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Resumen. En los últimos años, la inteligencia artificial y, en particular, las redes neuronales profundas
han experimentado avances significativos, permitiendo abordar problemas que anteriormente resultaban
computacionalmente inviables. Entre las aplicaciones más prometedoras se encuentran las redes neurona-
les guiadas por la física (PINNs), que son un tipo de aproximadores de funciones universales que pueden
incorporar el conocimiento de cualquier ley física descripta mediante ecuaciones diferenciales que rija
un conjunto de datos determinado en el proceso de aprendizaje. En este trabajo se propone evaluar el de-
sempeño de las PINNS de base finita (FBPINNs), para resolver la ecuación de onda unidimensional bajo
distintas condiciones de contorno. Los resultados obtenidos son comparados con simulaciones numéricas
generadas mediante el software k-Wave. El presente trabajo constituye un primer paso y la perspectiva a
futuro es sentar las bases para una futura extensión a dos y tres dimensiones y su aplicación al proble-
ma directo de tomografía optoacústica y ultrasónica. Se pueden encontrar las simulaciones utilizadas y
ejemplos extra en https://github.com/mdl99-github/FBPINNs-for-Wave-Equation.

Keywords: PINNs, deep learning, wave equation.

Abstract. During the past few years, artificial intelligence and deep neural networks in particular ha-
ve seen significant breakthroughs, allowing to solve problems that were previously computationally un-
feasible. Among the most promising new applications are Physics-Informed Neural Networks (PINNs),
which are universal function aproximators that can incorporate knowledge from any phyisical law des-
cribed by differential ecuations governing a given set of data into the learning process. This paper
proposes to evaluate the performance of Finite Basis PINNs (FBPINNs), to solve the unidimensio-
nal wave equation under different boundary conditions. Results are compared to numerical simula-
tions generated with the k-Wave software. This work is a first step and the future outlook is to lay
the groundwork for a future extension to two and three dimensions and its application to the optoacous-
tic and ultrasonic tomography direct problem. Simulations and additional examples can be found at
https://github.com/mdl99-github/FBPINNs-for-Wave-Equation.

Mecánica Computacional Vol XLII, pp. 797-806
A. Caggiano, G. Etse, P. Folino, M. Goldschmit, M. Pucheta, M. Storti (Eds.)
M. Cruchaga, L. Garelli, E. López, G. Ríos Rodríguez, M. Storti (Issue eds.)

Buenos Aires, November 11-14, 2025

Copyright © 2025 Asociación Argentina de Mecánica Computacional
ISSN: 2591-3522 DOI: 10.70567/mc.v42.ocsid8265

https://github.com/mdl99-github/FBPINNs-for-Wave-Equation
https://github.com/mdl99-github/FBPINNs-for-Wave-Equation
https://creativecommons.org/licenses/by/4.0
http://www.amcaonline.org.ar
https://doi.org/10.70567/mc.v42.ocsid8265


1. INTRODUCCIÓN

Si bien en los últimos años han habido grandes avances computacionales que favorecieron el
desarrollo de modelos de inteligencia artificial para diversos problemas, la necesidad de grandes
cantidades de datos (etiquetados) para entrenar modelos para la resolución de problemas físicos
es un inconveniente (Raissi et al., 2019). Las redes neuronales guiadas por la física (Physics-
informed neural networks, PINNs) surgen como respuesta a esto. Gracias a la capacidad de
poder realizar autodiferenciación (Bayadin et al., 2018) de forma eficiente es posible plantear
un modelo que no necesite muestras etiquetadas para el entrenamiento y tenga embebido dentro
de él las relaciones físicas del problema. Incluso ya se han planteado PINNs capaces de resolver
en particular la ecuación diferencial de onda de manera aproximada y con buenos resultados
(Moseley et al., 2020).

Si bien prometedoras, las PINNs clásicas tienen sus limitaciones. Una de ellas es que dada
la definición de su función de pérdida, el gradiente calculado por back-propagation tiene cierta
rigidez que lleva a que la convergencia sea lenta y/o que los gradientes de los términos de la
pérdida estén desbalanceados (Wang et al., 2021). Otro gran problema es la dificultad que este
tipo de red tiene para lidiar con dominios grandes (Moseley et al., 2023). Dado que cuánto
más grande sea el dominio (tanto espacial como temporal) más compleja suele ser la solución,
las PINNs necesitan más parámetros y por ende más tiempo de convergencia para llegar a
una solución aceptable. Esto se ve acentuado por el efecto de sesgo espectral que tienen los
modelos de aprendizaje profundo, la tendencia a aprender mejor soluciones de menor frecuencia
(Rahaman et al., 2019). Surgen entonces las redes neuronales guiadas por la física de base
finita (Finite basis physics-informed neural networks, FBPINNs) (Moseley et al., 2023) que
introducen posibles soluciones a estas limitaciones.

La principal novedad de esta metodología es dividir al dominio en subdominios superpuestos,
en donde en cada uno habrá una red neuronal distinta. En principio, la forma de los subdominios
y el tipo de red en cada uno puede ser cualquiera, aunque la elección de la función de activación
de cada capa puede tener influencia en el proceso de optimización de la red y la calidad de los
resultados.

En este trabajo se utiliza el modelo de FBPINNs, con dominios hiperrectangulares y precep-
trones multicapa, para resolver el problema directo correspondiente a la ecuación diferencial de
onda de manera eficiente. Se presentan propiedades matemáticas que al utilizarse alivianan la
carga computacional y se comparan dos enfoques distintos.

2. DESARROLLO FÍSICO-MATEMÁTICO

2.1. Definición del problema

Sea u(x, t) la onda en la posición x en el instante t, el problema puede ser modelado a partir
de

∇2u(x, t)−
1

c2
∂2u(x, t)

∂t2
= 0 (1)

donde

u(x, 0) = f(x),
∂u(x, t)

∂t

∣

∣

∣

∣

t=0

= 0 (2)

donde f(x) es la condición inicial. Se supone un medio homogéneo, con velocidad de propaga-
ción c constante y ecuación diferencial homogénea. Por ende, el problema directo consiste en
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hallar el valor de la onda u(x, t) para todo el espacio y en todo tiempo a partir de la condición
y velocidad inicial.

En este trabajo nos centraremos en el problema de una dimiensión espacial x ∈ R y, por lo
tanto, la condiciónón inicial f(x) es una función escalar. Para este conjunto de ecuaciones se
puede hallar una solución exacta al problema directo (Miersemann, 2014):

u(x, t) =
1

2
f(x− ct) +

1

2
f(x+ ct) (3)

A pesar de que en este trabajo consideraremos esta situación sencilla, todo lo presentado en
este trabajo se puede generalizar a situaciones con condiciones de contorno de tipo Dirichlet o
Von Neumann modificando la correspondiente función costo usado para entrenar a la red.

2.2. Propiedades

Con el fin de optimizar recursos computacionales se hará uso de ciertas propiedades mate-
máticas que surgen de la definición del problema.

Linealidad: la linealidad de la ecuación de onda (1) permite entrenar un único modelo
para generar una onda con condiciónón inicial arbitraria. Es decir, si ui(x, t) es solución
para todo i = 1, 2, ..., N bajo la condición inicial fi(x) entonces v(x, t) =

∑N

i=1
aiui(x, t)

es solución para la condición incial g(x) =
∑N

i=1
aifi(x) con cada ai ∈ R.

Invariancia en el espacio: es de utilidad también el hecho de que si u(x, t) es solución
generada por la condición inicial f(x) entonces la condición inicial g(x) = f(x − µ)
genera la solución v(x, t) = u(x − µ, t) para µ ∈ R. Cabe destacar que este resultado
es válido únicamente para un dominio espacial infinito en donde no hay efectos de borde
con medio homogéneo.

Escalamiento temporal: si u(x, t) es solución de la ecuación (1) y es generada por la
condición inicial f(x) con velocidad de propagación cu entonces v(x, t) = u(x, cv

cu
t) tam-

bién es solución generada por f(x) para velocidad de propagación cv. Si bien se supone
al medio homogéneo con velocidad de propagación constante para todo x en el dominio
de trabajo, tener una forma de relacionar soluciones con distinto c ahorra entrenamiento
de modelos nuevos.

2.3. Reconstrucción

La linealidad nos permite descomponer cualquier condición inicial a partir de una familia de
funciones base adecuada que permita reconstruir una familia funciones a la cual pertenecerán
las condiciones iniciales en las que podamos estar interesados. Es decir:

f(x) ≈
N
∑

i=1

aibi(x) (4)

con ai coeficientes a determinar y {b1, b2, ..., bN} las funciones base, para x ∈ (l, L) con l, L ∈
R los extremos del dominio en donde las condiciones iniciales estarán definidas. La ventaja
de usar esta aproximación va a ser que para resolver el problema directo solamente hay que
entrenar una red neuronal con un único tipo de funciones para cualquier función que se quiera
como condiciónón inicial (dentro de la familia mencionada arriba).

En este trabajo nos centraremos en las siguientes funciones base:
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Pulsos triangulares: a partir de la función tri(x) = máx(1− |x|, 0), se define una inter-
polación lineal o de orden uno. En este caso si se tienen N muestras equiespaciadas de la
función en el intervalo (l, L) y se define la constante A = L−l

N
que representa la mitad del

ancho del pulso entonces:

f(x) ≈
N
∑

i=1

f((i− 1)A− l) · tri

(

xi − (i− 1) · A− l

A

)

(5)

Sin embargo, se podrían utilizar pulsos de ancho arbitrario, distinto a A, que aunque no
resultaría exactamente en una interpolación lineal, su calidad de aproximación es acepta-
ble:

f(x) ≈
N
∑

i=1

ai · tri

(

x− µi

A∗

)

(6)

y donde los coeficientes son solución del problema de optimización:

argmı́n
aj ,µj

N
∑

i=1

∣

∣

∣

∣

∣

f(xi)−
M
∑

j=1

aj · tri

(

xi − µj

A∗

)

∣

∣

∣

∣

∣

2

(7)

con i = 1, ..., N , j = 1, ...,M y A ̸= A∗.

Pulsos gaussianos: dada su diferenciabilidad en todo su dominio y su alta capacidad de
aproximación (Calcaterra y Boldt, 2008) una función puede reconstruirse como:

f(x) ≈
N
∑

i=1

aie
−

(x−µi)
2

2σ2 (8)

En donde las medias µi están prefijadas y equiespaciadas entre sí y donde 2σ2 = 1, para
todo f ∈ L2(R). De todas formas, esto puede extenderse para el caso donde σ2 y las
medias son arbitrarios realizando la minimización de manera numérica:

argmı́n
aj ,µj

N
∑

i=1

∣

∣

∣

∣

∣

f(xi)−
M
∑

j=1

aje
−

(xi−µj)
2

2σ2

∣

∣

∣

∣

∣

2

(9)

3. PHYSICS-INFORMED NEURAL NETWORKS

Sea la ecuación diferencial parcial en su forma residual:

F

(

u, x1, x2, ..., xd,

{

∂ku

∂xk
i

}M,d

k=1,i=1

)

= 0, (10)

en donde u(x1, x2, ..., xd) es la solución a la ecuación deseada, (x1, x2, ..., xd) ∈ Ω las variables

asociadas al dominio de la función y
{

∂ku

∂xk
i

}M,d

k=1,i=1

las derivadas parciales de u asociadas a

cada variable de entrada hasta orden M . Las PINNs definen una arquitectura de red neuronal
(habitualmente perceptrones multicapa) cuya pérdida sea de la forma:
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L = λPDELPDE + λdataLdata (11)

LPDE =
1

N

N
∑

i=1

|F(uθ(xi))|
2 (12)

Ldata =
1

M
[
∑

xj∈∂Ω

|uθ(xj)− u(xj)|
2 +

∑

xk∈∂Ω

|ux1,θ(xk)− ux1(xk)|
2 + ...] (13)

Con λPDE, λdata constantes para ajustar el peso de cada término, xi ∈ Ω puntos muestreados
en el dominio, ∂Ω su frontera y uθ la aproximación a la solución de la red. El término LPDE

penaliza si la solución no se ajusta a la ecuación diferencial, por lo que busca que evolucione de
acuerdo a la dinámica definida por la ecuación, y el término Ldata apunta a que se cumplan las
coindiciones de contorno. Como se ve, aprovechando la diferenciación automática solamente
con muestrear puntos dentro del dominio y en sus fronteras se puede plantear un aprendizaje
similar a uno no supervisado. Dado que si bien técnicamente las muestras en los bordes nece-
sitan de valores de u (o sus derivadas) exactos, éstas ya están definidas desde el planteo de la
ecuación diferencial a resolver, por lo que son conocidos.

Una alternativa a utilizar puntos de las fronteras del dominio, es resolver el mismo problema
de manera totalmente no supervisada. Se define el ansatz de la solución:

uθ(x) = A(x) + B(x)u∗

θ(x) (14)

donde A,B son funciones a determinar, u∗

θ(x) la salida de las últimas neuronas de la red y
uθ(x) la salida final sobre la cual se calculará la pérdida. Si se eligen A,B de manera que
uθ satisfaga las condiciones de contorno entonces se podría realizar el entrenamiento con el
término correspondiente a la ecuación (12) únicamente. A este tipo de red se la denota hard

PINN mientras que al primero, donde se muestrea en la frontera, se los denomina vanilla PINN
(Baty, 2024).

3.1. Finite basis physics-informed neural networks

Como se mencionó anteriormente, la característica distintiva de este modelo es la división del
dominio en subdominios (ver Fig. 1) en donde en cada uno trabaja una red neuronal distinta.
Esto ayuda a solucionar el problema de sesgo espectral permitiendo que cada red “vea” una
frecuencia de solución menor gracias a trabajar sobre una parte reducida del dominio. Teniendo
esta división en subdominios, en donde a cada uno le corresponde una red PINN distinta, la
salida completa de una red FBPINN es:

uθ(x) =
S
∑

s=1

Ws(x).unnorm (us,θ(norms(x)) (15)

donde S es la cantidad de subdominios, us,θ la salida de la red correspondiente al subdomi-
nio s-esimo, norms la normalización de la entrada para cada subdominio que asegura que se
mantenga entre [−1, 1] y unnorm la desnormalización general. La ventana Ws asegura que la
solución de cada subdominio quede confinada dentro él y que la superposición sea suave. El
proceso de aprendizaje y la minimización de la pérdida se hace sobre esta salida y no sobre
la salida individual de cada subred. De esta forma, la red neuronal aprenderá a modificar cada
término en (15) para que su suma en las fronteras de los subdominios esa la adecuada.
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Figura 1: Descomposición de un dominio. Se tienen 3x3 subdominios, con superposiciones de 0.05 unidades tanto
en la primera como en la segunda dimensión. x1, x2 ∈ [0, 1].

Otra novedad que presentan las FBPINNs es la posibilidad de usar un planificador. Dada la
dificultad que tienen las PINNs de aprender la solución en la frontera, el planificador permite
entrenar primero las redes correspondientes a subdominios en los bordes y luego ir barriendo
desde allí, como se ejemplifica en la Fig. 2. Esto fortalece la capacidad de la red de evitar que
se llegue a un mínimo local cuya solución no corresponda a la condición de contorno fijada
(Moseley et al., 2023).

Figura 2: Evolución del entrenamiento con planificador activo. En verde se marcan los subdominios activos a
medida que avanza el entrenamiento.

Finalmente, en este trabajo se utilizará la salida de las FBPINNs para aproximar las funciones
base de acuerdo a la reconstrucción de la condición inicial (ver Sección 2.3) y las propiedades
de la Sección 2.2 para obtener la solución completa deseada:

u(x, t) =
N
∑

i=1

aiuθ,i(x, t) (16)

Con ai los coeficientes de la reconstrucción y uθ,i(x, t) las salidas de la FBPINN en (15)
que representan las funciones base. Estas últimas podrán ser obtenidas directamente de la salida
de la red, como en la Sección 4.1, o tomando la salida de la red y aplicándole la propiedad de
invariancia en el tiempo, como en la Sección 4.2.

4. RESULTADOS

En esta sección se presentan los resultados correspondientes al entrenamiento de FBPINNs
para pulsos gaussianos y triangulares, utilizando las propiedades descriptas en la Sección 2.2
para reconstruir funciones arbitrarias como condiciones iniciales. Para las simulaciones se usó
velocidad de propagación c = 1m

s
y los siguientes intervalos para los dominios espacial y
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temporal x ∈ [−50, 50], t ∈ [0, 50]. Con las redes ya entrenadas, se procede a reconstruir dos
condiciones iniciales arbitrarias con las funciones base correspondientes: p1

0
(x) = (cos(2 π

40
x)+

2)1{−40 < x < 40} y p2
0
(x) = sin(2 π

40
x)1{−40 < x < 40}. Se comparan los resultados

obtenidos con los generados con el software de simulación k-Wave1.

4.1. Pulsos gaussianos

En vez de utilizar la propiedad de invariancia en el tiempo para entrenar un único pulso
y luego desplazarlo para encontrar las funciones base para la reconstrucción, se plantea una
alternativa. En vez de usar como entrada de la red el dominio del problema físico (x, t) se
utiliza (x, t, µ) en donde el último elemento representa la posición del pulso. De esta manera,
la red logra aprender la solución para cualquier posición de pulso inicial dentro del dominio
físico.

Se tienen 4 subdominios en la primera dimensión del dominio x, 4 en la segunda dimensión
t y 4 en la tercera dimensión µ, es decir, 4x4x4 subdominios de 100, 50 y 98 unidades de
ancho con centros equiespaciados y forma cúbica, se muestrearon 40x40x40 puntos durante el
entrenamiento, sin utilizar planificador. Las redes eran perceptrones multicapa con activación
tangente hiperbólica y 4 capas ocultas de 8 neuronas. Se utilizaron hard PINNs con ansatz:

uθ(x) = ϕ

(

5

(

2−
t

t1

))

f(x) + tanh

(

t

t1

)

u∗

θ(x) (17)

Con f(x) = e−
(x−µ)2

2·42 la condiciónón inicial, t1 = σ
c
= 4 y ϕ(.) la función sigmoide. Notar

que esta función cumple de manera aproximada las condiciones de contorno, pero la función
sigmoide es muy cercana a 1 cuando t = 0 y muy cercana a 0 cuando t ≫ 2t1 (Moseley et al.,
2023). Entrenando por 80000 épocas se obtuvo un error cuadrático medio de 1,337 · 10−4 para
el conjunto de testeo. Se puede ver una solución en particular en la Figura 3.

Figura 3: Comparación entre solución de FBPINNs y k-Wave para pulso inicial gaussiano centrado en µ = 25m.

En cuanto a las ondas generadas por p1
0

y p2
0

(ver Figura 4) se obtienen errores del mismo
orden para el seno y se aprecian los problemas por la discontinuidad del coseno.

4.2. Pulsos triangulares

Ahora se entrena un único pulso triangular de ancho 16 en la base y se utiliza la propiedad
de invariancia para encontrar las funciones base. Se tienen 4x10 subdominios de 99, 16.67
unidades de ancho con centros equiespaciados y forma rectangular, se muestrearon 100x100
puntos durante el entrenamiento, y se usó planificador comenzando desde t = 0. Las redes eran
perceptrones multicapa con activación tangente hiperbólica y 6 capas ocultas de 16 neuronas,

1http://www.k-wave.org/
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Figura 4: Soluciones para condiciones iniciales p1
0

(arriba) y p
2

0
(abajo) a lo largo del tiempo comparadas con las

obtenidas con el software k-Wave - Base de pulsos gaussianos.

salvo la primera con 32. Se utilizaron vanilla PINNs, y se entrenó para x ∈ [−60, 60] para que
se vea el pulso completo y se pueda desplazar, como se muestra en la Figura 5. Se entrenó por
100000 épocas obteniéndose al finalizar un error cuadrático medio de 3,157 · 10−4.

Figura 5: Comparación entre solución de FBPINNs y k-Wave para pulso inicial triangular centrado en µ = 0m.

La solución con los pulsos iniciales senoidales se aprecian en la Figura 6. Se destaca el
problema para tiempos altos que tiene la red, que se hacen evidentes en la onda generada por
p1
0
. La desventaja de entrenar un único pulso es que los problemas que tenga esa aproximación

los van a tener todas las funciones base, y se replicarán en las reconstrucciones.

4.3. Análisis de resultados

Se muestra para finalizar esta sección un cuadro comparativo (Tabla 1) con información
relevante para cada modelo.

En primer lugar se puede apreciar la dificultad que tienen ambos modelos para aproximar
la onda generada por el coseno. Esto no se debe a un problema de la red neuronal en sí sino a
que la reconstrución de la condición inicial es mala gracias a la discontinuidad del coseno en
-40m y 40m. Con el seno no sucede esto y se obtienen errores cuadráticos medios dos órdenes
de magnitud menores como consecuencia.

Otro punto importante a notar es la amplia diferencia entre los tiempos de entrenamiento de
ambos modelos. El entrenar para todas las medias posibles (modelo gaussiano) hace que la red
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Figura 6: Soluciones para condiciones iniciales p1
0

(arriba) y p
2

0
(abajo) a lo largo del tiempo comparadas con las

obtenidas con el software k-Wave - Base de pulsos triangulares.

tenga una dimensión de entrada adicional complejizando el problema y resultando en tiempos
altos. Para el modelo triangular el tiempo es significativamente menor ya que se entrena un único
pulso que luego se desplaza. Sin embargo, notar que la cantidad de parámetros por subdominio
es mayor para el triangular, y se debe a que aprender ondas con discontinuidades en la derivada
primera es una tarea más desafiante para la red.

Modelo gaussiano Modelo triangular

ECM p1
0

inicial 6.866e-02 2.316e-02
ECM p2

0
inicial 8.983e-05 4.019e-05

ECM p1
0

completo 2.266e-02 9.386e-02
ECM p2

0
completo 4.809e-04 4.196e-04

# Parámetros 47168 69160
#Parámetros por subdominio 737 1729

# Épocas 80000 100000
Tiempo de entrenamiento 511 mins 29 mins

Tabla 1: Comparación de modelos.

Si bien el costo de entrenamiento es importante, el proceso se tiene que realizar una única
vez. El utilizar las FBPINNs para obtener las funciones base permite que se usen ellas para re-
construir cualquier condición inicial sin necesidad de reentrenar. Con un software de resolución
numérica tradicional, se tiene que generar una simulación por cada solución. Además, una vez
definida la grilla de puntos del dominio ésta queda fija y no se pueden obtener puntos en otros
sitios. Con la metodología presentada eso tampoco es un problema ya que la red fue entrenada
para recibir cualquier punto del dominio y devolver la solución aproximada, independientemen-
te de los puntos que se hayan usado para entrenar.
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5. CONCLUSIONES Y FUTUROS TRABAJOS

En este trabajo, se presentó un método para la resolución del problema directo de la ecuación
diferencial de onda unidimensional. Analizando los resultados, se los considera prometedores
y dignos de seguir explorando con el fin de obtener una extensión a dos y tres dimensiones del
modelo.

En el futuro cercano, se pretende utilizar estos resultados como complemento en la genera-
ción de imágenes de tomografía optoacústica (TOA), que consiste en la resolución inversa de
la ecuación diferencial de onda. En la TOA se ilumina el tejido de interés y se mide la onda
acústica generada en respuesta a esto a un tiempo posterior en la ubicación de los sensores. Se
busca entonces reconstruir sus condiciones iniciales que son las que definen la imagen del tejido
(Oraevsky et al., 1996). Dado que un método posible para esto es mediante redes neuronales
profundas, es deseable una manera de generar muestras etiquetadas para el entrenamiento. Fi-
nalmente, los resultados expuestos en este trabajo serán la base para diseñar un programa capaz
de generar muestras sintéticas de TOA confiables, que podrán ser utilizadas para la resolución
del problema inverso.
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