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In this work we present a model qubit whose basis states are eigenstates of a multi-layered

quantum dot. We show that the proper design of the quantum dot results in qubit states that have

excellent dynamical properties when a time-dependent driving is applied to it. In particular, it is

shown that a simple sinusoidal driving is sufficient to obtain good quality Rabi oscillations

between the qubit states. Moreover, the switching between states can be performed with very low

leakage, even under off-resonance conditions. In this sense, the quantum control of the qubit is

robust under some perturbations and achieved with simple means. More precisely, in this article,

we propose a device that is within the reach of current semiconductor technology, a ZnS/CdSe/

ZnS/CdSe/ZnS layered quantum dot. In addition, in order to clarify, we show a more general

and theoretical model, which we believe is helpful in order to search the ideal experimental device.
VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4795608]

I. INTRODUCTION

Since Loss and DiVincenzo proposed the utilization of

quantum dots as the physical implementation of the qubit,1

there has been a huge amount of work devoted to tackle the

numerous and subtle difficulties involved in the problem.

There are some excellent reviews2,3 and books4 that summa-

rize the progress experimented by the field, but it is

extremely difficult to keep up with the new developments.

As much as any other proposal to implement a qubit,

the spin degree of freedom of an electron trapped in a quan-

tum dot (QD), the original proposal made by Loss and

DiVincenzo, must face a number of challenges owed to the

intrinsic physics that governs its behavior as a qubit. Not to

mention the challenges offered by other physical implementa-

tions that try to catch the attention of the community.4 The

double quantum dot scheme5 was devised to circumvent the

unavoidable decoherence induced by the interaction between

the angular momentum of the electron with the nuclear spins

of the atoms that form the QD.6 For this scheme, the realiza-

tion of multiple qubit quantum gates has been shown.7

Nevertheless, since the coupling between single QD’s seems

a bit problematic and maybe even more involved in the dou-

ble QD scheme, there has been a number of proposal showing

that it is possible to implement quantum control8–10 and refo-

cusing techniques in single quantum dots to restore the role

of the single QD as a bona fide qubit. This, together with

techniques designed to distinguish between spatial states of

the trapped electron, make interesting again the search of new

one-electron structures that can be controlled with the exquis-

ite precision required for the quantum information tasks.

The control of quantum systems, at least when the decoher-

ence mechanisms are absent or “turned-off”, is implemented

using pulses of external fields or manipulating an adequate pa-

rameter. Complete knowledge of the spectrum allows the use of

“navigating methods” that make possible going from (almost)

any initial state to the desired target state.11 Nevertheless, the

most used approach to achieve the switching between the two

qubit basis states is the optimal control theory.12,13 The applica-

tion of Krotov’s algorithm12 usually leads to speedups of the

transition time. This method has successfully been applied to

one-14,15 and two-electron quantum dots,16 allowing fast charge

transfer with larger fidelities than the obtained with simpler si-

nusoidal pulses. As much promising as the optimized pulse

method seems, the introduction of a complex modulation of the

control field necessarily introduces a host of new error sources

that have not been properly analyzed. In this sense, achieving a

good control of the switching between states of a quantum dot

without resorting to a complicated pulse sequence is worth of

study and is the aim of this work.

Advances in semiconductor technology allow the prepa-

ration of more complex structures than the simple quantum

well. Among the more complex structures, quantum-dot quan-

tum-well structures17 and multiple quantum rings18 have been

extensively studied. Quantum-dot quantum-well (QDQW)

structures are multi-layered quantum dots composed of two

semiconductor materials; the one with the smaller bulk band

gap is sandwiched between a core and an outer shell of the

material with larger bulk band gap. Because of their proper-

ties, QDQWs have been demonstrated to form an efficient

gain medium for nanocrystal-based lasers.19 The first example

of this family of quantum dots consists of a core of CdS

spherically covered by several monolayers of HgS and several

monolayers of, again, CdS acting as the outermost shell.17

Other examples are CdS/Cd(OH),20 CdSe/CdS (Ref. 21), and

CdSe/ZnS.22 The application of the new growth techniques

enables the addition of further shells in order to create multi-

layered quantum dots structures which are also referred to as

nano-onions.23,24 In the last decade, even more complex
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structures have been synthesized as the CdS/HgS/CdS/HgS/

CdS double quantum well nanocrystals, two separated wells

of HgS are embedded in CdS.25

Recently, it has been shown that these multi-layered

quantum dots can be designed to selectively modulate the

spatial extent of the electronic density of its eigenstates.26,27

This feature, together with the dipole selection rule, permits,

as we will show, the design of a quantum dot with two states

that can be switched robust and efficiently, using only sinu-

soidal pulses. These two states are the basis states of our

model qubit. Using high-precision ab initio numerical calcu-

lations and exact solutions, where available, we aim to study

the spectrum, eigenstates of the quantum dot, and dynamical

properties of the qubit. The engineering of the electronic

wave function in layered quantum dot is within the reach of

current semiconductor technology as shown, for example, by

the experiments reported by Zhu et al.29 Loosely speaking,

the modulation of the spatial extent of the electronic density,

in a multi-well structure, separates in a well the eigenstates

of interest from all the others that lie in the other wells. In

the experiments reported by Zhu et al.29 it has been shown

that the engineering of the spatially separated 1S electron

and hole wave functions reduce their Coulomb interaction,

increasing the lifetimes of single and multiple exciton states

(see the paper by Zhu et al.29 and references therein).

The main model considered in this paper is a spherical

QDQW with a central core (ZnS), a shell well (CdSe), a bar-

rier (ZnS), another well (CdSe), and finally a large barrier

(ZnS). The proposed device has realistic parameters (effec-

tive mass, band gaps, and band off-sets) and is experimen-

tally feasible. The pair of electronic states that would be the

basis qubit states has a number of advantages that will be an-

alyzed, as said above, but none of both states is the ground

state. This could be a drawback that should be sorted out in

possible implementations of the ideas exposed in this work.

For this reason, we also discuss other model that also modu-

lates the spatial extent of the electronic wave function, so

allows the implementation of a qubit with all the advantages

that has the qubit based on the multi-layered quantum dot,

and the additional advantage that one of the qubit basis state

is the ground state.

The paper is organized as follows, in Sec. II a realistic

ZnS/CdSe/ZnS/CdSe/ZnS multi-layered quantum dot model

is presented and qualitatively analyzed. In Sec. III the proper-

ties of the eigenvalues and eigenstates of the model are

obtained. The study of the spatial extent of the eigenstates

allows the identification of potential qubit basis states. The

time evolution of the quantum state when the system is driven

by an external sinusoidal radio frequency field (rf) is the sub-

ject of Sec. IV. It is shown that the sinusoidal driving is

enough to obtain an excellent switching between the qubit ba-

sis states with very low probability leakage, making unneces-

sary the utilization of complicated envelope functions as is

customary in optimal control theory. The stability of the qubit

oscillations is also tested considering the effect of off-

resonance driving. In Sec. V we briefly present a different

model potential that also define an excellent qubit, whose

properties are analyzed through the lines drawn in Secs. II,

III, and IV. Finally, we discuss our results in Sec. VI.

II. THE MODEL

In the effective mass approximation, the Hamiltonian of

trapped particles assumes a simple form since the many-

body interactions are reduced to a bounding potential. In a

spherical layered quantum dot, where each layer is made of a

different material, the bounding potential is given by the

conduction band off-sets of each material. Figure 1 shows,

schematically, the radial profile of the bounding potential for

a quantum dot made of two different materials. The basic

structure consists of a central core (CdS) and two wells

(HgS) separated by a barrier (CdS).26

Despite its simplicity, the piecewise potential takes into

account a number of experimental features and allows the for-

mulation of accurate and simple models for many nano-

structures. The current semiconductor technology permits the

fabrication of layered structures where the radius of each

layer can be tuned with great precision. Figure 1 also shows

the qualitative behavior of a given eigenstate: when the cen-

tral core is wide enough the electronic density is mostly

located in the inner potential well; conversely, when the ra-

dius of the central core is diminished the electronic density

jumps to the outermost potential well for a certain critical

value. So, changing the quantum dot architecture is equiva-

lent to choose between different spectra and sets of eigen-

states, whose physical properties can be dramatically changed

just altering the design of the quantum dot. In particular, the

change in the spatial extent of low lying eigenstates and the

modulation of the oscillator strength associated to these

eigenstates was analyzed in the work by Ferr�on et al.26

More precisely, in this work we study a ZnS/CdSe/ZnS/

CdSe/ZnS layered quantum dot. In this particular case the

bounding potential considered is given by

FIG. 1. Electronic density for two different CdS/HgS/CdS/HgS/CdS layered

quantum dots.26 (a) The electronic density for a quantum state well localized

in the innermost potential well of a layered quantum dot. The radial step-

like potential is also shown (red dashed line). (b) The electronic density

jumps from the innermost potential well to the outermost one when the ra-

dius of the quantum dot central core is changed. The target-like pattern to

the right of the figure corresponds to the cross-section of the quantum dot,

the grey zones correspond to both potential wells (HgS), while the central

core (CdS) and the barrier (CdS) are depicted with white.
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VcðrÞ ¼

V0; r < rcðZnSÞ;
0; rc � r < r1ðCdSeÞ;
V0; r1 � r < r2ðZnSÞ;
0; r2 � r < r3ðCdSeÞ;
V0; r � r3ðZnSÞ;

8>>>>>><
>>>>>>:

(1)

where V0 ¼ 0:9 eV which corresponds to the band offset

between CdSe and ZnS, while the effective masses are

m?
e;CdSe ¼ 0:13me and m?

e;ZnS ¼ 0:28me; me is the mass of the

bare electron.28

Since we are interested in the properties of a one elec-

tron quantum dot when it is driven by an external field, the

Hamiltonian takes the form

H ¼ H0 þ Vextð~r; tÞ; (2)

where

H0 ¼ �
�h2

2
r 1

mðrÞ

� �
rþ VcðrÞ; (3)

where mðrÞ is the position-dependent effective mass of the

electron, and the bounding potential is given in Eq. (1). The

kinetic energy term in Eq. (3) preserves the Hermitian char-

acter of the Hamiltonian operator when the mass is position

dependent.30 In the present case the mass a step-like function

of the radial coordinate.

III. SPECTRUM AND EIGENSTATES

The spectrum and eigenstates of Hamiltonian 3 can be

obtained exactly or numerically. In any case, the problem has

spherical symmetry so the eigenvalues depend on two quan-

tum numbers, ðnr; ‘Þ, where nr is radial quantum number or

the number of nodes of the radial eigenfunction and ‘ is the

orbital angular momentum quantum number. On the other

hand, note that since the exact solution of the eigenvalue

problem involves the roots of transcendental equations, it can

be difficult to figure out how many quasi-degenerate eigen-

values has the problem. This difficulty is particularly cumber-

some for large values of rc. Conversely, the variational

methods detect fairly well almost degenerate eigenvalues, so

the data shown in this section was double-checked comparing

the results from the numerical and analytical procedures.

The numerical solutions were obtained using B-splines

basis sets, which are well suited to implement the boundary

conditions imposed by the step-like nature of the potential

and the effective mass. Besides, B-splines results are very

accurate in comparison with calculations based on Gaussian,

Hylleraas, and finite-element basis sets.31

To use the B-splines basis, the normalized one-electron

orbitals are given by

/nðrÞ ¼ Cn
B
ðkÞ
nþ1ðrÞ

r
; n ¼ 1;…; (4)

where B
ðkÞ
nþ1ðrÞ is a B-splines polynomial of order k. The

numerical results are obtained by defining a cutoff radius R,

and then the interval ½0;R� is divided into I equal subintervals.

B-spline polynomials32 (for a review of applications of

B-splines polynomials in atomic and molecular physics, see

Ref. 33) are piecewise polynomials defined by a sequence

of knots t1 ¼ 0 � t2 � � � � � t2kþI�1 ¼ R and the recurrence

relations

B
ð1Þ
i ðrÞ ¼

1 if ti � r < tiþ1

0 otherwise;

�
(5)

B
ðkÞ
i ðrÞ ¼

r � ti
tiþk�1 � ti

B
ðk�1Þ
i ðrÞ

þ tiþk � r

tiþk � tiþ1

B
ðk�1Þ
i ðrÞ ðk > 1Þ : (6)

In this work, we use the standard choice for the knots in

atomic physics33 t1 ¼ � � � ¼ tk ¼ 0 and tkþI ¼ � � � ¼ t2kþI�1

¼ R. We choose an equidistant distribution of inside knots.

The constant Cn in Eq. (3) is a normalization constant

obtained from the condition hnjni ¼ 1

Cn ¼
1ðR0

0

�
B
ðkÞ
nþ1ðrÞ

�2

dr

� �1=2
: (7)

Because B1ð0Þ 6¼ 0 and BIþk�1ðRÞ 6¼ 0, we have N ¼ I
þ k � 3 orbitals corresponding to B2;…;BIþk�2. In all the

calculations we used the value k¼ 5, and we do not write the

index k in the eigenvalues and coefficients.

Figure 2 shows the spectrum of a double-well quantum

dot as a function of the central core radius, the width of

the two wells, and the barrier are kept constant, so r1

¼ rc þ 0:8 nm; r2 ¼ r1 þ 3:5 nm, and r3 ¼ r2 þ 1 nm. As

can be appreciated, the spectrum is quite complicated, and

there is not a couple of energy values well separated from

the others, which is a common criterion to identify possible

basis eigenstates for a qubit. As we will show, the availabil-

ity of a couple of eigenstates that can be easily switched with

FIG. 2. The spectrum of a typical layered quantum dot as a function of the

inner core radius, rc. The radius of each layer is r1 ¼ rc þ 0:8; r2 ¼ r1 þ 3:5,

and r3 ¼ r2 þ 1, all in nanometers. The black solid lines correspond (from

bottom to top) to eigenvalues with quantum numbers ðnr ¼ 0; ‘Þ; ‘ ¼ 0;
1; 2;…; 22, while the red solid lines correspond to (from bottom to top)

eigenvalues with quantum numbers ðnr ¼ 1; ‘Þ; ‘ ¼ 0; 1; 2;…; 12.
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a simple pulse depends not only on the characteristics of the

spectrum but also in the eigenstates spatial extent.

Figure 3 shows the electronic density corresponding to

all the bounded eigenstates of two similar devices. Panel (a)

corresponds to a device with only two eigenstates well local-

ized in the innermost potential well while panel (b) shows a

device with three eigenstates localized in the innermost

potential well. The two devices only differ in the central

core radius size, which is bigger for the (b) case. The radii

of both devices are, Device 1 : rc ¼ 1 nm; r1 ¼ 1:8 nm; r2

¼ 5:3 nm and r3 ¼ 6:3 nm: Device 2: rc ¼ 2 nm; r1 ¼ 2:8 nm;
r2 ¼ 6:3 nm, and r3 ¼ 7:3 nm:

In both cases the eigenstates localized in the inner

potential well have different angular momentum quantum

numbers, in (a) D‘ ¼ 1. Actually, in the Device 1 case, the

qubit lower state has quantum numbers nr ¼ 1 and ‘ ¼ 0,

while the higher one has nr ¼ 1 and ‘ ¼ 1, while in the

Device 2 case the third state has nr ¼ 1 and ‘ ¼ 2. Figure 3

shows two remarkable facts: (i) the number of eigenstates

localized in a given potential well can be chosen for realistic

quantum dots parameters and (ii) the number of states of

election is pretty stable against small changes in the device’s

parameters (see also Figure 2). However, as we will show

latter a change in the number of states localized in the

potential well of interest can produce a huge change in the

dynamical behavior once an external driving is applied to

the device.

On the other hand, despite that we mostly present results

for particular sets of parameters (effective masses, radii, etc.)

the physical traits that, at some extent, guarantee the existence

of a small number of eigenstates well localized in a multi-well

potential are fairly general. Indeed, later on we will show an

example with a continuous bounding potential whose spec-

trum, eigenstates and dynamical behavior are strikingly simi-

lar to those of the devices with step-like potentials.

IV. SINUSOIDAL DRIVING OF THE ELECTRON

The most simple non-trivial driving, both from an nu-

merical and experimental point of view, that can be applied

to the trapped electron is

Vextð~r ; tÞ ¼ A0 cosðxtÞz; (8)

where A0 and x are the strength and the frequency of the

driving, respectively. The time-dependent potential equation

(8) models the effect of a time-periodic spatially constant

electric field applied in the z direction. As the potential equa-

tion (8) depends on z, the dipole selection rules impose tran-

sitions between eigenstates that differ in orbital angular

momentum, D‘ ¼ 61.

The time evolution of the electron quantum state is gov-

erned by the Schr€odinger equation

i�h
@W
@t
¼ HW; (9)

where W is the quantum state and H is the Hamiltonian in

Eq. (2). Since we want to analyze the behavior of the devices

presented in the previous sections as qubits, we will study

the electron quantum state evolution, taking as initial condi-

tion the lowest eigenstate that is localized in the innermost

potential well, from now on the j0i state of our putative

qubit, this state has ‘ ¼ 0. The other qubit basis state j1i is

the eigenstate with ‘ ¼ 1 that is also localized in the inner-

most potential well. Ideally, to qualify as a qubit, a physical

system would perfectly switch between the two basis states

under the appropriate driving, i.e., if jcq1j2 and jcq2j2 are the

time dependent probabilities that the electron is in the j0i or

in the j1i state, respectively, then jcq1j2 þ jcq2j2 ¼ 1.

Except for ideal two level systems, there is a finite prob-

ability that after a switching operation jcq1j2 þ jcq2j2 < 1,

i.e., the qubit leaks probability. The leakage, defined as

1� ðjcq1j2 þ jcq2j2Þ, is a good measure to judge the perform-

ance of a given system as a qubit.34 The leakage has a two-

fold origin, on one hand the driving used to switch between

the basis states produces transitions to other levels besides

the ones of interest, and on the other the interaction with the

environment. In this work we will only analyze the former

without considering the possibility of ionization, so the elec-

tron remains bounded while the driving is applied.

The material that follows is quite standard; nevertheless,

we include it for the sake of completeness. Writing the quan-

tum state as a superposition of all the eigenstates

Wð~r; tÞ ¼
X

cnðtÞe�iEnt=�hUnðrÞ; (10)

FIG. 3. Electronic densities for the ground and excited states for two differ-

ent CdSe/ZnS devices. (a) Device 1, (b) Device 2. The electronic densities

of the eigenstates corresponding to the qubit states are denoted with q1 and

q2, which have quantum numbers (1,0) and (1,1), respectively. The black

dashed vertical lines show the positions of the barriers and wells of the quan-

tum dot. Both devices are particular cases of the layered quantum dot whose

spectra are depicted in Figure 2.
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where

H0UnðrÞ ¼ EnUnðrÞ; (11)

is the eigenvalue problem, and replacing Eq. (10) in the

Schr€odinger equation (9), we get

X
cnðtÞe�iEnt=�hHUn ¼ i

X @

@t
ðcnðtÞe�iEnt=�hÞUn; (12)

which can be solved for ckðtÞ using the orthogonality of the

Un’s35

i
@ckðtÞ
@t
¼
X1
n¼0

cnðtÞhUkjVextjUnieixknt: (13)

Introducing the explicit for of the external driving (Eq. (8)),

we get that

i
@ckðtÞ
@t
¼ A0 cosðxtÞ

X1
n¼0

cnðtÞZkneixknt; (14)

where xkn ¼ ðEk � EnÞ=�h, and

Zkn ¼ hUkjzjUni (15)

is clearly the time-dependent probability that a given state,

say k, is occupied at time t is given by jckðtÞj2.

Equation (14) shows that even if the driving is in reso-

nance with the frequency xres ¼ ðEq2 � Eq1Þ=�h, there are

transitions to all the bounded states allowed by the dipole

selection rules, so unless somehow the matrix elements Zkn

preclude this possibility, for large enough time all the terms

in the superposition equation (10) will have non-negligible

contributions. This fact, inevitably, produces a large and

undesirable leakage.

The points made above suggest that a proper design of

the nano-structure would lead to negligible matrix elements

Zkn for the unwanted transitions. This is the reason to choose

structures that single out a couple of eigenstates whose spa-

tial extent is quite different from all the other ones since,

clearly, this is a economical way to reduce the transitions to

eigenstates that are not those of the qubit. The naive picture

says that the basis states of a qubit can be chosen as two well

separated states of a physical system is really hard to be

found, in particular when the requirements of fast enough

operations also must be accomplished.26 From a physical

point of view, to obtain faster operation times it is necessary

to draw on stronger external drivings. By two well separated

states, it is meant that the energy difference between any

other state with the qubit states is much larger than the

energy difference between the qubit states.

The matrix elements Zkn can be obtained for all the

bounded states of Devices 1 and 2 with very high precision,

so the time evolution of the electronic quantum state results

from the integration of Eq. (14). The numerical integration

was performed using high precision Runge-Kutta algorithms,

taking into account all the bounded states that each device

possess.

Figure 4 shows the time evolution of the occupation

probability of one of the qubit basis states, the initial condi-

tion is Wðt ¼ 0Þ ¼ jqi. The figure shows the time evolution

for three different driving strengths and two ZnS/CdSe/ZnS/

CdSe/ZnS devices, those whose eigenstates electronic den-

sities are shown in Figure 3. Clearly, as the driving increases

its value, the time evolution of the state becomes less and

less harmonic. Anyway, for all the driving strengths shown,

a fast switching between states can be easily achieved. The

departure from a simple oscillatory behavior observed

for larger driving strengths, and that jcqðtÞj2 < 1 for t > 0,

shows that the driving is producing a superposition of many

different eigenstates. On the other hand, from the three pan-

els of Figure 4, the dependence of the switching time on the

driving strength is manifest.

As has been said above that jcqðtÞj2 does not reach the

unity for t > 0 is manifestation of the probability leakage,

i.e., the state does not switch perfectly between the two qubit

basis states. Anyway, for systems with a finite number of

states, there is a finite probability that the state of the system

returns to the initial state for a large enough evolution time.

A potential well has indeed a finite number of eigenstates,

and, in many cases, the numerical integration of Eq. (14)

imposes a further reduction of the number of eigenstates

effectively considered. For these reasons it is useful to intro-

duce time-averaged quantities to qualify the dynamical

behavior of the system.

FIG. 4. Time dependent probability of finding the system in the lower state

of the qubit (jcq1j2) for different devices and for an rf field pulse of strength

A0 at the resonant frequency xres ¼ ðEq2 � Eq1Þ=�h. The system is prepared

in the lower qubit state for t¼ 0. The black solid line corresponds to the time

dependent probability for the Device 1, and red dashed line corresponds to

the time dependent probability for the Device 2. (a) A0 ¼ 5:1 meV=nm, (b)

A0 ¼ 472:4 meV=nm, and (c) A0 ¼ 992:1 meV=nm:
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Together with the instantaneous leakage, 1� ðjcq1j2
þ jcq2j2Þ, it is customary to introduce the time-averaged

leakage, Lp, which is defined as

Lp ¼
1

T

ðtþT

t

ð1� ðjcq1ðt0Þj2 þ jcq2ðt0Þj2ÞÞ dt0; (16)

where T is a large enough time that, in principle, can be taken

equal to several periods of the external driving. Figure 5 shows

the behavior of the time-averaged leakage for the two devices

previously defined as a function of the strength of the external

driving. As can be appreciated, the time-averaged leakage

depends quadratically on the driving strength. On the other

hand, Figure 5 shows that despite that Device 2 differs from

Device 1 in just one single eigenstate localized in the inner-

most potential well, the leakage of both devices differ in two

orders of magnitude. It is worth to remark here that the spec-

trum of both devices is, essentially, the same (see Figure 2).

The good performance of Device 1 as a qubit can be

further emphasized, looking at the dynamical behavior of

the quantum state, when the system is forced with an off-

resonance driving.

Figure 6 shows the behavior of the leakage as a function

of the frequency of the external driving. It is assumed that

the driving potential has the same properties that the one in

Eq. (8). The figure shows the data obtained for the two larger

driving strengths showed in Figure 4 since these two are the

worse cases. As can be appreciated, for the smaller driving

strength the driving frequency can be off-resonance up to

610% without changing appreciably the leakage. The size

of this tolerance interval is closely related to the ratio

between the eigen-energies differences with the driving

strength. For the larger driving, the tolerance interval for fre-

quencies smaller than xres is, at least, as larger as the toler-

ance interval for the smaller driving. The peaks in both sets

of data signal that the transition probability to other states,

which are not those of the qubit, get bigger, spoiling the

switching between the qubit states.

It is worth to mention here that when the architecture of

the quantum dot separates two eigenstates, the residual leak-

age is produced by the small overlap between the qubit states

and all the other eigenstates. Actually, because of the small

barrier that separates the potential wells, there is a non-

negligible portion of the qubit states that lies in the outer-

most well. A better design would reduce or eliminate this

portion enhancing the good behavior of the qubit. In Sec. V

we present a different model potential that possess exactly

all the desirable properties that we have mentioned so far:

separates in a potential well the two lowest lying eigenstates

and reduces the overlap between the qubit states and the

other states to almost negligible values. Regrettably the

model potential, and the parameters that characterize it, does

not correspond to a nano-device already proposed. Anyway,

since we have tested only a very limited set of options, it is

possible that the discussion of the ideas presented here helps

to find better designs for qubits based on multi-layered quan-

tum dots.

V. A MODEL QUBIT BASED ON AN
EXPONENTIAL-SINE POTENTIAL

In previous section we proposed an experimental feasi-

ble ZnS/CdSe/ZnS/CdSe/ZnS layered quantum dot device.

We show that the ability of multi-wells and barriers spherical

potentials to separate a subset of eigenstates in a potential

well could be a tool to improve the design of semiconductor

based quantum bits. The main challenge in the design of

such devices is related to the materials choice and the dimen-

sion of each layer. It is possible that an exhaustive search

provides and adequate architecture and parameters to design

a quantum dot model that separates as qubit states eigen-

states with nr ¼ 0.

FIG. 5. Time-averaged leakage Lp for an rf field pulse of strength A0 at the

resonant frequency xres ¼ ðEq2 � Eq1Þ=�h as a function of the pulse strength

for the Device 1 (black circle dots and line) and the Device 2 (red squared

dots and line).

FIG. 6. The leakage experimented by the Device 1 when the external driving

is off-resonance. Note that both axis scale are normalized to the on-

resonance values. The (red) triangle dots correspond to the a driving strength

of A0 ¼ 472:4 meV=nm and the (black) solid dots to A0 ¼ 992:1 meV=nm,

respectively. These driving strengths correspond to the cases (b) and (c) of

Figure 4.
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The state with nr ¼ ‘ ¼ 0 has too many advantages to

rule out too fast the search of a quantum dot such that one of

the two separated eigenstates be it. By separated states we

mean that two eigenstates are well localized in a given

potential well while all the other bounded eigenstates are

localized in other potential wells. There exist different possi-

bilities in order to obtain a device with such characteristics.

We can use different materials or a combination of more

than two materials.

Anyway, since our aim is to show that the manipulation

of the spatial extent of the electronic wave function can be

used to improve the design of qubits, based or not in multi-

layered quantum dots, we proceed to analyze a theoretical

model in which the separation of the lowest lying eigenvalue,

nr ¼ ‘ ¼ 0, and an excited state with ‘ ¼ 1 can be achieved

rather easily. The purpose of this section is to show the im-

portance of the parameters (that can be controlled modifying

the radii, the materials, and so on) in the design of qubits.

The potential considered is given by

VcðrÞ ¼ �V0e�cr sinðxrÞ; (17)

where V0; c, and x are constants. The potential in Eq. (17)

has some common properties with step-like potentials like

the one in Eq. (1).26 The parameters of the potential and its

shape are quite different from those commonly found in

nano-devices, so in this section we use atomic units.

Figure 7 shows the leakage suffered by the two

“devices” depicted in panels (b) and (c) that has two and

three states localized in the innermost well, respectively. The

parameter that drives the change from two to three separated

states is, in this case, V0. The two lowest lying eigenvalues

have quantum numbers ðnr ¼ 0; ‘ ¼ 0Þ and ðnr ¼ 0; ‘ ¼ 1Þ.
We call Vc

0 the critical value such that for V0 < Vc
0 there are

only two well localized states in the innermost well. For

V0 > Vc
0 there are more than two localized states in the inner-

most well, in our case Vc
0 � 2:09.

The eigenvalues and eigenstates of the one-electron

Hamiltonian with potential (17) were obtained approxi-

mately using the FEM-DVR method (finite-element method

plus discrete variable representation).36–38

As can be seen in Figure 7(a) the leakage of the device

with three separated states is larger than the leakage suffered

by the device with only two states separated. Again, the leak-

age is a quadratic function of the driving strength, A0.

The influence of the number of separated states in the

leakage can be put further in evidence analyzing its behavior

when V0 is swept from a smaller value than the critical to a

larger value than Vc
0. This behavior is shown in Figure 8. As

can be appreciated from panel (a) there is a sudden change in

the leakage around the critical value, in fact the leakage

changes three orders of magnitude when V0 goes from

smaller values than the critical to larger ones, irrespective of

the driving strength, at least for the range of values analyzed.

The jump can be rightly attributed to the presence of other

states than those of the qubit since the others quantities

involved (in the leakage) are continuous; for example,

Figure 8(b) shows the behavior of the resonance frequency

as a function of V0.

FIG. 7. (a) The leakage vs the driving strength A0, the value of Vo is shown

in the figure while x ¼ 1 and c ¼ 0:1. The black solid line corresponds to

the device shown in panel (b) and the dashed black line to the device shown

in panel (c). Note that the devices differ in the number of eigenstates local-

ized in the innermost well, two and three states in panels (b) and (c), respec-

tively. In panels (b) and (c) the black dashed line represents the decaying

sinusoidal potential, in units of A. The color lines correspond to the elec-

tronic densities of several eigenstates.

FIG. 8. (a) Time-averaged leakage Lp for an rf field pulse of strength

A0 ¼ 0:001 (black solid dots and line) and A0 ¼ 0:01 (triangle dots and

dashed line), at the resonance frequency, as a function of V0. (b) The res-

onance frequency as a function of V0.
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VI. DISCUSSION AND CONCLUSIONS

The ability of multi-well and barrier spherical potentials

to separate a subset of eigenstates in a single potential well

could be a tool to better designed qubits based on nano-

devices. This capacity has not been yet systematized; there

are not exact results or theorems that allow a systematic

search of model potentials with all the desirable characteris-

tics, despite it seems fairly general. Moreover, the spatial sep-

aration of electron and hole wave functions is achieved with

current semiconductor technology and is based in similar

premises and systems;29,39,40 this opens the possibility that

the ability to spatially separate eigenstates can be applied to

the design of better qubits, based on different nano-devices.

As has been said above, once two eigenstates are sepa-

rated in a potential well from all the other eigenstates, the re-

sidual leakage observed during the switching between them is

attributable to the overlap between the qubit states and the

other eigenstates. A higher barrier between the potential wells

could reduce the overlap but, so far we do not know of quan-

tum dots built from three different semiconductor compounds.

The advantage of the ground state as one of the qubit ba-

sis state is obvious; it can be pinpointed by cooling methods

while other states require more sophisticated means to force

the electron to actually occupy one of them.

Our results contribute to show that there are, yet, a lot of

improvements that can be made to the design of qubits based

on semiconductor quantum dots. The huge amount of materi-

als and geometries offer ample possibilities to tackle the

drawbacks that have marred the development of a reliable

quantum dot based qubit. In this work we presented an exam-

ple of experimentally feasible QDQW based qubit, namely, a

ZnS/CdSe/ZnS/CdSe/ZnS layered quantum dot. Of course the

decoherence induced by the spin-orbit interaction, not consid-

ered in this work, stills remains as the heavier challenge. To

minimize the effects of spin-orbit interaction the qubit states

should be located in a potential well made of the material

with the lowest spin-orbit interaction strength possible.
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