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Abstract Clouds play a key role in the climate of the Arctic region. Observational evidence suggests that
sea‐ice loss fosters increased cloud cover due to enhanced surface turbulent fluxes. Yet, it is not clear whether
this mechanism is (well) represented in climate models. In this study we analyze the simulated response of low
clouds to sea‐ice loss in a set of dedicated numerical model experiments prescribed with changes in sea ice only.
We find large discrepancies between models regarding their representation of low cloud responses to identical
sea‐ice loss. We propose a physical explanation that links biases in simulated present‐day surface temperature
and stratification to the sign of the low cloud response to sea‐ice loss. Our results suggest that mean‐state
temperature biases need to be reduced in order to narrow uncertainty in the simulated cloud response to sea‐ice
loss.

Plain Language Summary Sea ice has been quickly melting in the Arctic region during the last
decades. This melting is a result of global warming and changes in the regional circulation, but is also controlled
by clouds, which modulate the amount of heat that enters and leaves the Earth's surface. In this study, we analyze
how a set of climate models represent the relationship between future sea‐ice loss and changes in clouds. We
find differences in the responses between models, and therefore we look for the physical processes responsible
for such disagreements. We find that the main explanation for the observed differences is related to errors in the
models to represent the surface temperatures over the Arctic.

1. Introduction
The radiative budget of the polar regions is significantly regulated by clouds (Kay et al., 2016 and references
therein). Clouds reduce the amount of incoming shortwave and outgoing longwave radiation, controlling the
warming/cooling of the surface (e.g., Griesche et al., 2024; Hall, 2004; Maillard et al., 2021; Sledd &
L’Ecuyer, 2019), and also modulate the radiative effects of the albedo reduction from sea‐ice loss (Goosse
et al., 2018; Kay & Gettelman, 2009; Manabe & Stouffer, 1994; Philipp et al., 2020; Sledd & L’Ecuyer, 2021),
which is one of the key mechanisms leading to Arctic amplification of surface warming (Screen et al., 2012;
Screen & Simmonds, 2010).

The lack of incoming solar radiation combined with the surface heat loss via outgoing longwave radiation during
the winter months lead to the formation of a surface temperature inversion layer over most polar regions
(Devasthale et al., 2010; Zhang et al., 2011). This layer is usually accompanied by an inversion in specific hu-
midity, which results in high relative humidity values (Tjernström et al., 2004) that lead to the formation of
shallow low clouds within the inversion layer (Sedlar & Tjernström, 2009; Wang et al., 2020). Despite the
significant relevance of this layer on polar climate, its shallow nature explains the frequent underestimation of its
magnitude in climate models (Pithan et al., 2014; Zhang et al., 2021).

Significant advances have been made during the last few years in the characterization of high‐latitude clouds,
including their role on climate and their interplay with sea ice. Jenkins et al. (2024) concluded that sea‐ice loss
affects the distribution of clouds via alterations in the lower troposphere stability, which is particularly relevant in
winter when strong surface inversions are commonly accompanied by stratiform low clouds (Li et al., 2023).
Arouf et al. (2024) concluded that as late‐fall sea‐ice cover decreases with global warming, the resulting cloud‐
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driven surface heating increases further over the new open‐ocean areas, hindering even more the regeneration of
sea ice. Y. Liu and Key (2025) showed that the net response of clouds to sea‐ice loss in winter depends on the sea‐
ice concentration (SIC) during the previous autumn. However, and despite the numerous dedicated campaigns
conducted over the Arctic region (e.g., Gryning et al., 2021; Klein and Neggers, 2009; Z. Liu and
Schweiger, 2024; Neggers et al., 2012; Philipp et al., 2020; Solomon et al., 2009), our understanding of the
comprehensive role of clouds on the polar climate is still limited (Boucher et al., 2013; Griesche et al., 2024; Kay
et al., 2016). This knowledge gap may hinder not only a proper validation of model simulations but also the
development of trustful climate projections and predictions under sea‐ice melting conditions.

The main objective of our study is to quantify the response of low clouds to sea‐ice loss in a set of dedicated
numerical model experiments developed within the Polar AmplificationModel Intercomparison Project (PAMIP;
Smith et al., 2019). The PAMIP data set has been extensively used to address the role of sea‐ice loss on several
weather and climate features (Barnes & Screen, 2015; Cohen et al., 2014; Hay et al., 2023; Screen et al., 2022;
Smith et al., 2022; Ye et al., 2024), but not yet clouds. We explore the simulated response of clouds to sea‐ice loss
in the PAMIP experiments by comparing outputs from present‐day experiments against those associated with
future reductions in Arctic sea‐ice cover. We also identify the physical mechanisms associated with the uneven
responses of clouds to sea‐ice loss among the models. Our study is centered specifically on low clouds, which are
highly susceptible to changes occurring at the surface (Maillard et al., 2021) and represent a major source of
uncertainty in numerical models (Tjernström et al., 2008). Our goal is to characterize and understand the low
cloud response to sea‐ice loss and its sensitivity to model biases.

2. Data and Methods
We use two sets of PAMIP experiments: one representing present‐day (“PD”) conditions and another one with
future (“FUT”) sea‐ice cover, consistent with a global mean temperature increase of 2°C above pre‐industrial
levels, but with present‐day sea surface temperature (SST). Thus, the only difference between experiments are
the prescribed changes in Arctic sea ice. Each experiment includes 100 ensemble members per model of
14‐month‐long atmosphere‐only simulations forced with a seasonal cycle of monthly mean SST and SIC. The
first two months are discarded for spin‐up, yielding 12‐month‐long periods for analysis. PD SST and SIC are
based on 1979–2008 observations from the Hadley Centre Ice and SST data set (HadISST; Rayner et al., 2003).
FUTArctic SIC is derived from the CMIP5 ensemble mean constrained by observations during the 30‐year period
in which global mean temperature is 2°C above the pre‐industrial period. In areas of sea‐ice loss, SSTs are
taken from future projections; elsewhere, they match PD values. The response to sea‐ice loss is computed
as the ensemble‐mean difference between FUT and PD. Significance is assessed via a two‐sided Student's t‐test
(p‐value = 0.05) followed by a false discovery rate adjustment (Wilks, 2006).

Only four out of the sixteen models participating in the PAMIP had cloud cover outputs available: FGOALS‐f3‐L,
IPSL‐CM6A‐LR, NorESM2‐LM and TaiESM1. Therefore, only these are used. Low‐cloud cover (LCC) is
defined as the cloud cover maximum amongst all the vertical levels between the surface and 800 hPa. Other
variables from PAMIP used here include near‐surface temperature, surface sensible and latent heat fluxes (SH and
LH, respectively), surface water vapor pressure and the vertical distributions of temperature and moisture. The
study focuses on the Northern Hemisphere north of 50°N during boreal winter (December, January and February;
DJF) using monthly means. We assess LCC responses to sea‐ice loss by computing FUT minus PD ensemble‐
mean differences in each model individually. Detailed analysis is conducted over the three regions with the
largest projected loss of sea ice (Figures 1c and 1d): Hudson Bay (HB), northern Barents‐Kara Sea (BK) and
Chukchi Sea (CS). The Arctic Ocean (AO) is also examined as its simulated multimodel‐mean LCC response is
opposite in sign to that in sea‐ice loss regions, offering a valuable comparison. Vertical profiles are computed
using the MetPy Python package (May et al., 2022).

Although model validation is not our primary goal, ERA5 data (Hersbach et al., 2020) is used to evaluate biases
and their influence on cloud responses to sea‐ice loss. ERA5 provides winter‐mean values of the same variables
from 1979 to 2008, matching the PD period.

3. Low Cloud Response to Arctic Sea‐Ice Loss
In this section, we quantify the simulated LCC response to sea‐ice loss in PAMIP experiments. Figure 1 shows the
multi‐model ensemble‐mean changes in LCC in FUT relative to PD conditions (Figure 1a) along with the spread
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in the response among models (Figure 1b). The multi‐model‐mean field depicts large differences over areas with
significant sea‐ice loss (Figures 1a–1c): over BK and CS, sharp reductions in LCC are simulated over and north of
the largest reductions in sea ice, whereas over HB variations are also negative but smaller in magnitude.
Meanwhile, over AO all models simulate an increase in LCC. The model spread is largest over HB, suggesting
that the response of LCC to the same variations in sea‐ice cover is model dependent, and smallest over the AO
area. In particular, the AO region considered for further analysis was the one north of 70°N and showing in the
multi‐model mean positive variations in LCC exceeding 2% (Figures 1a–1d).

The LCC responses to sea‐ice loss for each model individually are shown in Figures 2a–2d. For reference, the
mean fields in PD experiments and in ERA5 are shown in Figure S1 in Supporting Information S1. Hudson Bay
stands out as the region with the largest spread in the response, with two models (FGOALS‐f3‐L and TaiESM1)
simulating a decrease, and the two others (IPSL‐CM6A‐LR and NorESM2‐LM) an increase in LCC. Interest-
ingly, models showing the largest reductions in LCC over HB also simulate the largest decreases over the CS
region. Over BK, the sign of change is once again model‐dependent, even though three out of the four models
simulate less LCC under sea‐ice loss, while for AO all the models simulate an increase in LCC but of varying
magnitudes, from almost 1% (FGOALS‐f3‐L) to 7.5% (TaiESM1). A comparison of the simulated changes in
LCC (Figure 2) with the mean PD fields (Figure S1 in Supporting Information S1) shows that the same models
that simulate the largest decreases in cloudiness (i.e., FGOALS‐f3‐L and TaiESM1) are also those associated with
the largest LCC values in the present day across the four regions under analysis. At the same time, the ERA5mean
field (Figure S1e in Supporting Information S1) is, in terms of spatial averages of LCC, more similar to these
models than to the ones simulating increased cloud cover.

As a first attempt to explain these disagreements in LCC response we show in Figures 2e–2h the simulated
changes in near‐surface temperature driven exclusively by sea‐ice loss. For reference, the PDmean fields for each
model are shown in Figure S2 in Supporting Information S1. The first noticeable feature is the warming found in

Figure 1. Simulated differences in winter Low‐cloud cover (LCC) in FUT relative to PD PAMIP experiments: (a) mean and (b) standard deviation fields across the four
climate models. Units are %. (c) Sea‐ice concentration differences used to force the PAMIP FUT experiments. Units are % of change relative to PD conditions.
(d) Regions used throughout the study: Arctic Region (Arctic Ocean), Hudson Bay, Barents‐Kara Sea and Chukchi Sea. Hatching in (a) highlights areas with no
significant changes in LCC. Hatching in (b) indicates where all the models coincide in the sign of the simulated changes.
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Figure 2. Differences in FUT relative to PD experiments in (left) Low‐cloud cover (in %) and (right) near‐surface temperature (in °C). Non‐significant differences
(p > pFDR) are highlighted with hatching. The numbers to the left of each figure indicate the mean difference over the four regions (from top to bottom): Arctic Ocean,
Hudson Bay, Barents‐Kara Sea and Chukchi Sea, using the same color convention as in Figure 1d.
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the four models over most of the high‐latitude regions affected by sea‐ice loss. The largest warm‐ups are located
over areas with largest sea‐ice loss, but their magnitudes vary considerably across models: more warming is
simulated by FGOALS‐f3‐L and TaiESM1, and less warming by IPSL‐CM6A‐LR and NorESM2‐LM.
Furthermore, models showing the largest reductions in LCC over HB and CS are also those experiencing the
largest increases in near‐surface temperature. This feature, possibly related to enhanced lower‐troposphere
vertical mixing in response to the excessive surface warming, is addressed later. In any case, it is worth keep-
ing in mind that these increases in near‐surface temperature are expected to result from changes in surface fluxes
and not in solar radiation, given that during the season under analysis the sunlight is low or even absent.

4. Mechanisms Related to the Uneven Responses of LCC to Arctic Sea‐Ice Loss
In this section, we explore the physical processes responsible for the model divergence in the response of LCC to
sea‐ice loss. We start comparing aspects of the models' mean PD climatologies and their response to sea‐ice loss
for each region (Figure 3). We then quantify the simulated variations in the vertical profiles of temperature and
moisture over the different regions to explain the disagreements in the response (Figure 4). Results are presented
for each region separately.

Figure 3. Scatter plots between mean PD values and the differences between FUT and PD of (a) Low‐cloud cover (LCC),
(b) near‐surface temperature, (c) SH and (d) LH in the four GCMs (in symbols; see legend in a) and over the different regions,
with the same color convention as before: Arctic Ocean (blue), Hudson Bay (green), BK (purple) and Chukchi Sea (orange).
Units of LCC and near‐surface temperature are % and K, respectively. SH and LH are expressed inWm− 2. Bars left and right
(up and down) of each symbol indicate the respective standard deviation of the mean PD (FUT‐PD) values across models.
The numbers in different colors within each subfigure indicate the areal‐mean ERA5 values following the same color
convention as for the symbols.
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1. AO

In terms of LCC (Figure 3a), all models simulate an increase of less than 10% in cloudiness and a net warming of
between 2°C and 4°C (Figure 3b). Meanwhile, almost no changes are simulated in the turbulent fluxes over this
region (Figures 3c and 3d), suggesting that the simulated variations in LCC over the region are not explained by
surface processes but by other mechanisms. An inspection of the simulated variations in the lower‐tropospheric
circulation (not shown) hints at an intensification of the southerly winds toward AO in most of the models,
carrying warmer air into the region (explaining the simulated warming) alongside air masses with higher moisture
content driving an increase in water vapor pressure (Figure S3 in Supporting Information S1). A comparison of
the PD mean values against those derived from ERA5 highlights a negative bias in simulations of LCC (IPSL‐
CM6A‐LR and NorESM2‐LM) and near‐surface temperature (all the models) over this region.

Vertical temperature profiles over AO show a strong temperature inversion extending from the surface to 850 hPa
(Figures 4a–4d). This inversion is strongest in FGOALS‐f3‐L and TaiESM1 (Figures 4a–4d), in line with them
being the coldest models, and weakens slightly (but is still present) under sea‐ice loss. A comparison against

Figure 4. Vertical profiles of dry‐bulb and dew‐point temperatures (full and dashed lines respectively, in units of °C) between 1,000 and 700 hPa for each model (rows)
and over the four regions (columns) for PD (blue) and FUT (red) experiments. The plus (minus) sign in the lower right corner of each figure indicates an increase
(decrease) in Low‐cloud cover for that given model and that region.
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ERA5 data shows that the two colder models overestimate the magnitude of the inversion, while the two others are
closer to the reanalysis (Figures S5b, S6a and S6e in Supporting Information S1). In the absence of an effect from
surface turbulent fluxes (Figure 3), the weakening of the inversion simulated by the models could be explained by
advective processes that shape thermal stratification as discussed previously. Changes on the inversion strength
were computed considering the changes on the inversion layer depth between PD and FUT, shown in Figure S7 in
Supporting Information S1.

2. HB

Noticeable disagreements are found over this region: LCC changes (Figure 3a) are negative in FGOALS‐f3‐L and
TaiESM and positive in IPSL‐CM6A‐LR and NorESM‐LM, in line with the largest spread in LCC as discussed
before (Figure 2), but it is once again interesting to note that models associated with larger cloud cover in the PD
experiments are also the ones simulating decreased cloudiness in FUT. The opposite holds for models with lower
mean PD LCC values. Another remarkable characteristic is that the cloudier models in PD climate are not only the
coldest ones (Figure 3b) but also those experiencing the largest warming amounts (and cloud reductions) when
sea ice decreases. Changes in turbulent fluxes (Figures 3c and 3d) are largest for both SH and LH in the FGOALS‐
f3‐L model, and little differences are found for the others. As a result, an increase in surface water vapor pressure
is simulated by all models and maximized in FGOALS‐f3‐L (Figure S3 in Supporting Information S1).

The significant loss of sea ice over HB leads to the development of a heat low (Smith et al., 2022). This heat low,
which results from the surface warming following sea‐ice loss (Figures 4e–4h), fosters an enhancement of the
upward motion (not shown) and, consequently, a drop in surface pressure. Interestingly, and despite the
noticeable differences in the strength of the temperature inversion across models (Figures S4 and S6 in Supporting
Information S1), a complete erosion of the inversion is simulated in all the models in FUT experiments, in line
with the almost complete erosion of sea ice over this area.

The surface warming resulting from sea‐ice loss, strongest in models with colder PD climate (i.e., FGOALS‐f3‐L
and TaiESM1), leads to noticeable differences in temperature and moisture profiles over HB (Figures 4e–4h).
Low‐level moisture increases with sea‐ice loss in the four models, although the largest absolute values are
achieved in the warmer models. In these models, the warm and moist conditions under less sea ice result in less
stable conditions, pushing clouds into higher altitude (Figure S7 in Supporting Information S1) due to the
increased boundary layer height. NorESM2‐LM (Figure S7g in Supporting Information S1) simulates the largest
rise in clouds, in line with it already depicting the less stable conditions in the PD climate. The colder models
show the maximum cloud cover lifting from the surface to several hundred meters above the ground after sea‐ice
loss (Figures S7e and S7h in Supporting Information S1). However, the maximum cloud cover is noticeably
reduced in both models compared to PD values due to the prevailing effect from the large surface warming that
dilutes the low cloud deck within the inversion layer. The changes in temperature and dewpoint profiles as well as
the lifting of the cloud deck all suggest enhanced vertical mixing in these models. Consequently, the uneven
patterns of variations in the vertical distributions of temperature and moisture explain why the colder models
simulate a decrease in cloudiness (disappearance of the low cloud deck within the inversion layer) whereas the
warmer models simulate an increase in LCC (lifting of the boundary layer top and deeper ascent within that layer)
under sea‐ice loss.

3. BK

Disagreements on the LCC response to sea‐ice loss are also evident here across models, even though not as
strongly as over HB. Once again, models with larger LCC in the PD climate are the ones depicting the largest
reductions following sea‐ice melt (Figure 3a) and the ones characterized by the colder conditions in the PD:
FGOALS‐f3‐L and TaiESM1 (Figure 3b). Comparison against ERA5 suggests smaller biases in terms of near‐
surface temperature over this region, even though the colder models are still below the ERA5 mean values for
the 1979–2008 period. Both turbulent fluxes increase over BK as a response to sea‐ice loss, but SH increases
slightly more in the colder models, while variations in LH fluxes are overall more similar among models, close to
a 100% increase when compared to the PD conditions.

The vertical stratification of temperature is noticeably less stable than over AO and HB (Figures 4i–4l, Figure S6c
in Supporting Information S1). In fact, the warmer models IPSL‐CM6A‐LR and NorESM2‐LM are characterized
either by a very weak inversion (in the case of the former) or no inversion (in the latter). On the other hand, the
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colder models have better‐defined inversion layers, albeit with weak magnitudes. These compare overall well
with ERA5, which simulates no inversion over the BK region (Figure S5d in Supporting Information S1).

Most of the models simulate a reduction in LCC in response to sea‐ice loss. The analysis of the simulated changes
in the vertical structures of temperature and moisture (Figure 4) shows that these reductions are explained by the
warming of the surface layer and a relatively minor effect from the slight increase in moisture content. The only
exception is IPSL‐CM6A‐LR, which simulates an LCC increase of less than 5% due to a more prominent effect
from the lower‐troposphere moisture content, which is the largest among the four models.

4. CS

Results for this region are overall very similar to those discussed for BK. Once again, the colder models in PD
have the strongest inversions over CS (Figures S6d and S5e in Supporting Information S1). However, the warmer
models are characterized by an inversion layer which is not only weaker, but also much closer to ERA5. The only
model hinting at an increase in LCC is once again IPSL‐CM6A‐LR and this results from the slightly more humid
conditions within the layer 1,000/850 hPa simulated by this model (Figure 4n).

5. Discussion and Conclusions
Recent studies have shown that Arctic sea‐ice loss fosters increased LCC between October and March (Jenkins
et al., 2024). In this study, we have shown using a set of experiments forced by changes in sea‐ice cover that the
simulated response of LCC to sea‐ice loss is not uniform across models and that it depends on the region under
analysis. Over the AO, the effect from sea‐ice loss on LCC is indirect as the net reduction of winter sea ice over
that region is expected to be marginal in the coming decades. All the models analyzed in this study simulate a
future increase in LCC over that region due to changes in the surface pressure field over the subpolar latitudes,
which favors warmer and moisture‐rich air masses to reach AO. We have also analyzed three regions which are
expected to experience significant sea‐ice loss in the upcoming decades: the HB, the northern Barents‐Kara Sea
(BK) and the CS. Over these three regions, the effect from sea‐ice loss is direct, and in fact variations in surface
fluxes are substantially more important than regional changes in the circulation. We found for BK and CS that
most of the models simulate a reduction in LCC under sea‐ice loss due to a predominant effect from surface
warming and a secondary role of the increase in lower‐tropospheric moisture via enhanced evaporation. The only
model simulating the opposite pattern (IPSL‐CM6A‐LR) is in turn characterized by a weaker warming of the
lower levels and a higher impact from the moisture gain, leading to a net increase in LCC.

The largest disagreements across models were found over HB, where two models simulate an increase in LCC
with sea‐ice loss and the two others, a decrease. A detailed inspection of the associated mechanisms showed that
the two models simulating reduced LCC are those characterized by the coldest surface conditions in the present‐
day climate, alongside the highest amount of LCC. When sea ice is reduced, this colder mean state promotes the
onset of intense vertical fluxes of sensible heat, leading to a significant warming of the lower troposphere.
Therefore, the strong vertical mixing triggered by this excessive warming leads to a sharp increase in lower‐
tropospheric temperatures as well as to a reduction in moisture content closer to the surface layer, both of
which argue for decreasing LCC. On the other hand, models that are warmer in the present‐day climate experience
a weaker warming when sea ice is reduced. This results in a more prevalent role from the moisture rather than the
temperature increase on LCC, which in this case increases.

A comparison between models and ERA5 reanalysis showed that the colder models simulate too strong inversions
over all the regions under analysis. Furthermore, the warmer models in the present‐day climate not only display
more realistic inversion layers but also show very weak or no inversion over the BK region, in agreement with
ERA5. As such, these could be potentially giving more trustful information on the fate of LCC under sea‐ice loss
for the coming decades. However, there are many other forcings that affect the distribution and variability of
clouds over high latitudes, and these may vary in a way that could neutralize or even overcompensate those
triggered by sea‐ice loss alone. Future work in the field should be driven into assessing these, their interplay and
the eventual total effect on cloudiness around the Arctic region.
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