y n+Jey i (16)
bounded

Since J and # (from time derivation of the last Equation (5)) are bounded entities, the
bounded character of 7 is guaranteed if 6+ is also bounded.

Therefore, boundedness of 6+ and 64 guarantees the boundedness of .7 and 7 that is
demanded from a physical viewpoint. The main goal of the Strong Discontinuity Analysis,
developed in Section 3.5.1, is precisely to determine the ingredients that have to be introduced
in a continuum constitutive model to guarantee that bounded character even in presence of
unbounded strain measures.

3.2. Development of a strong discontinuity. Weak—strong discontinuities

The regularized kinematics proposed in Section 2.1, allows to introduce the weak discontinuity
concept by considering the same kinematics in Equations (7)—(12) but now with a non-
null bandwidth** %4+ 0. Bearing these concepts in mind, we shall consider the mechanism of
formation of a strong discontinuity as follows:

(a) at time t=tg (the bifurcation time) a local discontinuous bifurcation of the strain field
(see Section 3.3) triggers a localization of the strains in the shape of a weak discontinuity
(with bandwidth 2= hy), see Figure 3(a).

(b) a subsequent evolution of the bandwidth 4(?), decreasing monotonously along time, makes
that weak discontinuity collapse into a strong discontinuity (when the bandwidth reaches
a very small regularization value # = k—0) at time #sp (see Figure 3(b)—(c)). For

**A weak discontinuity can be then characterized by continuous displacements fields and discontinuous (but
bounded) strain fields [25].
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the strong discontinuity regime (t>tsp) the bandwidth is kept constant, # = k — 0, (see
Figure 3(d)).

The variable bandwidth law of Figure 3(d) is a model ingredient, whose fundamental role
in the continuum approach (SDA) has already been explored in infinitesimal strain settings
[18]. It is a mechanism for delaying the onset of a strong discontinuity after the bifurcation
time fp till the stress state satisfies the, necessary, strong discontinuity conditions derived in
Section 3.5.1. From the mechanical point of view, the transition (weak discontinuity) regime
[ts,tsp] defines in the tip of a propagating discontinuity a zone where the discontinuity is
processed that can be readily identified with the Fracture Process Zone concept in Fracture
Mechanics [26]. The bandwidth evolution is considered a material property defined in terms
of the stress-like internal variable of the continuum constitutive equation. More details can be
found in References [18, 25].

3.3. Bifurcation condition at t=tg

By resorting to the so-called discontinuous bifurcation analysis [27,28] we can determine the
conditions for the bifurcation of an initially smooth deformation field into a weak discontinuity
compatible, in turn, with the equilibrium of the body. Therefore, we assume that at time 7 =tg
a non-smooth deformation rate, described by the rate of the deformation gradient (7), begins
developing. The equilibrium condition (14) across the discontinuity surface & requires the
jump of the rate of the nominal traction vector to be zero:

[7]=[P(Xs) - P(Xa:)]-N=0 (17)

Assuming loading conditions in % and neutral loading in Q\.%,’" and after some algebraic
manipulations, it is possible to derive from (17) the following equation [29]:

QL'[[ﬁ]]:(en'ctang'en+(en't‘en)ﬂ)'[[ﬁ]]:0 (18)
QL

where ¢ is the tangent constitutive tensor, which relates the Kirchhoff stress convective rate
with the rate of deformation (L,t=c"™"¢ : d, see the appendix for applications to a particular
model). The criterion to determine bifurcation is based on the detection of the singularity of
the localization tensor Q, this allowing a non-trivial solution for the velocity jump ([a] # 0)
in Equation (18):

det(QL(e,, #°)) =0 for ¢=tg (19)

where #° is the maximum (critical) value of the softening modulus compatible with Equa-
tion (19). The first time that this equation is fulfilled for a given material point,

Tt A preliminary analysis shows that this scenario determines the first (and, therefore, the most unfavourable)
possible bifurcation.
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determines the bifurcation time #g for that point, and allows to obtain the normal e,, which
in turn determines the direction of propagation of the discontinuity interface . For further
details on this particular procedure the reader is referred, for instance, to References [28, 30].

3.4. The continuum and discrete free energies

There is a broad set of continuum constitutive models founded on thermodynamic basis that
can be used in finite strain settings. A key point in those models is the definition of the
continuum free energy density function Y(F,I"), in terms of the gradient of deformation
tensor F, that acts as the free (thermodynamically independent) variable, and a set of internal
variables I (including the inelastic strain measures) characterized by specific evolution laws
[31]. The nominal stress field P can be then directly obtained, on thermodynamical reasonings,
from that continuum free energy as

oY(F, I’
px=PED e (20)
which qualifies the continuum free energy ¥ as a potential for the nominal stress field P.
In this context, let us consider the discontinuous interface ¥’ and the free energy per unit

of this surface, 1, from now on termed discrete free energy which, in the context of the
regularization procedure sketched in Figure 1(b), can be written as

free ener free ener unit volume .
: &y _I° gy = lim hyl|y (21)
unit surface unit volume unit surface  r=k—0

" h

W=

Now, by considering the strong discontinuity kinematics (8), F(F,p)=F + us/h(p2 N), in
Equation (20) one gets:

Y(F.p.I) = lim 7y (F(F. ). 1)

O = lim hopls = lim hogy - 04F|y =Py -N=g (= 7 =0V (22)
h—0 h—0 N N —
Py 1
EN

Equation (22) hints at a crucial consequence of the insertion of strong discontinuous kine-
matics into continuum (stress—strain) models: the projection of those continuum models into
discrete (traction—displacement jump) ones. In fact, the discrete free energy y, obtained as
the discontinuous surface counterpart of the continuum free energy density , turns into a
potential of the nominal traction . =Py - N, with respect to the incremental jump B, as shown
in Equation (22). This suggests that a discrete model can be derived from that discrete free
energy and, therefore, from the inclusion of a strong discontinuity kinematics in the original
continuum model. Indeed, this is what is shown, for a target constitutive model (continuum
damage), in next sections.

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:1051-1082
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3.5. A representative continuum damage model

Let us now consider the extension to the finite deformation range of the isotropic continuum
damage model presented in [17]:

Y(b,r)=(1—d) (b)
Free energy ) i (a)
YOb) =A% = 1) = (5 + ) log J + jpuftr(b) - 3]
Constitutive . B 1)
equation | T =RV t=2b 0= 14 u(b — D] ()
Damage 1.
variable d=1-%2de[0,1] (c)
Evolution . [relr,o)
law r_y{rt0:r0>0 (d) (23)
Damage B o —
criterion #(0.9) =1 —q; To= \/w—-“ (e)
Load.-unl.
conditions 720 ¢<0 =0 (f)
i 9 <[0,90]
Solftemng G=HF H<0 { 0 (@)
ruie 90 :=qli=0=T0

where A and p are the Lame’s parameters, t is the Kirchhoff stress tensor, b(F)=F - FT is
the left Cauchy—Green deformation tensor, » is a scalar strain-like internal variable which
determines the damage (or degradation) level of the material and g(r) is a stress-like internal
variable (hardening variable) that sets the evolution of the elastic domain E, := {¢; ¢(6,9) <0}
through the damage function ¢(o,q). The initial value of r is 7y =0,/VE where o, is the
uniaxial peak stress and £ is Young modulus. In addition, in Equation (23c¢), d(r)=1—q(r)/r
is the classical damage variable ranging from 0 (undamaged state) to 1 (full damage). Also
in Equation (23) 7, is a norm of the stresses in the metric of the tensor c(;l, 7 is the damage
multiplier and # is the softening modulus from now on termed continuum softening modulus
(see the appendix for the explicit expression of tensor cdjl and additional details on the model).

3.5.1. Strong discontinuity analysis. Let us find out what conditions make the unbounded
strains at the strong discontinuity regime, ¢>tsp (and, thus, 2 = k — 0), compatible with the
stress boundedness requirements of Section 3.1. Using the multiplicative decomposition (5)
and expressions (8) and (10), one can rewrite the Kirchhoff stress (23b) in the discontinuous
interface ¥ as

.| A _ k & 2 _ i)-_ sym
r,y'Z(ZL(JZ[JFIf“} —1>ﬂ+ﬂ(b—ﬂ)+2u< ‘;{®ﬁ> +M(ﬁgﬁ

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:1051-1082
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where b=F - FT. The corresponding Cauchy stresses, taking into account Equations (10) and
(11), and after some algebraic manipulations can be written as

LI 1s) 24z
mf_Jy Ty = Iy <o-0 + kcl) =ty (koo + 61) (25)
where
= i k E k 1 h.n sym
60_2j<k+[3-ﬁ)ﬂ+j<k+[;.ﬁ>(b 1+2((b-n) @ B)™™) (26)
and
- = Pop
J(k+B n)l+ = (k—i—[} n) (27)
From Equation (25), and for the strong discontinuity regime (¢>tsp s = k — 0), one gets:
Sy = hmkr(,» llcl_r)‘})(ko'o +61)= hm kr [ J(B-n)1+ 7% _)ﬁ®l3] (28)

=0

where the bounded character of 6 (from inspection of Equation (26)), and then lim;_.q (ko)
=0 has been considered. Multiplying Equation (28) times Ji and recalling Equation (15)
(7 =Jog -n) we obtain:

- _ 1

hm(kr)qy[ J*B- n)“‘*’ﬂﬂ} (29)

In view of Equation (29) we now consider the following two scenarios:

(I) limg_¢(kre)=0 for t>tsp (ro =bounded). Then, from Equation (29) the bounded
character of 7 implies:

%.}'2([5 YA B0 for >t (30)

and multiplying Equation (30) times n

(j.]_2|ﬁ|2+u>([$-ﬁ)_0<:>([i~ﬁ)_0<:>[i_0 for ¢>tsp (31)

| ——
#0

where Equation (30) and the facts 2>0, pu>0 have been considered. Equation (31) states
that the incremental displacement jump B is null and, thereby, no evolution of the jump at the
strong discontinuity regime. Therefore, this scenario would not model the strong discontinuity
and has to be discarded. The alternative scenario is then:

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:1051-1082
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(I) limg_¢ (krg) # 0 for Vt>tsp (ro = O(1/k)=unbounded): Such condition is trivially
fulfilled for the following structure of 7¢, in Equation (23d):

fy=y=%>0 V> tsp (32)
fs0 L 1
=>”y:7’o+/ f;ydl-i-/ —dt=rsp+ — (& — dsp) 33)
0 K b=
~—_—— =Ag

where & and, therefore, & and A& are bounded and Equation (23f) (7=0) has been considered.
From now on the variable & will be termed discrete internal variable. From Equations (32)
and (33):

=0 Vit >tsp (34)

where the parameter § will be termed discrete damage multiplier.
From Equation (33) it follows that the assumption for scenario (II) is fulfilled, that is

Illn(l)(kl”c/)):llln})krs]) +(o'ct—o'c5D):Ao'c>0 Vit >tsp (35)
——
=0
Let us now consider the hardening/softening variable ¢ that, from Equation (23g) (¢€[0,70]),
is bounded. Let us find out what conditions would make also ¢, bounded. From the softening
rule (23g), in connection with Equation (32) for ¢ >fsp, and loading cases we obtain:

. . I .
gy =H vy =H— 0 (36)
bounded

bounded

IR

Hence, the continuum softening modulus # must fulfill:

H % = (bounded) 37

and substitution of Equation (37) into Equation (36) leads to
Gy =Hd Vi=isp (38)

which constitutes a discrete softening rule in terms of the discrete internal variable &. On the
other hand Equation (37) is fulfilled from the following softening regularization condition:*

H=hH Nt=ts (39)

HIn strict sense the softening regularization condition is only required at the strong discontinuity regime
(X =k VNtztsp) but, in the context of the variable bandwidth model, it is also extended to the weak
discontinuity regime (g <t<fsp) (see References [18,25]).

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:1051-1082
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where # <0 (from now on termed the discrete softening modulus) is a (bounded) material
parameter.§§
Finally, substitution of Equation (35) into (28) leads to

o A= 1
Z’ JB )+ u=——BRB| Viztsp (40)

6y(qy,Ad,p)= 7|2 7p-n

Equation (40) guaranties the bounded character of 6 as a continuous function of the bounded
entities g, Ad and p. Moreover, time derivation of Equation (40) also shows the bounded
character of 64(qy, Ad,B,qG,% B) since ¢4 and B are also bounded. Therefore, it appears
that the softening regularization in Equation (39) is a sufficient condition to guarantee the
bounded character of the stress and rate of stress fields required in Section 3.1.

On the other hand, Equation (40) provides a set of six (due to its symmetry) equations that
allows to solve for the incremental displacement jump B (three equations) and also supplies
three additional constrains on the stress field 6. Indeed, multiplying such equation times Ji,
and considering Equation (15) (7 =Je - ii) one obtains:

F—Fe, . a 47 (2= o -2 0.
7=Joy =1~ <2J (n®n)+,uﬂ> B=15Q-B (41)
Q
or, equivalently:
T=(1-w)Q-B; wzlfz‘z_(; we[—o00,1] Vixtso (42)

that can clearly be interpreted as a discrete damage constitutive equation for the cohesive dis-
continuous interface <. It describes the relation between the traction 7~ and the displacement
jump B in terms of a discrete damage variable w € [—oc0,1]%Y and an acoustic-like stiffness
tensor Q.

Equation (42) can be solved for p (as p=(A&/qs)Q~'-7) and, once substituted into Equa-
tion (40), provides, after some algebraic manipulations, a set of three equations in terms of
6. These conditions on the stress field, which are termed the strong discontinuity conditions
[17], have to be fulfilled at the strong discontinuity regimellll (1>1sp). In a local orthogonal
basis (e}, ey, e3), see Figure 4, with unit vectors e, and e; laying on the tangent plane to the

88In fact the discrete softening parameter # can be readily related to the fracture energy concept in fracture
mechanics [17].

99The initial = —oo value states that the induced discrete model is a rigid damage model. This extends to finite
deformation settings this feature already proved for infinitesimal strains settings [17].

Il As it will be shown through numerical simulations in Section 5.1, the strong discontinuity conditions (43) are not
always fulfilled at the bifurcation time #g and, in the context of the SDA, this fact generally precludes the onset
of the strong discontinuity immediately after the bifurcation, see References [17,25] for additional details. The
variable bandwidth (weak—strong discontinuity) model outlined in Section 3.2 constitutes a mechanism to smoothly
induce those conditions that, in turn, can be related to the Fracture Process Zone concept in Fracture Mechanics
[25, 26].
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<>

)

Figure 4. Orthogonal basis attached to the discontinuity surface.

discontinuity surface, &, and e; =n/||n|| =n/||ii||, they can be written as:

J +
O, = =011, + a (01, /011,)
w4 u
J + 7 s A
033, = ~011, + & (o13./o11,) (/IZEJZHHHZ) Vit =tsp (43)
w2 u
+
023, = (012,013,/011,)

which states a continuous functional dependence of the stress o2, 033, and g3, on the traction
vector components [7 | = [011,, 012,013, ). Hence, all the components of 64 can be expressed
as a function of the components of 7, i.e.

Gy = G(ﬁ.) Vit =tsp (44)

Considering now the 7 -dependence of o stated in Equation (44), and substituting into the
damage criterion (23e) we obtain:

N E W6(T),q9) =17 — gy Tr=\[6(T) ¢, 16(T) Vizisp (45)

which constitutes a discrete damage criterion at the interface in terms of the traction 7.
Finally, recalling the expression of the discrete free energy (21) for the particular case of
Equations (23a) one obtains, after some algebraic manipulation:

Jim (b, r) = (B, A%) (46)
- #(AX) - = A= _
G850 = ED gy =t R+ ) (47)

and, from the expression of the discrete free energy (47), the constitutive Equation (41) is
immediately recovered by differentiation (7 = dgy), as suggested in Section 3.4. In summary,
by collecting the expressions derived in this section, the following discrete constitutive model
at the discontinuous interface . emerges (Figure 5):
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Continuum model AT Discrete model
IIw &'l
wisading
[ B
i) Fa[f+ Hflﬂaﬁﬂ F Strong disconfinuity conditions
i) R-N=RN Rla)=0
i} H=hA
(a)
F Fier)
L e P
o . By | 20
«— —
) s p =

Figure 5. (a) Original (continuum) vs induced (discrete) constitutive response;
(b) and (c) induced discontinuous interfaces.

-0
) o |V ®=38-Q-p
Free energy |Y(B,Ad)=(1—w)y ; 1. ()
Q= EJ2(1‘1 ® i)+ ul

Constitutive T
equation T =0y =(1-0)Q-p (b)
Damage _ q(A%)
variable w=1- N €(=oe] ©)

. ) Axe[0,00
Evolution G=7; [ ) (d) (48)
law A, =0
Damage n -
criteriin NT.q)=17 —q9; T7= \/G'(/(y) : c¢1 10s(7)|(e)
Load.-unl. = T =7
conditions 120 ¢<07¢=0 ®

- . €1[0,gsp]
Solftenlng G, = A3 T <0 { qy qsp ()
rule qsp =q s
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Notice that, according to the previous reasonings, the discrete constitutive model (48) is
implicitly induced from:

(1) the introduction of the softening regularization condition (39) into the continuum con-
stitutive model (23),

(2) the presence of unbounded strains measures that develop at the discontinuous interface,
according to Equation (7), and

(3) the imposition of the traction continuity Equation (14).

These are the only specific ingredients introduced by the SDA in addition to a standard
continuum modelling. For the numerical simulation purposes the simulation is carried out in
the continuum format on the basis of the continuum model (23) and the aforementioned
ingredients.

4. FINITE ELEMENT APPROACH

Conceptually there are not substantial differences between the finite element technology for
the infinitesimal strain case, reported elsewhere [14], and the one used here for the numerical
simulations in large strain settings. Therefore, in this section only the outline of the theoret-
ical foundations of considered finite element with embedded discontinuity will we provided,
emphasizing the specific features introduced by the large deformation kinematics.

4.1. Discretized displacement field

Let us consider the material domain € discretized in a triangular*** finite element mesh with
Nelem €lements and 7n,,4e nodes crossed by the discontinuity interface ¥ (see Figure 6(a)). Let
us then consider the subset # of the n, elements that are crossed by ¥ at the considered
time ¢:

J=A{e|QnNF #0}={ei,....em....€p,...} (49)

This subset is determined by means of an specific algorithm devoted to track the discontinu-
ity [14]. For every element of ¢, the tracking algorithm also provides the position of the
elemental discontinuity interface &, (see Figure 6(b)) of length /, which defines the domains
Q} and €, and leaves one node at one side of the element (the solitary node j*') and two
nodes (' and j?) at the other side. The sense of the normal N inside the element is chosen
to point toward the solitary node side €2}.

Based on this, and motivated by the kinematics presented in Section 2, we consider the
following interpolation of the (rate of) displacement field u‘® inside a given element e [14]:

uO(X, ) =u® + = ifo”(X)&(r) + .4 X)[a]1.(¢) (50)
i=1 | Y —
S—— lLl(")

i©

***From now on the three noded (constant stress) triangle will be considered as the basic element for explanation
purposes. Generalization to other families of finite elements can also be done but it is out of the scope of this
work.
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Figure 6. Finite element with embedded discontinuity.

where & is the standard %° displacement field, interpolated by the shape functions {V, @
N9, NV of the linear isoparametric triangle [32], in terms of the nodal displacements d;(¢)
at node i. The term i, in Equation (50), captures the singular (discontinuous) part of the
displacement field in terms of the elemental displacement jump [[a]]. and the wunit jump
Sfunction M (X) defined as follows:

© 0 Ved¢ ¢
XV (X) Nsol (X) Ve e j

where # is the step function (A#L)(X)=1 vXeQf and #(X)=0 VX ;) and the
index ‘sol’ refers to the solitary node. Figure 6(c) shows the ﬂff) function and emphasizes
its elemental support.

The term & in Equation (50) can be regarded as an enhancement of the basic displacement
field U®), provided by the underlying isoparametric finite element, which due to the particular
structure of the wnit jump function /¢ in Equation (51) makes the resulting displacement

field discontinuous.
The kinematics of Equation (50) can be also expressed in compact form as

(X, 1) = N(X) - d(t) + M(X) - 5(t)
(52)

d = {dy,....d,}" 7= {[[u]],.... [[a]], }"
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From Equations (50) and (51), the discrete (rate of) deformation gradient reads:

FO =4© @ vy = f (d; © VxN'9) — ([[a]]. ® VxN) +34([[u]]. © N) (53)
i=1

¥ (bounded)

where 4 stands for Dirac’s delta function emerging from the spatial derivation of the Heavi-
side function 7@6 ) in Equation (51) (VX%;E)(X):@;N). Notice that Equation (53) matches
the strong discontinuity kinematics discussed in Section 2.

As pointed out there, in order to overcome the numerical difficulties of treating with the
Dirac’s delta function, and also to model the transition from the weak to the strong discon-
tinuity regimes, og is replaced by a regularized function 55) defined within the element e
as

e e 1
8 = uf/,; (54)

where 4, is the elemental bandwidth, defined according the variable bandwidth model, and

uf;) is a collocation function whose support is the domain ¥ in Figure 6(b) defined in terms
of the regularization parameter k:

HPX) =1 vXedf
(55)
pOX) =0 vX¢ot

By considering Equations (54) and (55) the regularized form of the rate of deformation
gradient (53) reads:

FO= 5 (@ V) - ([l © TxN) + 1) ([0l @ N) (56)
i=1 e

unbounded for A, — 0

=(e)
F (bounded)

In order to integrate the discontinuous terms emerging from the second term of the right-
hand side of Equation (56), in addition to the regular sampling point of the constant strain
triangle (PG1 in Figure 6(¢e)), the element is equipped with a second integration point (PG2
in Figure 6(e)) whose associated area is

measure (SX) =kl, (57)

The regularization parameter k has an arbitrary small value (as small as permitted by
the machine precision). Therefore, integration of regular (bounded) terms in %% results in
arbitrary small values, which makes the approach consistent. Also notice that neither £ nor

h. are associated to any length of the finite element or mesh.
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4.2. Body equilibrium and discrete equilibrium equations

Let us consider the weak form of the local equilibrium equations (13) in Q\&:

SToy o (u; 1) :/ P:({j® Vx)dQ — B-ﬁdQ—/W*‘-ﬁdr:o
O\g O\ Ty (58)

o

- - ef __ —
viie 7o = {(n(X)nlxer, =0}

As previously stated, in Equation (14) an additional traction continuity condition should
be imposed in % to induce at this interface the discrete (traction vs displacement jump)
constitutive equation. This reads:

Ps N=Po. N (=P, -N)=7 for (X,t)e ¥ x [0,T] (59)

After introducing the spatial discretization of Equation (52) the discrete counterpart of Equa-
tion (58) reads: 't

SIIh(u® ") = /QP:(ﬁhwx)dQ—/QBﬁhdm/rfext~ﬁhdr:o

(60)

cht
vi' € 7 == {#'(X) =N 8d; 8d|p =0}

On the other hand, the nominal traction continuity condition (59) can be weakly enforced
in terms of the averages of 7 =P - N inside every element e € ¢ as follows:

L[ p.Ndao = i/ P-NdQ Veeg= (61)
k. gk Qe Qe
~—_———

mean value of 7 on &%  mean value of 7 on €,

11
e * = . —
/Qe (uy i Q)P NdQ=0 Veec s (62)

where the discontinuous character of the function ,ufj) inside the element (see Equation (55))

can be captured by the integration rule sketched in Figure 6(e).
Finally, some algebraic manipulation of Equations (60) and (62) leads to:

/P-(VxN,-)dQ =0 Vie{l,...,Nmoq}
QO

/(#((;)116>P.Nd(2:0 Vee g (63)
Q, h k Qe

ff’“:/ MEdV+/ N, 7dr (64)
Q; o0NT,

Tt Observe that, due to the zero measure of the interface % and the bounded character of the integral kernels, the
integration domain can be extended from Q\& to Q.
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where (); stands for the support of the shape function N,. The discrete system of Equa-
tions (63) provides a set of nn.4c + 7y non-linear equations to solve for the nyq. + 7y un-
knowns d = {di,...,d, .. }; v = {[[ulli,...,[[u]],, } of the discrete problem as pointed out in
Equation (52).

For computational purposes, and since the constitutive equations are given in terms of the
symmetric Kirchhoff stresses t=P - FT, Equation (63) can be appropriately rewritten, taking
into account the identity Vx(e)= Vy(e)-F, as

/ T (VN)AQ — =0 Vie{l,...,Mmoa}

i

1 1
(e)2 ‘e . —
/9 (,u_c/,k Qe> t-ndQ2=0 Vec g

where n=F~T . N is the convected normal at the spatial configuration in Equation (12), and
()T stands for the transpose of (e). For the considered 2D case in a cartesian (x, y) co-ordinate
system, Equation (65) can then be cast into the classical B-matrix format
[32] as

(65)

:L,J] [/5 B©' {1} dQ-F*©| =0 (66)

where U stands for the assembling operator and the elemental B-matrix, B, the 2D Kirchhoff
stress vector {t}, and nodal forces vector, F&'®), are given by

B =[B BY BY G© ] (67)
[N 0 e 0
1 l
(e) _ e . e) _ (e) ¢
LONS aN© S
(68)
) f;:xt(e)
Txx n, fext(e)
{t}=1 1 n= ; = ’
ny fext(e)
L Ty 3
0

The structure of Equations (67) and (68) suggests the introduction of an internal additional
fourth node for each element e, that is activated only for the elements crossed by the discon-
tinuity interface (e € #) and whose corresponding degrees of freedom and associated shape
function are, respectively, the displacement jumps [[u]], and ./%5) in Equations (50) and (51).
Since the support of /%gf) is only €., those internal degrees of freedom can be eventually
condensed at the elemental level and removed from the global system of equations.
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4.3. Time integration and linearization

In the context of a time advancing process, the rate equation (56), within the element (e), is
integrated at time ¢ + A¢, in terms of the corresponding values at time ¢ and the incremental
values of the nodal unknowns Ad; and A[[u]]., as follows:

F(X,t+ At) = Fpin

i=3

=F, + Y [Ad; © VxNT — (Al[u.]] ® VxN))

sol
i=1

o 1
+u§/)m(A[[u]]e @ N) (69)
Adi == di(l + Al) —_ di(t)
Al[u]]. = [[u]l(z + Af) — [[u]].(¢)

On the other hand, the algorithm of the continuum constitutive model updates the stresses
T, As In terms of the updated gradient of deformation tensor F,, A, and the previous values
of the stresses t,, and the internal variables ¢;, and also provides the algorithmic constitutive
operator ¢,'§, (see the appendix):

Tn=F Finnthq);  Litiia :c;ifi, (Vi @00, (70)

Using standard procedures [33], linearization, in the direction u,,a;, of the equilibrium equa-
tions (60) and (62) at time ¢ + At yields:

/ @' ® V) [(a @ Vi) tiar + Li(tia)]dQ = G = 0 Vi e 7
Q

(71)
ol L .
/ (uﬁ)k - Q) ((Brsnr ® V) - Trsnr N+ Li(tn) -0)dQ =0 Vee g
Q. e
which, after substitution of Equation (70) and some algebraic manipulation, reads:
_ - an, . - ex _h =k
/ (ﬂh ®@ Vi) [(1&t4a) + C;+i;] (Vi ®@p) dQ— G =0 v‘lh €7
o
(72)

e 1 le an, L]
/Q (u;)k - Q) n-[(tiar® 1)+ 6% ] (Vi @ia)dQ = 0 Vee s

H1As a technical detail in Equation (69) notice that the elemental bandwidth is updated with one time step delay
(he,p; = he(?)). In the context of the variable bandwidth method at the weak discontinuity regime, this
explicit update makes linear that equation, with a considerable simplification of the whole procedure while
keeping the consistency of the integration method.
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were (U@rHA,)ijk;défé,-krﬂ and (t1a¢ ® )i = 70 jx. From Equations (50), (51) and (60), the
terms Vy ® U, », and (" ® V) in Equation (72) can be expressed in discrete form as:

1

Vi @1 VN o d ©_ 1
® u — ; ® A + e
X t+At y x4V A My he(t)

n ® [[U]],,.,, — VAN @ [[4]].,..,

sol

Il
—_

(73)

Il
w

i

oV, =>3d,,  ©VN

Iy Ar

After insertion of Equation (73) and some algebraic manipulations Equation (72) can be
rewritten, in discrete form and for the 2D problem in a cartesian (x, y) co-ordinate system,
in the following B-matrix format:

€=Nelem SO . T .
U1 {/Q B(giz) ML E Bgéﬁ) dQ + /Q B®@ .c;'init .B*© inl .
e= e e

Keeo Kinat

d(e) - ext(e)
. =F.an (4
. |,

where F*'¢ is given in Equation (68) and K, and Ky, can be recognized, respectively, as the
classical geometrical and material tangent stiffness [32]. The remaining terms of Equation (74)
can be described as:

(e) — (e) ple) ple)
Be *[Ble’BzeaB’;aG(e)]

* «©
B = [B.B,". B, G5, ]

AN© 0
BE” = 0 ayNi(E)
ayN,»(e) axNi(e)
L (75)
n, n
n 0 aNG 0
A= #fé)hit) 0 nm| -] 0 &N
ny Ny ayNs((fl) 0N, S(jl)

B =[B© ,B© B GY

geo '2€0, 2 7g€0,° €052 geo]

B =[B©® B® B© G ]

£geo £€0, £€0, £ge03” L0, A
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0, Ni(e) 0
ON© 0
B{, = (76)
i 0 o, N[(e)
0 ay]\[i(@)
n 0
(e)
G© — u(e)l _ Ly 0
geo TkQ 0 n®
0 ngf)
n® 0 aNe 0
«(©) _ ,u(e) 1 n(ye) 0 . a)’Ns((fl) 0
260, . he(t) 0 ”)(ce) 0 o, Ns(§1)
U 0 NG
(T Ty 0 0
n Ty Ty 00
T=
0 0 T Ty
L 0 0 o 1y
[ (Lff)xx 6qu
{Lit} = | (Lit)yy |3 AVx®Uga}= Oythy (77)
| (LiT)yy Oylhy + Oy yliy, AL

. t .
Lytini = C:Ti, H(Vx @) & {Lition} = ctinit AV @0}

Observe that, due to the differences B(®) £ B*(®) and B(g‘éz) £ Bgé? (emerging from the differ-
ent matrices G # G*(©) and ngg #* G(g‘é?)) in Equations (75) and (76), the tangent stiffness
K =Kq, + Knat, in Equation (74), is not symmetric. This should be expected from the con-
tinuum formulation of the problem since the traction continuity equation (59) has not been
imposed from the variational principle (58), but enforced in an average or weighting procedure
through Equation (61). This fact confers to the presented finite element procedure the character
of a Petrov—Galerkin finite element approximation in front of the classical Galerkin-based
finite element approaches. The resulting procedure has been sometimes termed, in infinites-
imal strain settings, the Statically and Kinematically Optimal Non-symmetric formulation
[34], emphasizing its improved behaviour in front of other symmetric alternative finite ele-
ments with embedded discontinuities.
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Figure 7. (a) Boundary conditions; (b) bandwidth variation law 4 vs g; (c) total load P. vs lateral dis-
placement u,; (d) equilibrium path in the principal stress plane for a point in . (singular Gauss point
PG2 in Figure 1(e); and (e) idem for a point in Q\.& (regular Gauss point PGI1 in Figure 1(e)).

5. NUMERICAL SIMULATIONS

In this section the numerical method described above is applied to the simulation of different
problems where strong discontinuities develop. The main goal is to show that these numerical
simulations behave as predicted by the theoretical analyses, as well as to highlight the role
of large strain kinematics in the obtained results.

The constitutive model considered in the simulations is the continuum isotropic damage
model described in Equation (23) with the softening regularization condition (39). Therefore,
it is expected that the discrete damage model (48) is induced at the interface of discontinuity
and the results to be the same than if this discrete model had explicitly been implemented.

5.1. Specimen under biaxial stress state

This example highlights the role of the variable bandwidth model in the presented approach.
A square specimen is subjected to a biaxial stress state by imposing a constant displacement

u, and a gradually increasing displacement u, on the upper and right edges of the plate,
respectively, see Figure 7(a).
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The material is characterized by the following data: elastic Lame’s parameters /= 0.0(MPa),
u=E/2=1.10(MPa), continuum softening modulus .# = —0.125, discrete softening modulus
A =—0.125(cm™").

The damage criterion is that defined in the appendix, with py = and A4 = A. In this circum-
stances the elastic threshold results 7y =gy = 6,,/VE =0.00707(MPa)'/? (where 7, = 1.0(MPa)
stands for the uniaxial strength and £ =2.10*(MPa) for Young modulus).

The bifurcation analysis determines the normal to the discontinuity interface as e, =(1,0)T
and the only non-trivial strong discontinuity condition in Equation (43) is 00, — aﬁ},:O.
Since, due to the geometrical symmetries and loading conditions, oy, =0, the strong disconti-
nuity condition reads a,, =0 which clearly is not trivially fulfilled at the bifurcation time fg.
Therefore, bifurcation takes place under the form of a weak discontinuity, and a weak—strong
discontinuity transition regime has to be introduced. This is governed by a variable bandwidth
law h(q), given by (see Figure 7(b)):

h=hy=1cm; t<tg (¢>qB)
ho — k

h=k+ ———(q—qsp); tB<t<tsp (gsp<g<qB) (78)
g8 — 4sp

h=k; t=tsp  (9<gsp)

where ¢gg and with gsp stand for the values of the internal variable ¢ at the bifurcation
time, fg, and at the strong discontinuity time, fsp, respectively. The value gsp is defined
as gsp=(1 — y)gs (y€[0,1]). Therefore, the transition factor y determines the size of the
weak discontinuity interval [gsp,gg] so that for y=0 there is no weak discontinuity regime
(¢sp =¢p) and the kinematics immediately after the bifurcation is imposed to be the strong
discontinuity one. On the other hand, if y=1 then gsp =0 and all the post-bifurcation stage
will be traced as a weak discontinuity.

As a matter of example, results, obtained with several values of y, are presented in
Figures 7(c) and 7(d).

e For a very short transition regime,$% determined by a very small transition factor y = 0.05,
it appears an unexpected artificial elastic loading (in terms of P, — u, response) imme-
diately after bifurcation (see point A in Figure 7(c)) followed by the regular expected
unloading response. This can be explained as follows: since after bifurcation an incremen-
tally elastic behaviour is algorithmically imposed at 2\, as expected from the theoretical
bifurcation analysis, violation of the strong discontinuity conditions make the stresses at
that point infringe the damage criterion as the process evolution proceeds (see Figure
7(e)). This results in an artificial elastic loading at that part of the body¥1Y responsible,
in turn, for the behaviour observed in Figure 7(c) up to point A, where the strong dis-
continuity condition ¢,, =0 is fulfilled at . (see Figure 7(d)). Beyond that point the
strong discontinuity regime takes place and regular elastic unloading occurs at Q\.% (see
Figure 7(e)) resulting in the P, — u, unloading branch in Figure 7(c). There we can
notice that:

888For practical purposes this is equivalent to enforce bifurcation into a strong discontinuity.
999As a matter of fact if this artificial elastic loading takes place, a ‘two material’ constitutive equation (elastic
at Q\.% and elasto plastic at %) is artificially imposed by the algorithm.
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e For longer (slower) transitions, determined for instance by y=0.2 or y=0.5, this
artificial elastic loading is no longer observed and the transition from bifurcation to
the strong discontinuity regime takes place smoothly as shown in Figure 7(c) and keep-
ing the theoretical elastic unloading at Q\.%.

These results confirm that, as predicted by the theoretical analyses, the strong discontinuity
kinematics cannot be imposed, in general, immediately (or very shortly) after bifurcation
since the strong discontinuity conditions (43) are not fulfilled at this time. Therefore, the
transition regime (weak discontinuity) appears as a mechanism to smoothly induce these
strong discontinuity conditions preserving the bounded character of the stress and rate of
stress fields.

In addition, it can be observed in Figure 7(c) that the final slopes of the P, — u, curves
are the same in all cases. This could have been expected from the fact that this part of the
structural response is ruled by the induced discrete (traction—displacement jump) constitutive
equation which is independent of the size of the transition regime.

5.2. Debinding problem: crack propagation in mode I

This example is devoted to get some insight on the influence, on the response provided by the
SDA, of the chosen kinematics (large or infinitesimal strains). For comparison purposes the
results using the infinitesimal strain counterpart of the continuum model (23) and the SDA
for infinitesimal strains settings given in [17] are used.

The induced discrete constitutive models for both cases (infinitesimal and large strains) are
made equivalent in terms of the fracture energy as a material property. The fracture energy
Gy, defined as the external mechanical energy required per unit of surface of the discontinuity
interface . to produce the total decohesion of the material [26], can be then computed as

G = / T 70X, 0) - [[a]](X, t) ds (79)

fsp

where it is assumed that complete decohesion (4 =0) is achieved at time ¢...
Considering the same reference problem (uniaxial stress process) Gy can be computed and
equated for both cases leading to:

Small strains Gy = —¢2/(2E #*™)  _ ]
_ = %large — 2%small (80)
Large strains Gy = _05 NE c#large)

where ¢, stands for the uniaxial peak stress and E for the Young modulus. The relationship
between the discrete softening modulus %, obtained in Equation (80), is then extended to
more general stress states as an approximate way to keep the fracture energy as a common
material property for large and small strain kinematics.

With these considerations in mind, in Figure 8 the simulation of a debinding process in a
composite panel is presented.

Two plates, initially bound together, are enforced to separate by pulling the upper notch,
as depicted in Figure 8(a). Both the plates and the binding material are assumed to have the
same material properties, and, as a result of the loading process, a crack propagates vertically
beneath the notch and along the binding.
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Figure 8. Crack propagation in Mode I: (a) geometry, boundary conditions and finite element mesh; (b)

contours at the final time with the large deformation model: (deformed shape at true scale), Contours

of the Cauchy stress o, and a,,; (c) load—displacement curves of point A with a soft material; and
(d) load—displacement curves of point A with a rigid material.

Two different fictitious materials, both having the same Gy (/"% = 0.4 (cm~!) and /#5™!! =
0.2 (cm™")), and different elastic properties (see Figures 8(c) and 8(d)) have been then con-
sidered. The rigid material has elastic properties 1000 times larger than the soft one. This
precludes, in the former, large elastic strains and displacements to develop at the bulk, unlike
in the soft material case. As can be checked in Figure 8(c), the results obtained assuming
finite strain or infinitesimal strain kinematics are quite different for the soft material (which
allows the plates to undergo large strains and displacements). However, for the rigid material
case, Figure 8(d) shows very similar responses for both types of kinematics since large strains
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do not develop at the bulk and the separation law is made equivalent for both cases through
Equation (80).

These analyses show that, despite the considered kinematics does make a difference in the
results, if the regular strains are small the consideration of the fracture energy as a material
property makes those results more insensible to the type of kinematics used to model the
discontinuous interface ..

In Figure 8(c), invariance of the results with respect to the regularization parameter k£ is
also shown through comparison of the results obtained with two different values (k=10"3
and 1073).

6. CONCLUSIONS

Throughout the previous sections the strong discontinuity approach (SDA) in finite strain
settings has been explored. Although the topic had already been tackled in different contexts
[8,9] here we have extended the results found in infinitesimal strain settings [17, 18,25] to
the large strain case. As the main result we have shown that the strong discontinuity analysis
procedures used there can be extended to the large strain case, by changing the considered
strong discontinuity kinematics (7), and the same set of conclusions are achieved, i.e.

e Regularization of the softening modulus 2 in the continuum (stress—strain) constitutive
model (23) induces, via the traction continuity condition (14) and the softening regu-
larization condition (39), a projected discrete (traction—displacement jump) constitutive
model, (48), at the discontinuity interface (see Figure 5).

e This fact requires a particular stress structure to be reached at the discontinuous interface,
that is determined by the strong discontinuity conditions, (43).

e The variable bandwidth model of Section 3.2 provides a tool to automatically induce
those strong discontinuity conditions and to relate them to the fracture process zone
concept, classically considered in fracture mechanics [25].

e In addition, the induced discrete constitutive model keep the character (continuum dam-
age) of the original continuum constitutive one and have the feature of being a rigid
model (the initial stiffness is infinite).

e As in the infinitesimal strains case, the initiation and propagation of the displacement dis-
continuity can be here determined via standard procedures supplied by the discontinuous
bifurcation analysis for finite strain cases.

e Finally, and as the most distinguishing feature of the presented approach, for practical
purposes the complete analysis and simulation can be done in a continuum format, both
for the continuous and discontinuous regimes, since the discrete constitutive model is
automatically induced from the traction continuity and the softening regularization.

Through the numerical simulations performed in this work, it has been proved its ability
to capture strong discontinuities also when large strain kinematics are considered. The main
drawback of this type of finite element i.e. the necessity of a globalllll algorithm to track
the discontinuity across the finite element mesh, remains in the large strains context. The

W The global character means that the algorithm cannot be implemented only affecting the one element level
(local level) of a finite element code, but at higher levels of the algorithmic structure of the code.
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global character of this algorithm makes its implementation in typical finite element codes
cumbersome, and difficult to deal with multiple crack problems, branching phenomena, etc.

The numerical simulations also corroborate the predictions of the strong discontinuity anal-
yses, i.e. the relevance of the strong discontinuity conditions and the role of the transition
(weak discontinuity) regime, and the proposed variable bandwidth model, to make the simu-
lations physically consistent [25] as well as the relevance of the type of kinematics (large or
small results) in the obtained results.

APPENDIX A: CONSTITUTIVE TANGENT TENSOR LOCALIZATION
CONDITION, INCREMENTAL INTEGRATION

In this section additional details related to the damage constitutive model of Section 3.5 are
presented. First we particularize the damage function (23e) by adopting:

1 A
—1 . —1 ¢
6,J)=,/6-C, -6—q; C, = I- 1®1 Al
¢( Q) ¢ 9 ¢ 2/14) 2,u¢(2u¢+3ﬂ¢) ( )

I being the fourth-order identity tensor. The surface ¢(o,q)=0 defines an ellipsoid of revo-
lution in the stress space, where parameters ug and 4, govern the ratio among its major and
minor axis.

The constitutive tangent tensor associated to this damage function is given by

Lit=c® : d=c ; (V,0)¥™ (A2)
L—q\ [0—2kte(®).
clane gcg n <r61,y3 Q> { JK; r(t)t®r
+(CT;)—F)%®U4—5?%®%ﬂ if #>0 (A3)
clang — q

=c¢¢ if F<0
-
where T=(r/q)t=(1 — d)r is the effective Kirchhoff stress, and c¢ is the hyperelastic consti-
tutive tensor:

=0 1)+2u"1 (A4)

A

F=2J% wr=u+ E(l -J%
where A, u are the Lame’s parameters of the hyperelastic law (Equation (23a)), and the scalar
factors (, O are:

{(=Vw-3kl=2uKx;, 0=2u"w
1 &
2ug” 2us(2py + 374)
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We write the localization tensor Q* of Section 3.3 as follows:

Q=1%o <ﬂ+[(i’qr—1]§®0> (AS)

72

Q¢=e,-c-e,+(e, T-¢,)1 being the acoustic elastic tensor satisfying det(Q°) >0, and vectors
&, p being given by

E=(Q) " te

-2 T 2
pze Ktr(r)r'en‘l’(Ctrzt)_qr) en+7w%2'en

J? J J?

Recalling the term ¢, = .#, the critical softening modulus #°* which makes singular the
localization tensor Q* (det(Q%)=0), is then determined through the following expression:

%crit :% (1 _ grzp) (A6)

Damage integration algorithm: Box 1 describes the integration algorithm.

Box 1. Damage integration algorithm.

Assume that incremental displacement are given at time ¢ + Az.
Then: evaluate the following terms

(1) Froars bepas Jigar

- NOAUVERY,
(i) Trine :A% I+ u(briar— 1)

. 1 ¢
1 t — 1 =
(iii) QM = V47T NEN R A )
+At t+At t+At t
* Jiyar 1t ¢

: trial
if ¢, <0 then

there was unloading and the result of the integration step is:

9= | .
T At = 7Tt+At7 Vie At =Tt Ge4nr =Y
t

: trial
else if ¢/, >0 then

there was loading and from the equation ¢,, A, =0 it is obtained

_ 1 /= -1 =
Fent= 54 Te+Ar €y - Tt A

which finally determines:

Grine=qr + A (Feonr —71); Tianr = z’*
endif
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This algorithm is slightly modified in the weak discontinuity regime to take into account
the bandwidth variation, and hence the softening modulus dependence with g.
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