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Resumen. En los dltimos afios, la inteligencia artificial y, en particular, las redes neuronales profundas
han experimentado avances significativos, permitiendo abordar problemas que anteriormente resultaban
computacionalmente inviables. Entre las aplicaciones mds prometedoras se encuentran las redes neurona-
les guiadas por la fisica (PINNSs), que son un tipo de aproximadores de funciones universales que pueden
incorporar el conocimiento de cualquier ley fisica descripta mediante ecuaciones diferenciales que rija
un conjunto de datos determinado en el proceso de aprendizaje. En este trabajo se propone evaluar el de-
sempefio de las PINNS de base finita (FBPINNSs), para resolver la ecuacién de onda unidimensional bajo
distintas condiciones de contorno. Los resultados obtenidos son comparados con simulaciones numéricas
generadas mediante el software k-Wave. El presente trabajo constituye un primer paso y la perspectiva a
futuro es sentar las bases para una futura extension a dos y tres dimensiones y su aplicacion al proble-
ma directo de tomografia optoacustica y ultrasénica. Se pueden encontrar las simulaciones utilizadas y
ejemplos extra en https://github.com/md199- github/FBPINNs-for- Wave- Equation.

Keywords: PINNs, deep learning, wave equation.

Abstract. During the past few years, artificial intelligence and deep neural networks in particular ha-
ve seen significant breakthroughs, allowing to solve problems that were previously computationally un-
feasible. Among the most promising new applications are Physics-Informed Neural Networks (PINNs),
which are universal function aproximators that can incorporate knowledge from any phyisical law des-
cribed by differential ecuations governing a given set of data into the learning process. This paper
proposes to evaluate the performance of Finite Basis PINNs (FBPINNs), to solve the unidimensio-
nal wave equation under different boundary conditions. Results are compared to numerical simula-
tions generated with the k-Wave software. This work is a first step and the future outlook is to lay
the groundwork for a future extension to two and three dimensions and its application to the optoacous-
tic and ultrasonic tomography direct problem. Simulations and additional examples can be found at
https://github.com/mdI99- github/FBPINNs-for- Wave-Equation.
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1. INTRODUCCION

Si bien en los ultimos afos han habido grandes avances computacionales que favorecieron el
desarrollo de modelos de inteligencia artificial para diversos problemas, la necesidad de grandes
cantidades de datos (etiquetados) para entrenar modelos para la resolucién de problemas fisicos
es un inconveniente (Raissi et al., 2019). Las redes neuronales guiadas por la fisica (Physics-
informed neural networks, PINNs) surgen como respuesta a esto. Gracias a la capacidad de
poder realizar autodiferenciaciéon (Bayadin et al., 2018) de forma eficiente es posible plantear
un modelo que no necesite muestras etiquetadas para el entrenamiento y tenga embebido dentro
de él las relaciones fisicas del problema. Incluso ya se han planteado PINNs capaces de resolver
en particular la ecuacion diferencial de onda de manera aproximada y con buenos resultados
(Moseley et al., 2020).

Si bien prometedoras, las PINNSs clasicas tienen sus limitaciones. Una de ellas es que dada
la definicion de su funcién de pérdida, el gradiente calculado por back-propagation tiene cierta
rigidez que lleva a que la convergencia sea lenta y/o que los gradientes de los términos de la
pérdida estén desbalanceados (Wang et al., 2021). Otro gran problema es la dificultad que este
tipo de red tiene para lidiar con dominios grandes (Moseley et al., 2023). Dado que cudnto
mas grande sea el dominio (tanto espacial como temporal) mds compleja suele ser la solucion,
las PINNs necesitan mds parametros y por ende mds tiempo de convergencia para llegar a
una solucién aceptable. Esto se ve acentuado por el efecto de sesgo espectral que tienen los
modelos de aprendizaje profundo, la tendencia a aprender mejor soluciones de menor frecuencia
(Rahaman et al., 2019). Surgen entonces las redes neuronales guiadas por la fisica de base
finita (Finite basis physics-informed neural networks, FBPINNs) (Moseley et al., 2023) que
introducen posibles soluciones a estas limitaciones.

La principal novedad de esta metodologia es dividir al dominio en subdominios superpuestos,
en donde en cada uno habra una red neuronal distinta. En principio, la forma de los subdominios
y el tipo de red en cada uno puede ser cualquiera, aunque la eleccién de la funcién de activacion
de cada capa puede tener influencia en el proceso de optimizacion de la red y la calidad de los
resultados.

En este trabajo se utiliza el modelo de FBPINNS, con dominios hiperrectangulares y precep-
trones multicapa, para resolver el problema directo correspondiente a la ecuacién diferencial de
onda de manera eficiente. Se presentan propiedades matemdticas que al utilizarse alivianan la
carga computacional y se comparan dos enfoques distintos.

2. DESARROLLO FISICO-MATEMATICO
2.1. Definicién del problema

Sea u(x, t) la onda en la posicién x en el instante ¢, el problema puede ser modelado a partir
de

1 0*u(x,t)
VZU(X, t) — ET =0 (1)
donde
0 t
ux0)= [0, 2D g @
t=0

donde f(x) es la condicidn inicial. Se supone un medio homogéneo, con velocidad de propaga-
cioén c constante y ecuacion diferencial homogénea. Por ende, el problema directo consiste en
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hallar el valor de la onda u(x,t) para todo el espacio y en todo tiempo a partir de la condicién
y velocidad inicial.

En este trabajo nos centraremos en el problema de una dimiensién espacial € Ry, por lo
tanto, la condiciéndn inicial f(x) es una funcién escalar. Para este conjunto de ecuaciones se
puede hallar una solucién exacta al problema directo (Miersemann, 2014):

u(x,t):%f(x—ct)—l—%f(x—kct) (3)

A pesar de que en este trabajo consideraremos esta situacion sencilla, todo lo presentado en
este trabajo se puede generalizar a situaciones con condiciones de contorno de tipo Dirichlet o
Von Neumann modificando la correspondiente funcion costo usado para entrenar a la red.

2.2. Propiedades

Con el fin de optimizar recursos computacionales se hara uso de ciertas propiedades mate-
maticas que surgen de la definicién del problema.

» Linealidad: la linealidad de la ecuacion de onda (1) permite entrenar un inico modelo
para generar una onda con condiciénén inicial arbitraria. Es decir, si u;(x,t) es solucién
paratodoi = 1,2, ..., N bajo la condicién inicial f;(z) entonces v(x,t) = S~ | au;(x,t)
es solucién para la condicién incial g(z) = S | a;fi(x) con cada a; € R.

» Invariancia en el espacio: es de utilidad también el hecho de que si u(z,t) es solucién
generada por la condicién inicial f(z) entonces la condicién inicial g(x) = f(x — p)
genera la solucién v(z,t) = u(x — p,t) para u € R. Cabe destacar que este resultado
es valido unicamente para un dominio espacial infinito en donde no hay efectos de borde
con medio homogéneo.

= Escalamiento temporal: si u(z,t) es solucién de la ecuacién (1) y es generada por la
condicién inicial f(x) con velocidad de propagacion c, entonces v(z, ) = u(z, £1) tam-
bién es solucién generada por f(x) para velocidad de propagacion c,. Si bien se supone
al medio homogéneo con velocidad de propagacion constante para todo = en el dominio
de trabajo, tener una forma de relacionar soluciones con distinto ¢ ahorra entrenamiento
de modelos nuevos.

2.3. Reconstruccion

La linealidad nos permite descomponer cualquier condicién inicial a partir de una familia de
funciones base adecuada que permita reconstruir una familia funciones a la cual perteneceran
las condiciones iniciales en las que podamos estar interesados. Es decir:

N

flx) = Zaibi(m) 4)
i=1

con a; coeficientes a determinar y {by, bs, ..., by } las funciones base, para x € (I, L) conl, L €

R los extremos del dominio en donde las condiciones iniciales estardn definidas. La ventaja

de usar esta aproximacién va a ser que para resolver el problema directo solamente hay que

entrenar una red neuronal con un tnico tipo de funciones para cualquier funcién que se quiera

como condiciénén inicial (dentro de la familia mencionada arriba).

En este trabajo nos centraremos en las siguientes funciones base:
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= Pulsos triangulares: a partir de la funcién tri(z) = méx(1 — |z|, 0), se define una inter-
polacion lineal o de orden uno. En este caso si se tienen [V muestras equiespaciadas de la
funcidn en el intervalo (I, L) y se define la constante A = LT_Z que representa la mitad del
ancho del pulso entonces:

o) 3 A= a1 (B AST ®)

=1

Sin embargo, se podrian utilizar pulsos de ancho arbitrario, distinto a A, que aunque no
resultaria exactamente en una interpolacion lineal, su calidad de aproximacion es acepta-
ble:

N
flx) ~ Z a; - tri (x ;*'ul) (6)

i=1
y donde los coeficientes son solucién del problema de optimizacion:

2

M
arg ml’nz flz;) — Zaj - tri (%) (7

coni=1,..N,j=1,... My A+# A"

= Pulsos gaussianos: dada su diferenciabilidad en todo su dominio y su alta capacidad de
aproximacion (Calcaterra y Boldt, 2008) una funcién puede reconstruirse como:

N 2
flz) ~ Zaie*% (8)

=1

En donde las medias i; estdn prefijadas y equiespaciadas entre si y donde 20% = 1, para
todo f € L*(R). De todas formas, esto puede extenderse para el caso donde o2 y las
medias son arbitrarios realizando la minimizacién de manera numérica:

M 2

N 2
(zj—pj)
arg min Z flz;) — Z aje” 2 )

ki =1 =1

3. PHYSICS-INFORMED NEURAL NETWORKS

Sea la ecuacion diferencial parcial en su forma residual:

M.d

oFu

F U, L1, T2y .y T, —a % :O7 (10)
Li ) k=1,i=1
en donde u(xy, za, ..., x4) es la solucién a la ecuacién deseada, (21, x9, ..., x4) € 2 las variables
M.,d
. .. ., k ’ . . .

asociadas al dominio de la funcién y {gx}j} las derivadas parciales de u asociadas a

i Jr=1,i=1

cada variable de entrada hasta orden M. Las PINNs definen una arquitectura de red neuronal
(habitualmente perceptrones multicapa) cuya pérdida sea de la forma:
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L = AppeLppe + NdataLdata (11)
| N
_ 2
Lppr = N ; | F (ug(x1))| (12)
1
Laata = 771 D Jua(xy) = u(x) P+ >ty 0(Xa) =, (x20)[* + ] (13)
XJGQQ XK €00

Con A\ppp, Adata CONstantes para ajustar el peso de cada término, x; € () puntos muestreados
en el dominio, 0f) su frontera y uy la aproximacion a la solucién de la red. El término Lppg
penaliza si la solucién no se ajusta a la ecuacion diferencial, por lo que busca que evolucione de
acuerdo a la dindmica definida por la ecuacidn, y el término L., apunta a que se cumplan las
coindiciones de contorno. Como se ve, aprovechando la diferenciaciéon automaética solamente
con muestrear puntos dentro del dominio y en sus fronteras se puede plantear un aprendizaje
similar a uno no supervisado. Dado que si bien técnicamente las muestras en los bordes nece-
sitan de valores de u (o sus derivadas) exactos, éstas ya estdn definidas desde el planteo de la
ecuacion diferencial a resolver, por lo que son conocidos.

Una alternativa a utilizar puntos de las fronteras del dominio, es resolver el mismo problema
de manera totalmente no supervisada. Se define el ansarz de la solucién:

up(x) = A(x) + B(x)up(x) (14)

donde A, B son funciones a determinar, uj(x) la salida de las dltimas neuronas de la red y
up(x) la salida final sobre la cual se calculard la pérdida. Si se eligen A, B de manera que
ug satisfaga las condiciones de contorno entonces se podria realizar el entrenamiento con el
término correspondiente a la ecuacion (12) unicamente. A este tipo de red se la denota hard
PINN mientras que al primero, donde se muestrea en la frontera, se los denomina vanilla PINN
(Baty, 2024).

3.1. Finite basis physics-informed neural networks

Como se menciono anteriormente, la caracteristica distintiva de este modelo es la division del
dominio en subdominios (ver Fig. 1) en donde en cada uno trabaja una red neuronal distinta.
Esto ayuda a solucionar el problema de sesgo espectral permitiendo que cada red “vea” una
frecuencia de solucion menor gracias a trabajar sobre una parte reducida del dominio. Teniendo
esta division en subdominios, en donde a cada uno le corresponde una red PINN distinta, la
salida completa de una red FBPINN es:

s
up(x) = Z Ws(x).unnorm (us g(normsg(x)) (15)
s=1
donde S es la cantidad de subdominios, usg la salida de la red correspondiente al subdomi-
nio s-esimo, normg la normalizacion de la entrada para cada subdominio que asegura que se
mantenga entre [—1, 1] y unnorm la desnormalizacién general. La ventana W asegura que la
solucioén de cada subdominio quede confinada dentro él y que la superposicion sea suave. El
proceso de aprendizaje y la minimizacion de la pérdida se hace sobre esta salida y no sobre
la salida individual de cada subred. De esta forma, la red neuronal aprenderd a modificar cada
término en (15) para que su suma en las fronteras de los subdominios esa la adecuada.
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Figura 1: Descomposicién de un dominio. Se tienen 3x3 subdominios, con superposiciones de 0.05 unidades tanto
en la primera como en la segunda dimensién. z1, x5 € [0, 1].

Otra novedad que presentan las FBPINNs es la posibilidad de usar un planificador. Dada la
dificultad que tienen las PINNs de aprender la solucién en la frontera, el planificador permite
entrenar primero las redes correspondientes a subdominios en los bordes y luego ir barriendo
desde alli, como se ejemplifica en la Fig. 2. Esto fortalece la capacidad de la red de evitar que
se llegue a un minimo local cuya solucién no corresponda a la condicién de contorno fijada
(Moseley et al., 2023).

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
Primera etapa de entrenamiento mEE———————————)- (/|tima etapa de entrenamiento

.0

Figura 2: Evolucién del entrenamiento con planificador activo. En verde se marcan los subdominios activos a
medida que avanza el entrenamiento.

Finalmente, en este trabajo se utilizar la salida de las FBPINNs para aproximar las funciones
base de acuerdo a la reconstruccién de la condicioén inicial (ver Seccidén 2.3) y las propiedades
de la Seccion 2.2 para obtener la solucion completa deseada:

N
u(x,t) = Z a;ug (1) (16)
i=1

Con q; los coeficientes de la reconstruccion y wug;(x,t) las salidas de la FBPINN en (15)
que representan las funciones base. Estas tltimas podran ser obtenidas directamente de la salida
de la red, como en la Seccion 4.1, o tomando la salida de la red y aplicdndole la propiedad de
invariancia en el tiempo, como en la Seccién 4.2.

4. RESULTADOS

En esta seccidn se presentan los resultados correspondientes al entrenamiento de FBPINN s
para pulsos gaussianos y triangulares, utilizando las propiedades descriptas en la Seccién 2.2
para reconstruir funciones arbitrarias como condiciones iniciales. Para las simulaciones se usé
velocidad de propagacion ¢ = 17 y los siguientes intervalos para los dominios espacial y
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temporal x € [—50,50],¢ € [0,50]. Con las redes ya entrenadas, se procede a reconstruir dos
condiciones iniciales arbitrarias con las funciones base correspondientes: pj(z) = (cos(275x)+
2)1{—40 < = < 40} y pj(z) = sin(2552)1{—40 < x < 40}. Se comparan los resultados
obtenidos con los generados con el software de simulacién k-Wave'.

4.1. Pulsos gaussianos

En vez de utilizar la propiedad de invariancia en el tiempo para entrenar un tnico pulso
y luego desplazarlo para encontrar las funciones base para la reconstruccién, se plantea una
alternativa. En vez de usar como entrada de la red el dominio del problema fisico (z,t) se
utiliza (x,t, ) en donde el dltimo elemento representa la posicion del pulso. De esta manera,
la red logra aprender la solucién para cualquier posicién de pulso inicial dentro del dominio
fisico.

Se tienen 4 subdominios en la primera dimensién del dominio x, 4 en la segunda dimensién
t y 4 en la tercera dimensién p, es decir, 4x4x4 subdominios de 100, 50 y 98 unidades de
ancho con centros equiespaciados y forma cubica, se muestrearon 40x40x40 puntos durante el
entrenamiento, sin utilizar planificador. Las redes eran perceptrones multicapa con activacion
tangente hiperbdlica y 4 capas ocultas de 8 neuronas. Se utilizaron hard PINNs con ansatz:

o (x) = & (5 (2 _ %)) f(x) + tanh (%) s (x) (17)

2
Con f(x) = e~ 5" 1a condiciénén inicial, t; = 2 = 4y ¢(.) la funci6én sigmoide. Notar
que esta funcién cumple de manera aproximada las condiciones de contorno, pero la funcion
sigmoide es muy cercana a 1 cuando ¢ = 0 y muy cercana a 0 cuando ¢ > 2¢; (Moseley et al.,
2023). Entrenando por 80000 épocas se obtuvo un error cuadréitico medio de 1,337 - 10~* para
el conjunto de testeo. Se puede ver una solucién en particular en la Figura 3.

Solucién k-wave Solucién FBPINN Error cuadratico

0.0016
o8 0.8 0.0014
0.0012

06 0.6
0.0010

- - -

04 0.4 0:0008;
0.0006
0.2 0.2 0.0004
0.0002

0.0 0.0
0 0 0 0.0000

—-40 -20 0 20 40 —-40 -20 O 20 40

X X X

-40 -20 O 20 40

Figura 3: Comparacién entre soluciéon de FBPINNs y k-Wave para pulso inicial gaussiano centrado en p = 25m.

En cuanto a las ondas generadas por p} y p? (ver Figura 4) se obtienen errores del mismo
orden para el seno y se aprecian los problemas por la discontinuidad del coseno.

4.2. Pulsos triangulares

Ahora se entrena un Unico pulso triangular de ancho 16 en la base y se utiliza la propiedad
de invariancia para encontrar las funciones base. Se tienen 4x10 subdominios de 99, 16.67
unidades de ancho con centros equiespaciados y forma rectangular, se muestrearon 100x100
puntos durante el entrenamiento, y se usé planificador comenzando desde ¢t = 0. Las redes eran
perceptrones multicapa con activacidn tangente hiperbdlica y 6 capas ocultas de 16 neuronas,

Thttp://www.k-wave.org/
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Figura 4: Soluciones para condiciones iniciales pj (arriba) y p2 (abajo) a lo largo del tiempo comparadas con las
obtenidas con el software k-Wave - Base de pulsos gaussianos.

salvo la primera con 32. Se utilizaron vanilla PINNS, y se entrené para z € [—60, 60] para que
se vea el pulso completo y se pueda desplazar, como se muestra en la Figura 5. Se entrené por
100000 épocas obteniéndose al finalizar un error cuadratico medio de 3,157 - 1074

Solucién k-wave Solucién FBPINN Error cuadratlco

10 10 50
40 038 08 40 0.005
0.004
30 e o6 30
- - 0.003
20 0.4 0.4 20
0.002
02 02
10 10 5651
0.0 0.0
0 0

0.000
=50 - =50 =25 —50 =25

Figura 5: Comparacién entre solucion de FBPINNs y k-Wave para pulso inicial triangular centrado en p = Om.

La solucién con los pulsos iniciales senoidales se aprecian en la Figura 6. Se destaca el
problema para tiempos altos que tiene la red, que se hacen evidentes en la onda generada por
pp- La desventaja de entrenar un tnico pulso es que los problemas que tenga esa aproximacion
los van a tener todas las funciones base, y se replicardn en las reconstrucciones.

4.3. Analisis de resultados

Se muestra para finalizar esta seccién un cuadro comparativo (Tabla 1) con informacién
relevante para cada modelo.

En primer lugar se puede apreciar la dificultad que tienen ambos modelos para aproximar
la onda generada por el coseno. Esto no se debe a un problema de la red neuronal en si sino a
que la reconstrucion de la condicién inicial es mala gracias a la discontinuidad del coseno en
-40m y 40m. Con el seno no sucede esto y se obtienen errores cuadraticos medios dos 6rdenes
de magnitud menores como consecuencia.

Otro punto importante a notar es la amplia diferencia entre los tiempos de entrenamiento de
ambos modelos. El entrenar para todas las medias posibles (modelo gaussiano) hace que la red
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Figura 6: Soluciones para condiciones iniciales p} (arriba) y p3 (abajo) a lo largo del tiempo comparadas con las
obtenidas con el software k-Wave - Base de pulsos triangulares.

tenga una dimensién de entrada adicional complejizando el problema y resultando en tiempos
altos. Para el modelo triangular el tiempo es significativamente menor ya que se entrena un Gnico
pulso que luego se desplaza. Sin embargo, notar que la cantidad de parametros por subdominio
es mayor para el triangular, y se debe a que aprender ondas con discontinuidades en la derivada
primera es una tarea mas desafiante para la red.

| | Modelo gaussiano | Modelo triangular |

ECM p| inicial 6.866e-02 2.316e-02
ECM p; inicial 8.983e-05 4.019e-05
ECM p| completo 2.266e-02 9.386e-02
ECM p; completo 4.809e-04 4.196e-04
# Pardmetros 47168 69160
#Parametros por subdominio 737 1729
# Epocas 80000 100000
Tiempo de entrenamiento 511 mins 29 mins

Tabla 1: Comparacién de modelos.

Si bien el costo de entrenamiento es importante, el proceso se tiene que realizar una tnica
vez. El utilizar las FBPINNSs para obtener las funciones base permite que se usen ellas para re-
construir cualquier condicidn inicial sin necesidad de reentrenar. Con un software de resolucién
numérica tradicional, se tiene que generar una simulacién por cada soluciéon. Ademas, una vez
definida la grilla de puntos del dominio ésta queda fija y no se pueden obtener puntos en otros
sitios. Con la metodologia presentada eso tampoco es un problema ya que la red fue entrenada
para recibir cualquier punto del dominio y devolver la solucién aproximada, independientemen-
te de los puntos que se hayan usado para entrenar.
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S. CONCLUSIONES Y FUTUROS TRABAJOS

En este trabajo, se presenté un método para la resolucion del problema directo de la ecuacion
diferencial de onda unidimensional. Analizando los resultados, se los considera prometedores
y dignos de seguir explorando con el fin de obtener una extension a dos y tres dimensiones del
modelo.

En el futuro cercano, se pretende utilizar estos resultados como complemento en la genera-
cién de imagenes de tomografia optoacustica (TOA), que consiste en la resolucién inversa de
la ecuacion diferencial de onda. En la TOA se ilumina el tejido de interés y se mide la onda
acustica generada en respuesta a esto a un tiempo posterior en la ubicacion de los sensores. Se
busca entonces reconstruir sus condiciones iniciales que son las que definen la imagen del tejido
(Oraevsky et al., 1996). Dado que un método posible para esto es mediante redes neuronales
profundas, es deseable una manera de generar muestras etiquetadas para el entrenamiento. Fi-
nalmente, los resultados expuestos en este trabajo serdn la base para disefiar un programa capaz
de generar muestras sintéticas de TOA confiables, que podran ser utilizadas para la resolucién
del problema inverso.
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