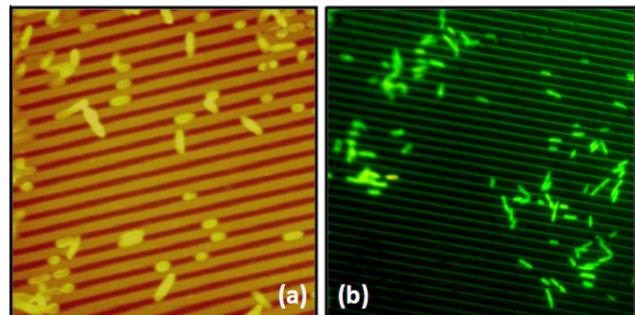


Comment on “The interaction of cells and bacteria with surfaces structured at the nanometre scale”


Carolina Díaz ^a, Mónica A. Fernández Lorenzo de Mele ^{a,b,*}, Patricia L. Schilardi ^{a,*}

^a Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata – CONICET, Casilla de Correo 16, Sucursal 4, 1900 La Plata, Argentina

^b Facultad de Ingeniería, Universidad Nacional de La Plata, 1 esq 47, 1900 La Plata, Argentina

In a recent article in *Acta Biomaterialia* Anselme et al. [1] published an interesting, complete and exhaustive review of the interaction of cells and bacteria with nanostructured surfaces. In this review the authors referred to our article [2] and stated that the retention of bacteria in the grooves of the surfaces was probably due to dewetting phenomena, as the images were taken in air on dried substrates. From this affirmation the readers of the journal might infer that the structure of the aggregates and bacterial distribution are a consequence of capillary forces acting during sample drying. It is well known that dewetting forces have a strong influence on the distribution of colloids on surfaces [3] and some researchers have attempted to describe bacteria as colloidal systems [4]. However, this approach fails to explain a considerable number of cases [5]. In fact, results recently reported indicate that the adhesion of bacteria differs markedly from colloidal particles due to the presence of appendages that rearrange during adhesion until the bacteria are positioned in the energetically most favorable position [6].

Experiments carried out in liquid environments have demonstrated that capillary forces do not drive the organization of *Pseudomonas fluorescens* on gold substrates having sub-micrometer sized surface features consisting of a grid of ~550 nm wide rows separated by 650 nm and on average 120 nm deep [7]. Fig. 1 shows the organization of *P. fluorescens* on this substrate using two different experimental tools. The image in Fig. 1a was obtained by atomic force microscopy after drying the sample in air at 70% relative humidity, while Fig. 1b shows an epifluorescence image of substrates kept immersed in sterile water throughout the experiment [7]. It is evident that both images exhibit the same trapping and orientation and, consequently, the distribution of bacteria is not significantly influenced by dewetting processes. In addition, we have studied the aggregation of bacteria on microstructured surfaces with grooves wider than the diameter of the bacteria and

Fig. 1. Images of *P. fluorescens* attached to sub-microstructured gold surfaces. (a) AFM image (topographic contact mode, $25.2 \times 25.2 \mu\text{m}$) after drying the sample in air at 70% relative humidity. (b) Epifluorescence image ($50 \times 50 \mu\text{m}$) after keeping the substrate immersed in sterile water throughout the experiment. Note that channels are dark in the AFM image and bright in the epifluorescence image. For the experimental conditions see supporting information in Diaz et al. [7]. Adapted with permission from Diaz et al. [7]. © Copyright 2010 American Chemical Society.

found that dewetting forces do not drive cell aggregation [8]. Consequently, it should be emphasized that recent experimental results [7] show that: (a) the structure of the aggregates and bacterial size and distribution are not a consequence of capillary forces during sample drying; (b) bacterial behavior is very different from abiotic particles, such as colloid particles, due to their self-organization on the surface using flagella and pili and the production of extracellular polymeric material.

References

- [1] Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L. The interaction of cells and bacteria with surfaces structured at the nanometre scale. *Acta Biomater* 2010;6:3824–46.
- [2] Diaz C, Schilardi PL, Salvarezza RC, Fernandez Lorenzo de Mele MA. Nano/microscale order affects the early stages of biofilm formation on metal surfaces. *Langmuir* 2007;23:11206–10.
- [3] Celio H, Barton E, Stevenson KJ. Patterned assembly of colloidal particles by confined dewetting lithography. *Langmuir* 2006;22:11426–35.
- [4] Dorobantu LS, Bhattacharjee S, Foght JM, Gray MR. Analysis of force interactions between AFM tips and hydrophobic bacteria using DLVO theory. *Langmuir* 2009;25:6968–76.

* Corresponding authors. Address: Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata – CONICET, Casilla de Correo 16, Sucursal 4, 1900 La Plata, Argentina. Tel.: +54 221 4257430/7291; fax: +54 221 4254642.

E-mail addresses: mmele@inifta.unlp.edu.ar (M.A. Fernández Lorenzo de Mele), pls@inifta.unlp.edu.ar, pls@quimica.unlp.edu.ar (P.L. Schilardi).

[5] Valdillo-Rodriguez V, Busscher HJ, Norde W, Vries Jd, Mei HCvd. Relations between macroscopic and microscopic adhesion of *Streptococcus mitis* strains to surfaces. *Microbiology* 2004;150:1015–22.

[6] Olsson ALJ, van der Mei HC, Busscher HJ, Sharma PK. Novel Analysis of bacterium–substratum bond maturation measured using a quartz crystal microbalance. *Langmuir* 2010;26:11113–7.

[7] Diaz C, Salvarezza RC, Fernandez Lorenzo de Mele MA, Schilardi PL. Organization of *Pseudomonas fluorescens* on chemically different nano/microstructured surfaces. *ACS Appl Mater Interf* 2010;6:2530–9.

[8] Diaz C, Schilardi PL, dos Santos Claro PC, Salvarezza RC, Fernandez Lorenzo de Mele MA. Submicron trenches reduce the *Pseudomonas fluorescens* colonization rate on solid surfaces. *ACS Appl Mater Interf* 2009;1:136–43.