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Flow of a thin liquid film coating a horizontal stationary cylinder
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An experimental and theoretical study of the flow of liquid films around a stationary horizontal cylinder is
reported. The film presents two different behaviors: The flow is stable in the upper zone (up to ∼150◦ with the
vertical) and Rayleigh-Taylor-like instabilities appear in the lower zone. For the stable region, film thickness
evolution could be described by numerically integrating an evolution equation obtained using a lubrication
approximation. For the unstable region, a linear stability analysis allows us to determine the maximum growth
wavelength for the Rayleigh-Taylor instability. Approximate analytical solutions were obtained for generatrices
at an angle with the vertical θ = 0 (stable region) and θ = π (where the instability appears).
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I. INTRODUCTION

The study of the flow of thin liquid films on a curved surface
is of great interest in basic physics as well as for industries. In
coating applications, such as corrosion protection or painting,
the final uniformity and minimum thickness, among other
factors, need to be characterized and controlled. For instance,
in the design of heat exchangers, the characteristic times and
distribution of flow around the solid are of crucial importance
for the efficiency of the device. Many industrial coatings
are based on products, usually liquids, that undertake phase
transitions due to evaporation or polymerization (as in the
case of paints or lacquers). The final distribution of the product
mainly depends on the evolution of the film while it is in the
liquid state [1] and the flow induced by the action of gravity and
capillary effects modifies the initial film thickness distribution.
In this way, instabilities associated with Rayleigh-Taylor
instability appear at the lower part of the solids where the
fluid is eventually thicker, introducing a new factor in the
distribution of the films. This phenomenon produces a longer
drying time in zones where the liquid is thicker, leading to
parts on the solid where the film is dry and others where the
drying is in progress.

In the literature there is no systematic experimental study
of the thickness behavior for the conditions presented here,
i.e., film thickness small compared to the cylinder curvature,
despite the obvious interest in the subject. In contrast, there
are several important works on the subject from the theoretical
point of view [2,3]. Although simplified, the model developed
in this work reproduces very well the experimental results,
including the instability analysis.

In this work we study experimentally and theoretically
the dynamics of a homogeneous film of liquid that coats
a horizontal cylinder where the radius is much larger than
the film thickness. The initial film thickness is prepared to
be initially uniform, which is a usual condition in coating
applications and also a natural initial condition for the
theoretical study. From an academic point of view it is also
interesting to study a geometrically simple system in which
two different behaviors of the film coexist: a stable flow (in
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an upper zone) and the density gradient between the film and
the surrounding air favoring the onset of a Rayleigh-Taylor
instability (in a lower zone).

The experimental setup and procedure are described in
Sec. II. Experimental results obtained with nonvolatile Newto-
nian liquid are presented in Sec. III and a theoretical approach
is presented in Sec. IV, in which the thickness evolution of the
coating film will be described by numerical integration of the
Navier-Stokes equations in the lubrication approximation [4].
Finally, results are analyzed and discussed in Sec. V.

II. EXPERIMENTAL PROCEDURE

The experimental setup is the same as that used in a previous
work [5] and is shown schematically in Fig. 1. The cylinder
is made of stainless steel and has a length L = 16 cm and
diameter D = 15 cm. The fluids used in the experiments,
as in Ref. [5], are poly(dimethyl)siloxane (silicon oil) with
viscosities μ = 1000 and 100cp, density ρ = 0.97 g/cm3,
surface tension γ = 22.7 mN/m, and the following very
suitable characteristics: The fluid wets completely the surface
and is nonvolatile. The former ensures that no dry spots will
appear and the latter keeps constant the mass of the fluid and
avoids the apparition of surface-tension gradients.

The initial uniform distribution of the liquid, which fully
coats the cylinder, is obtained by pouring an appropriate
volume of liquid on a calibrated distribution rod [1] kept
in contact with the cylinder while turning at constant speed,
as shown in Fig. 2. Once the liquid is uniformly distributed
along the cylinder, the rod is removed and the cylinder stopped
and the experiment begins. With this method, using different
distribution rods, initial thickness values H0 between 30 and
120 μm.

The optical displacement sensor (ODS) (shown in Fig. 1
from Acuity Research AR-600 [6]), which automatically
displaces along the side of the frame where it is held, is
used to determine the local thickness of the film coating the
cylinder within ±7 μm. The ODS is able to obtain around 2000
thickness measurements in each run along the cylinder length,
which gives a precise thickness profile of a generatrix. The
time lapse on each run (≈15 s) is short enough compared to
the duration of an experiment (750–4500 s) so that the profile
of the film h(z,t) could be considered to be instantaneous.
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FIG. 1. Schematic view of the experimental setup used in the
experiments. Here ODS denotes the optical displacement sensor.

The frame holding the ODS can be fixed in each experiment
at the desired angle θ0 with respect to the vertical (see Fig. 2).
The experiment begins once the cylinder is fully coated with
a uniform film of thickness H0. Seven values of θ0 were
available: θ0 = nπ/6 with 0 � n � 6. Simultaneously with
the ODS measurement, the lower generatrix is recorded with a
video camera. Afterward images are processed and the tempo-
ral evolution is studied by means of spatiotemporal diagrams.

III. EXPERIMENTAL RESULTS

As mentioned before, the experiments are performed for
angles of 0, π/6, π/3, π/2, 2π/3, 5π/6, and π by coating the
cylinder initially with a uniform film. Two different behaviors
are observed in the film flow around the cylinder: While only a
small region around the lower generatrix (θ ∼ π ) is unstable,
the rest of the cylinder shows a stable behavior. Each zone is
analyzed using different techniques.

A. Stable region

In this region (θ � π ) the film thickness remains indepen-
dent of z, at every measured profile, since the initial condition
of the experiment is of uniform thickness throughout the
cylinder. In this zone, the existence of the ends of the cylinder
is apparent only from a small bump, which remains stationary
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FIG. 2. Detail view of the experimental setup. (a) The extension
rod is shown in position for the initial coating of the cylinder. (b)
Detail of the contact zone between the extension rod and the cylinder
while it rotates to form the initial uniform coating.
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FIG. 3. Thickness evolution for θ = 5π/6. The initial thickness
values are 60 μm (�, ©) and 35 μm (×), with viscosity values of
100 cp (�) and 1000 cp (©, ×). Figure 4 is the dimensionless version
of this figure.

and is not taken into account in the analysis. In this way,
the analysis is performed only through the mean value of
the thickness 〈h〉 obtained over around 2000 values along
z. Two different behaviors of the thickness evolution could
be observed for positions upstream (θ < π/2) or downstream
(θ > π/2).

In Fig. 3 the characteristic behavior of the thickness
evolution at θ = 5π/6, for different initial thickness and
viscosity values, is shown. In all cases, the film thickness
reaches a maximum value and then decreases. On the one
hand, it can be observed that a film with the same initial
thickness evolves more slowly for a more viscous fluid due to
the damping effect of viscosity, i.e., the maximum is reached at
shorter times if the fluid viscosity is lower. On the other hand,
for fluids of equal viscosity, a thicker initial fluid thickness
enhances variations since gravity becomes more important. For
θ = 5π/6, first (at short time) an increase of the thickness is
observed as it receives fluid from the upper part (lower-θ -value
sections); later, as liquid is scarce in those upper regions, it
begins to drain and therefore the thickness diminishes.

As in previous works [7], the competition between viscous
and inertial effects can be considered through a character-
istic time τ = μR

ρgH 2
0

. Therefore, the following dimensionless

variables were considered: h = h̃H0 for the thickness and
t = t̃

μR

ρgH 2
0

for the time. In Fig. 4 a collapse of data from Fig. 3

using these dimensionless variables is presented, showing a
universal behavior.

For small values of θ (θ < π/2), there is no fluid contri-
bution from upstream zones and a quick decrease of the film
thickness is observed, as shown for θ = 0 in Fig. 5. The film
thickness decreases at a rate that diminishes as θ increases,
which is actually proportional to cos(θ ), as shown in Eq. (19)
in Sec. IV. This rate is approximately zero at θ � π/2,
where the input flow from the upper zones and output flow
toward lower zones are almost equal, leading to approximately
constant thickness at short times (Fig. 6).

B. Unstable region

At the lower generatrix (θ ∼ π ), the thickness increases
monotonically since there is a net liquid downward flow
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FIG. 4. Evolution of the dimensionless thickness of the film at the
θ = 5π/6 generatrix. The markers have the same meaning as in Fig. 3.

which cumulates there. This fact is clearly shown in Fig. 7,
where the dimensionless thickness is plotted as a function of
dimensionless time. At the ends of the cylinder, two drops
develop before the ones on the center, which eventually grow
and fall, but do not move. The effective length of the generatrix
is then slightly shorter, but it is still long enough to allow the
growth of several drops along it. Afterward, since a dense
viscous fluid rests above of a less dense one, a particular type
of Rayleigh-Taylor instability is generated [3,5,8–12].

The thickness growth can be followed by ODS measure-
ments until the instabilities start to develop and the sensor must
then be separated from the experiment. After that, only video
images are available. A line (Fig. 8, upper image) crossing
these images at the position where drops eventually appear has
been used to study the time evolution of the drops along this
surface. The line was followed as a function of time in order to
produce a spatiotemporal image, formed by adding horizontal
lines for each frame. From this spatiotemporal image, the
distance between adjacent drops is measured and the distance
distribution is obtained (Fig. 9), leading to a characteristic
wavelength 〈λ〉 = (18 ± 2) mm.
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FIG. 5. Evolution of the dimensionless thickness of the film at
the θ = 0 generatrix. The markers correspond to different initial
thickness and fluid viscosity values. The dotted line is given by
the dimensionless expression of Eq. (18). The solid line represents
numerical integration at short times.
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FIG. 6. Evolution of the dimensionless thickness of the film at
the θ = π/2 generatrix. The markers correspond to different initial
thickness and fluid viscosity values.

IV. THEORETICAL APPROACH

A. Thickness evolution equation

An expression for the thickness evolution equation is
obtained in the lubrication approximation for the Navier-
Stokes equations in cylindrical coordinates by using very
simple boundary conditions. First, since the film thickness h is
very small compared to the radius of the cylindrical surface R,
it is possible to use the lubrication approximation [4]. Using
the cylindrical coordinates shown in Fig. 2 with the ẑ axis
along the cylinder axis, the velocity can be defined as

V (r,θ,z,t) = u(r,θ,z,t)θ̂ + w(r,θ,z,t)ẑ. (1)

The component along r̂ , vr , is neglected since vr 	 u,w. The
velocity, as well as other variables, is defined for R � r � R +
h(θ,z,t), where h(θ,z,t) is the local thickness. Here H0 is the
(uniform) initial thickness. The cylinder is placed horizontally,
so the components r̂ , θ̂ , and ẑ of the Navier-Stokes equation
take the form

− 1

ρ

∂P

∂r
− g cos θ = 0, (2)

− 1

ρR

∂P

∂θ
+ ν

∂2u

∂r2
+ g sin θ = 0, (3)
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FIG. 7. Evolution of the dimensionless thickness of the film at
the θ = π generatrix. The markers correspond to different initial
thickness and fluid viscosity values. The solid line is given by the
dimensionless expression of Eq. (15).
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FIG. 8. Typical spatiotemporal diagram obtained by analyzing
the evolution of a straight line below the lower generatrix (upper
image) where the drops are expected to eventually appear, as a
function of time t .

− 1

ρ

∂P

∂z
+ ν

∂2w

∂r2
= 0, (4)

respectively, where g is the gravity, P is the pressure in the
liquid, and ν and ρ are the viscosity and density, respectively.
Equation (2) can be integrated with the free surface boundary
condition given by the Laplace pressure

P (r,θ,z,t)|r=R+h(θ,z,t) = P0 − γ C(θ,z,t), (5)

where P0 is the atmospheric pressure, γ is the surface tension
of the liquid, and C(θ,z,t) is the local curvature, which, in this
approximation, can be written as C(θ,z,t) ∼ ∇2h(θ,z,t) [13].
Substituting P from (5) in (3) and (4) and using the boundary
conditions of no slip in the solid surface and null stress at the
free surface,

V (r,θ,z,t)|r=R = 0, (6)

∂V (r,θ,z,t)

∂r

∣∣∣∣
r=R+h(θ,z,t)

= 0, (7)

u(r,θ,z,t) and w(r,θ,z,t) are obtained. It must be noted that
Eq. (7) is an approximation that avoids strong couplings
between Eqs. (2)–(4) and implies a simplification coherent
with the lubrication approximation.

Since in this approximation only mean velocities across
the film are important to the thickness evolution, u and w are
averaged between r = R and R + h(θ,z,t) in order to give
the corresponding mean values U (θ,z,t) and W (θ,z,t). These
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FIG. 9. Distribution of distance between drops (wavelength)
obtained from spatiotemporal diagrams, which allows us to determine
a characteristic wavelength 〈λ〉 = (18 ± 2) mm.

velocities and the thickness h obey the mass conservation
relationship for the film:

∂h

∂t
= −∇ · [h(Uθ̂ + Wẑ)]. (8)

Rewriting Eq. (8), the temporal evolution of the thickness h as
a function of θ and z is obtained. The leading terms read

∂h

∂t
= −gh2

3ν

[
3 sin θ

R

∂h

∂θ
+ h

R
cos θ

−h cos θ∇2h + κ2h∇4h

]
, (9)

where κ =
√

γ /ρg is the capillary length and ∇ is the two-
dimensional operator ( 1

R
∂
∂θ

, ∂
∂z

). Equation (9) can be treated in
a dimensionless form by taking h = h̃H0 for the thickness and
t = t̃

μR

ρgH 2
0

for the time. Additionally, a length scale along z is

given by capillary length
√

γ /ρg, which depends only on the
properties of the liquid. In the region where the film is stable,
there is no reasonable length scale along z and the capillary
length is only meaningful around the lower generatrix where
instability appears. Equation (9) is integrated numerically at
short times, before instabilities appear, using an alternating
direction implicit (ADI) scheme [14] with periodic boundary
conditions in order to obtain the behavior at the stable region
of the film (θ < 170◦). The results for every value of θ

experimentally studied (θ < 170◦) as well as the variation
with the initial thickness are observed to be very close to the
experimental results as shown by solid lines in dimensionless
form in Figs. 4–7.

B. Linear stability analysis

In order to obtain the characteristics of the instability that
appears at the bottom of the cylinder (θ = π ) a linear stability
analysis of Eq. (9) is performed, which at O((θ − π )0) reads

∂h

∂t
= −gh3

3ν

[
− 1

R
+ ∇2h + κ2∇4h

]
. (10)

Standard linear stability analysis gives the following dispersion
relation, which is the same as that obtained in previous works
for Rayleigh-Taylor instabilities in flat plates [5,9,12]:

σ = gh3

3ν

(
q2

θ + q2
z

)[
κ2

(
q2

θ + q2
z

) − 1
]
. (11)

Therefore, the maximum of Eq. (11) is obtained for

q = qθ = qz = 1√
2

√
ρg

γ
→ λ = λθ = λz = 2π

√
2
√

γ

ρg

(12)

and

σmax = 1

12

g2h3ρ2

μγ
= 1

τmin
. (13)

The expressions in (12) give λ ∼ 17 mm. Also considering
that the instability appears at t̃ ∼ 1.5 (Fig. 7), it allows us to
obtain an estimate of the critical value of the dimensionless
thickness where the instability appears: h̃ ∼ 3.

063005-4



FLOW OF A THIN LIQUID FILM COATING A . . . PHYSICAL REVIEW E 88, 063005 (2013)

C. Approximate analytical solutions of Eq. (9)

1. Approximation at θ ∼ π

Equation (10) is an approximation of Eq. (9). A further
approximation, neglecting the spatial derivatives of h, leads to
an integrable equation

∂h

∂t
= 1

R

g

3ν
h3, (14)

which gives

hπ (t) =
√

3RνH 2
0

3Rν − 2gH 2
0 t

. (15)

This expression is valid for

t <
3Rν

2gH 2
0

, (16)

that is, for t̃ < 1.5. The numerical simulations and the
prediction of relation (15) are in excellent agreement and this
expression is plotted in Fig. 7 as a solid line.

2. Approximation at θ ∼ 0

The same procedure applied to Eq. (9) can be applied for
the upper generatrix; the following equation is obtained:

dh

dt
= − 1

R

g

3ν
h3, (17)

which gives

h0(t) =
√

3RνH 2
0

3Rν + 2gH 2
0 t

. (18)

Equation (18) is valid for any t > 0 and gives the right behavior
even for long times since h0 → 0 for t → ∞. Also, in this
case, the agreement between the numerical simulations and
relation (18) is excellent. In Fig. 5, this expression is plotted
as a dotted line while the numerical result (valid for shorter
times) is plotted as a solid line.

3. Approximation to initial rate ∂h/∂ t

Another useful approximation can be obtained by taking
the same approximation as before but keeping the dependence
on θ . From Eq. (9) we have

∂h

∂t

∣∣∣∣
t=0+

= − gh3

3νR
cos(θ ), (19)

which reproduces well the initial behavior of the thickness.

V. ANALYSIS AND DISCUSSION

Systematic experiments on the flow around a horizontal
cylinder initially coated with a liquid film of uniform thickness
have been performed. The results show that the film thickness
evolution can be separated into two regimes with stable and
unstable behavior, the latter being almost confined to the lower
generatrix. On the upper half of the cylinder (θ � π/2) a stable
behavior is observed during the whole experiment and the
film thickness only decreases monotonically with time: The
liquid gradually flows toward the lower part of the cylinder.
On the lower half of the cylinder (θ > π/2) the film’s local

thickness is stable during the whole experiment except near
θ ∼ π . For π/2 < θ � π the film’s local thickness increases
to a maximum due to the flow of liquid from upper zones.
Afterward, when this flow diminishes, the film thickness
decreases monotonically with time. For θ ∼ π , where the
instability eventually appears, the local thickness increases
monotonically until it destabilizes.

Experiments show that in the unstable region (θ � π ), after
an initial stable growth, the film destabilizes along the axis of
the cylinder, originating drops, almost all of which start to
exponentially grow at the same time. This behavior may be
due to the fact that the characteristic time of the instability
growth 1/σ strongly depends on the local thickness that is,
at the same time, growing because of the flow from upper
generatrices. When the thickness attains a critical value, the
instability can grow fast enough and then become observable.
This relationship is still under study.

After instabilities appear, as shown in Fig. 8, drops start to
move, sometimes coalesce, and eventually fall. This behavior
cannot be assigned to any irregularity on the local generatrix,
since it is different from one experiment to another, or to the
horizontality of the experiment, since no preferential direction
is observed in the displacements.

The differential equation of the thickness evolution in two
dimensions (θ and z of cylindrical coordinates) using the
lubrication approximation has been obtained. This equation
(9) was found to be, as is typical in thin film flow problems [7],
nonlinear and fourth order in both cylindrical coordinates. It
has been integrated numerically for short times using an ADI
scheme [14] and excellent agreement with experimental results
was found. Also, analytical solutions can be obtained for θ =
π and 0 at very short times (in the stable regime). The agree-
ment between the analytical solution from Eqs. (15) and (18)
and the numerical integration is excellent. For θ = 0, Eq. (15)
remains valid for long times describing the experimental
behavior (Fig. 5): The thickness decreases monotonically.

It is interesting to compare Eq. (9) and the corresponding
equation from Ref. [5], which we reproduce here for clarity
as Eq. (20). Both equations are valid for the same kind of
condition—a horizontal substrate coated with a liquid film
that is hanging above the surrounding air—but, while in the
case of Ref. [5] there is no incoming flow, in this work the
local thickness increases due to the flow the film receives
from above. A possible consequence of the incoming flow
might be observed in the behavior of the instability, which
is drastically different in each case: In the cylinder, the
drops move randomly and sometimes coalesce, while in the
beam (20), drops grow and eventually fall, but without any
displacement. Nevertheless, its origin remains unclear:

∂h

∂t
= −gh3

3ν
[∇2h + κ2∇4h]. (20)

The difference between these equations is the presence of
the first term on the right-hand side of Eq. (9), which takes into
account the thickness growth at the bottom generatrix [see
Eq. (15)]. This term is constant and therefore does not
contribute to the linear stability analysis. In this way, both
equations give the same dispersion relation and therefore the
same expected wavelength.
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Effectively, a linear stability analysis [15] was performed
at the lower generatrix where an instability was expected to
develop. The wavelength of fastest growth and the maximum
of the growth rate were obtained for a wavelength close
to that of the Rayleigh-Taylor instability. Experimentally,
even if drops move and measurements depend on time,
distances can be obtained and therefore wavelengths can be
determined (Fig. 9): 〈λ〉 = (18 ± 2) mm, which reasonably

agrees with the prediction for the wavelength of fastest growth
λ ∼ 17 mm, which, as explained above, is the same as that
in [5].
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