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Pachytene spermatocyte analysis confirmed the basic chro-
mosome number and morphologies observed in mitotic 
karyotypes.   The evolution of  C. villosus  involved chromo-
somal rearrangements as recorded for other species of its 
superorder. The present results establish the basis for the 
cytogenetic characterization of this species. 

 © 2014 S. Karger AG, Basel 

 The superorder Xenarthra contains armadillos, ant-
eaters, and sloths [Engelmann, 1985; Wetzel, 1985; 
Nowak, 1999; Delsuc et al., 2003; Gardner, 2008; Svart-
man, 2012]. Alongside Euarchontoglires, Laurasiatheria, 
and Afrothe ria, it is 1 of the 4 main supraordinal clades of 
Eutheria [Murphy et al., 2001]. Given its possible position 
at the base of the eutherian tree [McKenna, 1975; De Jong 
et al., 1985; Sarich, 1985; Madsen et al., 2001; Murphy et 
al., 2001; Delsuc et al., 2003; Svartman, 2012], it is of par-
ticular cytogenetic and phylogenetic interest. Most xen-
arthrans, however, have been poorly studied. Indeed, still 
unknown species may exist, and xenarthran chromosome 
variability is likely underestimated [Svartman, 2012].

  Armadillos (Dasypodidae) are the oldest and most di-
verse lineage of Xenarthra with 21 species living mostly 
in South America, 14 of which are found in Argentina. 
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 Abstract 

 Karyotype and cytotype variations for the large hairy arma-
dillo  (Chaetophractus villosus)  were studied throughout the 
species’ Argentine distribution. Peripheral blood lympho-
cyte cultures of 421 animals were used to obtain mitotic 
metaphases. Preparations were subjected to conventional 
staining, G- and C-banding, and FISH involving a telomeric 
probe. Meiotic analysis was performed on testis material 
from 10 adults. Spermatocytes were examined for synapto-
nemal complexes in microspreads. The karyotype (2n = 60 
XX/XY; FN = 84 without XY) showed an autosomal comple-
ment of 6 metacentric and 7 submetacentric chromosomes; 
the remainder was acrocentric. The X chromosome was sub-
metacentric and the Y acrocentric. Centromeric C+ marks 
were observed in all chromosomes except pair 16. Three 
NOR signals were detected in 6q, 12p, and 26p. Two chromo-
somal rearrangements were characterized in chromosome 
pair 1 a pericentric inversion seen in the material from Ja-
cinto Aráuz, General Madariaga and Pellegrini and a deletion 
in the material from Loma Verde. Interstitial telomeric sig-
nals were observed in chromosome pairs 4, 12, 16, and 26. 
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Earlier cytogenetic studies employing conventional 
staining showed the karyotypes of the Dasypodidae to be 
characterized by a wide variability in chromosome num-
ber (2n = 38–64) and morphology [Jorge et al., 1978, 
1985]. The evolution of the karyotypes of this family re-
mains poorly understood, although chromosome rear-
rangements, e.g. pericentric inversions, Robertsonian 
fusions/fissions, and heterochromatin additions, have 
been proposed to be involved [Jorge et al., 1978, 1985; 
Barroso and Seunánez, 1991; Pereira et al., 2004]. How-
ever, these suggestions were based mostly on conven-
tional chromosome staining and on the study of just a 
few individuals.

  The large hairy armadillo,  Chaetophractus villosus  
[Desmarest, 1804], is endemic to the Neotropics. Its geo-
graphic distribution covers most of Argentina; indeed, it 
is the most widely distributed member of the Dasypodi-
dae in this country [Wetzel, 1985; Redford and Eisenberg, 
1992; Wilson and Reeder, 2005]. It has a diploid number 
of 2n = 60 [Benirschke et al., 1969; Jorge et al., 1978], but 
the information available on its chromosomes is limited. 
Modern cytogenetic techniques and resolution banding 
karyotypes are needed to better understand its chromo-
somal complement. Such studies may reveal as yet unde-
tected chromosomal rearrangements, provide informa-
tion useful in the design of conservation strategies, and 
greatly contribute to the comprehension of xenarthran 
karyotype evolution.

  Telomeric sequences are frequently involved in chro-
mosomal rearrangements; the analysis of their distribu-
tion among karyotypes is therefore valuable when exam-
ining chromosome evolution [Slijepcevic and Bryant, 
1998; Bolzán and Bianchi, 2006; Mudry et al., 2007]. The 
present work reports the cytogenetic characterization of 
 C. villosus  via mitotic studies, employing G- and C-band-
ing, NOR staining, and FISH analyses and via meiotic 
studies, i.e. meiosis I (MI) and meiosis II (MII) analysis 
and synaptonemal complex (SC) examination.

  Materials and Methods 

 Animals and Samples 
 Altogether, 421 animals (233 males, 188 females), wild, adult 

specimens of  C. villosus , were manually captured from across
the species’ Argentine range between 1998 and 2012 (online
suppl. fig. 1 and table 1; for all online suppl. material, see www.
karger.com/doi/10.1159/000357219).

  All animal handling conformed to the International Council 
for Laboratory Animal Science standards. Blood samples were tak-
en between the first and second ring of the tail using a sterile, dis-

posable, heparinized 21-gauge needle [Luaces et al., 2011]. After 
blood sampling, animals were released at the capture locations. 
Testicular biopsies were taken from 10 animals from different re-
gions. These were anaesthetized with a mixture of ketamine hydro-
chloride (35 mg/kg i.m.) and acepromazin maleate (0.3 mg/kg 
i.m.). They were released after 48 h of recovery.

  Mitotic Studies 
 Lymphocytes were cultured for 72 h at 34   °   C in RPMI 1640 Me-

dium (Gibco, Grand Island, N.Y., USA) according to Moorhead et 
al. [1960]. Phytohaemagglutinin M (Gibco) at a concentration of 
1–2% v/v was added as a mitogen. Metaphase spreads of 194 indi-
viduals from different localities were subjected to G-banding 
[Wang and Fedoroff, 1972] and 200 individual to C-banding 
[Sumner, 1972] (online suppl. table 1). A total of 50 metaphases 
per animal were counted and analyzed to determine the diploid 
number (2n). At least 10 G- and C-banded metaphases were pho-
tographed using a Leitz DMRB microscope and a Leica DFC 300 
FX digital camera (Leica Microsystems, Wetzlar, Germany).

  Silver nitrate staining of mitotic and meiotic material was per-
formed following Howell and Black [1980] and Sciurano et al. 
[2006], respectively.

  The telomeric distribution of 2 complementary oligonucle-
otides (Telo1: TTAGGG 7 , Oligo number 203006A623H01 1/2; 
Telo2: GGGTTA 7 , Oligo number 20306A623H02 2/2) was ana-
lyzed by FISH in metaphase spreads using a Cy3-conjugated pep-
tide nucleic acid pantelomeric probe (Biofab Research, Roma, Ita-
ly). FISH was performed according to the probe supplier’s instruc-
tions. The hybridization of repetitive sequences was performed 
following standard procedures [Lichter et al., 1992]. Slides were 
conventionally stained with propidium iodide and embedded in 
Vectashield medium (Vector Laboratories, Peterborough, UK). 
DAPI (4 ′ ,6-diamidino-2-phenylindole) counterstaining facilitat-
ed the identification of homologues. Signals were observed at a 
magnification of 100× using a Leica DM epifluorescence micro-
scope (Leica Microsystems) equipped with an HBO 50 mercury 
lamp and filters for DAPI and Cy3 (Chroma Technology, Bellows 
Falls, Vt., USA). A Leica DFC 300 FX digital camera (Leica Micro-
systems) was used for photography. Images were processed using 
Adobe Photoshop CS software (Adobe Systems Inc., San Jose, 
 Calif., USA)

  Meiotic Studies 
 The cytogenetic protocol followed was that of Evans et al. 

[1964] with modifications based on our previous experience with 
other xenarthrans to maximize meiotic yield.

  Spermatocyte microspreads for SCs were prepared as described 
by Sciurano et al. [2006]. Some slides were stained with 4% phos-
photungstic acid in ethanol or silver nitrate [Howell and Black, 
1980], while others were kept at –70   °   C until used for immuno-
fluorescence microscopy. Immunolocalization of meiotic proteins 
was performed following Sciurano et al. [2012]. The following pri-
mary antibodies were used: mouse anti-MLH1 (1:   10) (BD 
Pharmingen, San Diego, Calif., USA), rabbit anti-SMC3 (1:   500) 
(Merck Millipore, Billerica, Mass., USA), and human CREST se-
rum (1:   10) (Laboratorios IFI, Buenos Aires, Argentina). Slides 
were examined using a Leica DM epifluorescence microscope and 
photographed with a Leica DFC 300 FX digital camera (both from 
Leica Microsystems). Separate images were superimposed using 
Adobe Photoshop CS software (Adobe Systems Inc.).
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  Results 

 Mitotic Studies 
 All individuals showed a 2n = 60; the fundamental 

number (FN) was 84 (without XY). Over this large sample 
of individuals, the diploid number was always the same, 
and the sex chromosomes showed no rearrangements, 
neither in mitotic nor meiotic preparations (see below). 
Chromosome pairs 1, 15, 16, 21, 23, and 26 were meta-
centric (M), while 4, 5, 8, 9, 10, 12, 13, and X were sub-
metacentric (SM); all other autosomes and the Y chromo-
some were acrocentric (A). Pairs 1, 4, 5, 11, 12, 13, and 26 
were easily identified by their size and morphology 
( fig. 1 a).

  G-banding accurately identified the autosomal and sex 
chromosomes ( fig. 1 b). Also, the G-banding analysis re-
vealed 2 chromosomal rearrangements: (1) a pericentric 
inversion of the short arm of chromosome 1 ( fig. 1 c) that 
generated a SM chromosome from a M chromosome; this 

was seen in animals from Jacinto Aráuz [M/M (22/34), 
M/SM (12/34), SM/SM (0/34)], Gral. Madariaga [M/M 
(2/3), M/SM (1/3), SM/SM (0/3)] and Pellegrini [M/M 
(6/7), M/SM (1/7), SM/SM (0/7)]; and (2) a deletion (M * , 
 fig. 1 d), also on the short arm of chromosome pair 1. This 
cytotype was detected in animals from Loma Verde [M/M 
(34/40), M/M *  (6/40), M * /M *  (0/40)]. The total frequen-
cy of polymorphisms, for all the studied animals was 
4.82%.

  The C-banding pattern was quite complex ( fig. 2 a) and 
revealed constitutive heterochromatin in the pericentric 
region of all chromosomes with the exception of pair 16. 
Remarkably, 1p was fully heterochromatic, with the 
 pericentromeric region showing the greatest intensity 
( fig. 2 a). Chromosome pair 16 showed no C+ bands, but 
interstitial telomeric signals ( fig. 2 b).

  FISH with the peptide nucleic acid pantelomeric probe 
showed the expected telomeric signals in each chromo-
some. Prominent interstitial telomeric signals were also 
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  Fig. 1.   a  Karyotype of a male  C. villosus  from Magdalena, Province of Buenos Aires.  b  G-banded karyotype of  C. 
villosus .  c  Karyotype of a male  C. villosus  with a pericentric inversion in the p arm of chromosome 1 (arrowhead); 
the inset shows G-banding of pair 1.  d  Karyotype of a female  C. villosus  with a deletion in the same arm (arrow-
head); the inset shows G-banding of pair 1. M = Metacentric chromosome; SM = submetacentric chromosome; 
M* = metacentric chromosome with deletion. 
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seen in the centromeric regions of chromosome pairs 4, 
12, 16, and 26 ( fig. 2 b).

  Three NOR signals were detected, 1 each in 6q, 12p and 
26p, in agreement with Sciurano et al. [2006]. These were 
confirmed in meiotic analyses (online suppl. fig. 2a, b).

  Meiotic Studies 
 Fifty diakinesis/metaphase I and 50 metaphase II 

preparations were studied. Segregation was normal, and 
the X and Y chromosomes were observed in the expected 
proportions ( fig. 2 c).

  Twenty-nine autosomal SCs were detected. Centro-
mere locations (kinetochores) were verified by immuno-
localization, revealing 13 autosomal SCs with meta- or 
submetacentric components and 16 autosomal SCs with 
acrocentric elements. Observations on pachytene sper-
matocytes confirmed the chromosome morphology and 
FN recorded in mitotic karyotypes ( fig.  2 d). Chromo-
some pair 1 always had the longest SC (submedial kineto-
chore). Meiotic karyotypes obtained from microspreads 
of pachytene spermatocyte nuclei in meiotic prophase re-
vealed the size and synapsis dynamics of the sex chromo-
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  Fig. 2.   a  C-banded karyotype of a male  C. villosus  showing centromeric C+ heterochromatin. Note the lack of 
C-bands in the Y chromosome.  b  Metaphase plate showing the location of the telomeric probes. The chromo-
somes were counterstained with DAPI; arrows indicate interstitial telomeric signals.  c  Metaphase I preparation 
showing 30 bivalents. Note the XY synapsis.  d  SC karyotype for  C. villosus . Each bivalent is represented by 1 SC 
immunolabeled with anti-SMC3 (red), anti-kinetochore (yellow), and anti-MLH1 (green); arrows show 2 recom-
bination nodules in chromosome 6. 
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somes. The kinetochore positions in the XY body were 
clearly established, with the Y chromosome being acro-
centric and the X chromosome submetacentric. In most 
of the spermatocytes, the Y chromosome showed com-
plete synapsis with the X chromosome.

  Discussion 

 The present results modify the mitotic karyotype of 
the species described by Benirschke et al. [1969] and Jorge 
et al. [1985]. The paired homologous chromosomes de-
scribed by these authors differ from those revealed in the 
present work, suggesting that their specimen showed 
polymorphisms, at least in chromosome pair 1. Further, 
some chromosome pairs in the present work did not 
match to those reported by Benirschke et al. [1969] and 
Jorge et al. [1985]. Certainly, the submetacentric X chro-
mosome detected in the present work did not match to 
the X chromosome described by these authors. Indeed, 
the X chromosome of Benirschke et al. [1969], with its 
large acrocentric element, would appear to be the pres-
ently identified chromosome 2. Further, these authors re-
ported the X chromosome to be acrocentric and to show 
a prominent paracentromeric C+ band [Jorge et al., 1978], 
while the present results show it to be submetacentric 
with a clearly defined short arm. This short arm pairs with 
the acrocentric Y chromosome, as reported by Sciurano 
et al. [2006, 2012]. Thus, the presently identified chromo-
some pair 2 appears to correspond to the erroneously 
identified sex chromosomes of Jorge et al. [1978].

  G- and C- banding confirmed the present chromo-
some designations and identified those erroneously 
paired by the above authors. For example, the present 
chromosome 2 showed the same G- and C-banding pat-
terns as the X chromosome described by Jorge et al. 
[1978]. Any sex chromosome designation was clearly 
ruled out by the meiotic and mitotic analyses. In addition, 
G-banding suggested that chromosome pair 1 might cor-
respond to pair 1 of  Euphractus sexcinctus  [Liu et al., 
2011]. The C-banding pattern in this chromosome (q 
arm) was again similar to that described for  E. sexcinctus  
and corresponded to that of human chromosome 5 [Liu 
et al., 2011]. Interestingly, the Y chromosome of  C. villo-
sus  is not heterochromatic as in most mammals [Sciurano 
et al., 2006]. The patterns of positive C-bands found for 
this species may shed light on the relationship between 
chromosome diversification and adaptation. Differences 
in the distribution of C-positive regions in different xen-
arthrans [Dobigny et al., 2005; Liu et al., 2011] may indi-

cate variability in constitutive heterochromatin in this 
group.

  Meiotic studies of diakinesis/metaphase I and the SCs 
of early prophase spermatocytes confirmed the morphol-
ogy of the sex chromosomes. The X chromosome was 
submetacentric with a clearly defined short arm that pairs 
with the acrocentric Y chromosome. The Y chromosome 
was seen to be the smallest; this contrasts with that re-
ported by Jorge et al. [1978, 1985], but agrees with that 
reported by Sciurano et al. [2006].

  The chromosomal rearrangement (pericentric inver-
sion) present in the Jacinto Aráuz, Pellegrini, and Madaria-
ga animals was the same, perhaps reflecting a common an-
cestral event. The deletion in chromosome 1 identified in 
the Loma Verde specimens, however, must have come 
about through an independent event. This region of chro-
mosome 1 might be a hotspot for change in this species.

  Sciurano et al. [2006] reported  C. villosus  to have 3 
NORs, as seen in the present work. Species with more 
primitive karyotypes [Chiarelli and Capanna, 1973], such 
as  Dasypus hybridus  (2n = 64, FN = 79) [Saez et al., 1964], 
only have 1 NOR [Sciurano et al., 2006]. The increase in 
the number of NORs over the evolution of different spe-
cies (so-called rDNA dispersion) is well documented [Hi-
rai et al., 1996].

  Lizarralde et al. [2005] analyzed the chromosomes of 
4 armadillo species by FISH, using a telomeric TTAGGG 
probe from DAKO Cytomation (Glostrup, Denmark) 
and found no interstitial signals in those of  C. villosus . It 
is well known that clusters of different repetitive DNA 
sequences, including subtelomeric and interstitial telo-
meric repeats, characterize the breakpoints of recurrent 
chromosomal rearrangements [Azzalin et al., 2001; Ner-
gadze et al., 2004]. However, the telomeric probes Telo1 
and Telo2 used in the present work and by other authors 
[Gornung et al., 2011] detected interstitial telomeric se-
quences in chromosomes 4, 12, 16, and 26; these were 
interpreted as remnants of acrocentric fusions.

  The present work shows that the evolution of  C. villo-
sus  involved chromosome rearrangements. Such evolu-
tionary events are shared by other species of the same 
superorder. The present results establish the basis for fu-
ture comparative cytogenetic studies.
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