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Abstract

Purpose: The ClinGen Hearing Loss Gene Curation Expert Panel (GCEP) was assembled in
2016 and has since curated 174 gene-disease relationships (GDRs) using ClinGen’s semi-
quantitative framework. ClinGen mandates timely recuration of all GDRs classified as Disputed,
Limited, Moderate, and Strong, every 2—3 years.

Methods: Thirty-five GDRs met the criteria for recuration within two years of original curation.
Previous evidence was reevaluated using the latest curation guidelines and a comprehensive
literature review was performed for new evidence. The recurations were approved by the GCEP
and published to the ClinGen website (www.clinicalgenome.org).

Results: Eight out of 35 (22%) GDRs changed classification. Two Moderate and five Strong
GDRs upgraded to Definitive due to new case evidence. One Strong was subsumed under
another Definitive GDR, after evaluation of lumping/splitting of disease entities. Twenty-seven
out of 35 remained unchanged with little to no new evidence reported.

Conclusion: Genes classified as Moderate and Strong are likely to build evidence and change in
classification over time, whereas Limited are unlikely to gain evidence. These findings also
highlight the critical role of recuration in ensuring that genetic tests and research studies

incorporate the most up-to-date evidence into their efforts.

Keywords: ClinGen; deafness; Gene curation; genetic diagnosis; hearing loss.



Introduction

The Clinical Genome Resource (ClinGen)! is an authoritative central resource that
defines the clinical relevance of genes and variants for use in precision medicine and research

(www.clinicalgenome.org). ClinGen established an international curation ecosystem of experts?

called Expert Panels (EPs) tasked with evaluating gene-disease relationships (GDRs) and variant
pathogenicity in various disease areas. Using a common framework developed by the ClinGen
Gene Curation Working Group (GCWG), the Gene Curation Expert Panels (GCEPs) curate the
strength of evidence supporting or refuting a GDR in their respective fields.! This framework
involves the curation of genetic and experimental evidence from published literature and other
publicly available databases (e.g., ClinVar) and scoring them according to ClinGen’s Standard
Operating Procedures (SOP) to assign a clinical validity classification for the GDR (Definitive,

Strong, Moderate, Limited, Disputed, Refuted, or No known disease relationship).

The Hearing Loss (HL) GCEP was one of the first GCEPs to be approved in 2016, and,
for the first round of curation, completed curations of 164 GDR using ClinGen’s semi-
quantitative framework.>* However, these gene-disease validity classifications are subject to
change as ClinGen GCEPs primarily score peer-reviewed literature, whereby evidence is
constantly accumulating as new cases and experimental data on the GDR are published. For
accurate interpretation and diagnostic workup, it is crucial that ClinGen’s curation reflects the
latest developments in GDRs, as well as redefined disease entities with lumping and splitting
conditions.® Moreover, curations are performed using versions of ClinGen’s Gene Curation SOP,
which are refined over time, potentially leading to changes in classifications. To keep the
curations up-to-date, ClinGen developed recommendations and standard procedures for routine

recuration of previously approved gene-disease validity classifications.® This approach is
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essential to optimize the clinical sensitivity of diagnostic testing, reduce the rate of variants of
uncertain significance generated by genes not implicated in disease, and avoid possible
misdiagnoses due to erroneous gene-disease implications.” With a large gene list, the HL GCEP
began its recuration efforts, using the latest guidelines, with recuration of 35 GDRs completed so
far. The results of this recuration effort may inform and guide future recuration initiatives and

guidelines for all ClinGen GCEPs.

Methods

Recuration gene selection

Per the ClinGen recuration guidelines (https://www.clinicalgenome.org/docs/gene-

disease-validity-recuration-process/), Moderate GDRS require recuration every 2 years, while
Disputed, Limited, or Strong relationships require recuration every 3 years. Recuration for
Definitive, Refuted, or No known disease relationship is not necessary in the absence of new
evidence supporting/contradicting the GDR. Of the 164 genes previously curated by the HL

GCEP between 2017-20192, 35 genes met criteria for recuration between 2020-2024.

Recuration and expert review
Recuration of flagged genes was performed by a single curator using the most recent
ClinGen framework SOP available at the time of recuration (ClinGen SOP v8-10)

(https://clinicalgenome.org/docs/gene-disease-validity-standard-operating-procedure/). For each

gene, all prior genetic and experimental evidence was reevaluated per the current ClinGen SOP,
followed by assessment of any new published data. Genes with changes to their classification
were presented on the GCEP monthly calls and reviewed by the GCEP for approval of the new

classification. Genes with no new information were also presented to the GCEP for re-approval
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of their initial classification, albeit in an expedited workflow. Once approved, all evidence was
updated in the current release of the Gene Curation Interface (GCI) and the evidence summaries
were edited to describe the changes in evidence after recuration.® The recurations were approved

and are available on the ClinGen website (https://search.clinicalgenome.org/kb/affiliate/10007).

Results

Recuration gene list

The HL GCEP has curated 10 new GDRs since the first round of curation?®, totaling to
174 GDRs (n=97 Definitive, n=7 Strong, n=18 Moderate, n=36 Limited, n=12 Disputed, n=4
Refuted) between 2017-2023 (Supplemental Figure 1, Supplemental Table 1). Of these, 35
GDRs met criteria for recuration between 2020-2024, including 7 Strong, 9 Moderate, 17
Limited, and 2 Disputed GDRs (Table. 1). A total of 27 genes were associated with autosomal
recessive (AR) (n=13), autosomal dominant (AD) (n=13) or X-linked (n=1) nonsyndromic
hearing loss (NSHL), while 8 genes were associated with AR (n=6) or AD (n=2) syndromic

hearing loss.

Recuration and reclassification

The 35 GDRs were recurated and reclassified based on the latest ClinGen clinical-
validity assessment at the time of recuration. The recent SOPs (v8-10) include significant
changes in scoring approaches for de novo variants, in trans occurrences, and ability to include
online database/clinical lab data. Eight GDRs (22%) were reclassified based on new evidence
(n=7) or due to scoring adjustments in the updated SOP (n=1) (Table. 1). Recurations mostly led
to upgrades from Moderate (n=2) and Strong (n=5) to Definitive. One Strong GDR, WFS1

(HGNC:12762)/AD neonatal diabetes, congenital sensorineural hearing loss and congenital
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cataracts, was lumped under another Definitive GDR (WFS1/AD Wolfram-like syndrome),
described in detail below. On the other hand, 27 GDRs retained their classification, including

Moderate (n=7), Strong (n=1), and all Disputed (n=2) and Limited (n=17) genes (Figure 1).

(Insert Figure 1 here)



Moderate to Definitive reclassifications

Two Moderate classifications, MSRB3 (HGNC:27375)/AR-nonsyndromic genetic
deafness and COL9A3 (HGNC:2219)/AR-Stickler syndrome, were reclassified as Definitive
(Table. 1). Both pairs had new genetic and functional data to support their relationships,
including animal models consistent with the disease and inheritance pattern

(https://search.clinicalgenome.org/CCI1D:005437,

https://search.clinicalgenome.org/CCI1D:004544).

As an example, MSRB3 was originally curated in 2017 for autosomal recessive hearing
loss and was classified as Moderate despite a clinical-validity score of 11.5 (Moderate range 7—
11), on account of the limited number of causative variants reported in affected individuals. The
initial curation was supported by only one publication,® which reported two unique variants
segregating in eight different Pakistani families; however, both variants were present in the
homozygous state in families with significant consanguinity. One of the variants was a nonsense
variant (NC_000012.12:9.65308634C>T (Chr12, GRCh38): NM_001031679.3:c.55C>T
p.(Arg19Ter)) and the other was a missense (NC_000012.12:9.65328584T>G (Chr12, GRCh38):
NM_001031679.3:¢c.244T>G p.(Cys82Gly)) with in vitro functional evidence suggestive of a
loss of function effect. Per the clinical-validity workflow/SOP, the genetic evidence presented in
this report would reach a score of 6. With an additional 5.5 score from experimental evidence
supporting the GDR, the total score was 11.5 which would theoretically be a Strong (Strong
range 12-18) clinical validity classification. However, the HL GCEP downgraded the final
classification to Moderate since the genetic evidence was from a single publication with a highly
consanguineous study cohort. Upon recuration in 2021, a second hearing loss study in

consanguineous Pakistani families reported the p.(Cys82Gly) variant in 5 families, and also
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reported a novel NM_001031679.3:¢.391-1G>A splice variant (NC_000012.12:9.65463154G>A
(Chr12, GRCh38)) in one family.'® Moreover, an internal case with another novel splice site
variant (NC_000012.12:9.65368997G>A (Chr12, GRCh38): NM_001031679.3:c.264-1G>A)
was reported by Laboratory for Molecular Medicine, Mass General Brigham Personalized
Medicine (ClinVar Accession: SCVV000271241.2). In reevaluating the GDR with this new
evidence, the genetic score increased from 6 to 8.4, while the experimental score remained the
same, bringing the total score to 13.9 points (Definitive range 12-18). With this new evidence,

and replication in the literature, the classification of MSRB3 was upgraded to Definitive.

Strong to Definitive reclassifications

Of the seven Strong genes, five were upgraded to Definitive based upon identification of
new cases reported in publications (Table. 1). CDC14A (HGNC:1718), associated with
autosomal recessive hearing loss and male infertility syndrome, was the only gene which
remained at Strong. All the genetic evidence scored for this GDR were from a single publication
and with no new evidence published in the literature, the GCEP retained its classification at

Strong.

Lumping vs Splitting reevaluation

The WFS1/AD neonatal diabetes, congenital sensorineural hearing loss and congenital
cataracts GDR had the most substantial change in curation. This GDR was initially classified as
Strong with a score of 12 points (Strong range 12-18) per SOP v7 in 2018. Simply reevaluating
the evidence per SOP v9 decreased the score to 3.6 points due to changes in scoring of de novo
variants, which falls in the Limited classification range (Limited range 1-6). This drastic decrease
in scores warranted the GCEP to re-evaluate the validity of the disease assertions associated with

WFS1. Initially, WFS1 was curated for 3 disease entities (AR Wolfram syndrome, AD Wolfram-
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like syndrome, and AD neonatal diabetes, congenital sensorineural hearing loss and congenital
cataracts) in 2018 prior to the development of the Lumping and Splitting guidelines. In 2022,
ClinGen published the Lumping and Splitting guidelines to help categorize and define the
disease entity before evaluating the strength of the GDR for genes associated with multiple
diseases or broad phenotypic spectra.’ Based on criteria such as preexistent assertions, molecular
mechanism, phenotypic variability, and inheritance pattern, a gene could either be curated for a
single condition encompassing all phenotypes associated with the gene (lump) or separate
conditions with distinct differences (split). Based on these guidelines, the GCEP lumped AD
neonatal diabetes, congenital sensorineural hearing loss and congenital cataracts under AD
Wolfram-like syndrome, due to similarities in inheritance pattern, phenotypic spectrum, and
molecular mechanisms, and its evidence was included in the WFS1/AD Wolfram-like syndrome
GDR which was classified as Definitive in 2018. The GCEP also curated the WFS1 gene for AD
NSHL, which was a new disease entity that was not considered in the initial curation. This
recuration of the WFS1 gene highlights the importance of considering the disease entity upon

which curation is performed and the lumping/splitting guidance provided by ClinGen.

(Insert Table 1 here)
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Discussion

As of August 2024, the ClinGen HL GCEP has recurated 35 of 174 total GDRs, of which
22% (8/35) changed classification. Recuration not only led to changes in classification, but also
to changes in lumping/splitting of disease entities for one gene. Across the eight genes that
changed their classification, new evidence led to an upgrade in scoring, while the downgrade in
scoring was largely due to re-evaluation of the existing evidence using updated ClinGen gene
curation guidelines which have been adjusted to be more stringent over the years. The GDRs that
maintained their classifications were mostly due to the lack of new evidence to score.
Interestingly, no changes in classification were observed in the Limited or Disputed category,
while many of the Strong and Moderate categories underwent upgrades. The observed trends
over time may help refine the ClinGen recuration guidelines. Generally, GDRs that are initially
scored in the lower range of the Limited category tend to remain unchanged over time. The lack
of changes in the Limited category might suggest these genes are more likely to be falsely
implicated in disease and therefore unlikely to accumulate further evidence. To distinguish
whether this is the case, it is critically important for groups evaluating these genes to publish
and/or submit new evidence to ClinVar. Going forward, the HL GCEP will reconsider evidence
for Limited genes and decide if the GDR should be recurated as Disputed or even Refuted if the
original evidence was insufficient to ever implicate the gene in disease. In this case, the
submission of contradictory evidence or benign variants, which may not be included in peer-

reviewed literature, is also very important.

Gene recuration is an ongoing effort across all ClinGen GCEPs, with expert-reviewed

classifications being posted regularly. GCEPs across ClinGen hold monthly meetings where
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experts review an average of 2-3 gene curations per meeting. Despite the limited GCEP capacity,
it is crucial that these panels make every effort to keep up with the growing number of gene
recurations while curating new GDRs as well. The high rate of classification changes of the
hearing loss-associated genes in this study further emphasizes the critical need for continuous
recuration efforts to ensure genetic tests and research apply the most up-to-date evidence in their

diagnoses and studies.

Data Availability

All expert panel curations of the gene-disease relationships, and supporting evidence are publicly

accessible from the Clinical Genome Resource website at www.clinicalgenome.org. The gene-

disease clinical validity classifications are updated on an ongoing basis to reflect the most up-to-

date evaluations.
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Figure Legend

Figure 1: Classification changes of 35 gene-disease pairs recurated from 2020-2024. *AD

neonatal diabetes, congenital sensorineural hearing loss and congenital cataracts, originally
classified as Strong, was lumped with AD Wolfram-like syndrome which was classified as
Definitive for WFS1 in 2018



Table. 1: Summary of 35 gene-disease pairs recurated from 2020-2024.

Gene HGNC Inheritance Disease Initial Classification ~ New evidence Recuration

ID (SOP, year) (genetic/functional)  Classification (SOP,

year)
BDP1 13652 | AR nonsyndromic genetic deafness (MONDO:0019497) Limited (v6, 2017) No new evidence Limited (v8, 2021)
CCDC50 18111 | AD nonsyndromic genetic deafness (MONDO:0019497) Limited (v6, 2017) Genetic Limited (v10, 2024)
CD164 1632 | AD autosomal dominant nonsyndromic deafness (MONDO:0019587) Limited (v6, 2018) Genetic Limited (v10, 2024)
CDC14A 1718 | AR ?&aga%'g%al'gg”;g;)and infertile male syndrome Strong (v5, 2018) No new evidence = Strong (v9, 2023)
CEACAM16 | 31948 @ AD nonsyndromic genetic deafness (MONDO:0019497) Moderate (v5, 2018) Genetic Moderate (v9, 2022)
CISD2 24212 | AR Wolfram syndrome (MONDO:0018105) Strong (v6, 2018) Both Definitive (v9, 2023)
COL4A6 2208 | X-linked deafness, X-linked 6 (MONDO:0010484) Limited (v6, 2018) No new evidence Limited (v8, 2022)
COL9A3 2219 | AR Stickler syndrome (MONDO:0019354) Moderate (v7, 2019) Genetic Definitive (v9, 2022)
CRYM 2418 | AD nonsyndromic genetic deafness (MONDO:0019497) Limited (v5, 2017) Genetic Limited (v8, 2021)
DIABLO 21528 | AD nonsyndromic genetic deafness (MONDO:0019497) d \ Limited (v6, 2017) Genetic Limited (v8, 2021)
EDN3 3178 | AR Waardenburg syndrome type 4B (MONDO:0013201) Moderate (v6, 2018) Genetic Moderate (v9, 2023)
EDNRB 3180 | AR Waardenburg syndrome type 4A (MONDO:0010192) Moderate (v5, 2018) Genetic Moderate (v9, 2023)
ELMOD3 26158 | AR nonsyndromic genetic deafness (MONDO:0019497) Limited (v6, 2017) Functional Limited (v8, 2021)
FOXI1 3815 | AR hearing loss (MONDQO:0005365) L ) Limited (v6, 2018) No new evidence Limited (v8, 2022)
GJAL 4274 | AD nonsyndromic genetic deafness (MONDO:0019497) Disputed (v6, 2018) No new evidence Disputed (v8, 2022)
GJB3 4285 | AD erythrokeratodermia variabilis (MONDO:0017851) Strong (v6, 2018) Genetic Definitive (v9, 2023)
HGF 4893 | AR nonsyndromic genetic deafness (MONDO:0019497) Moderate (v5, 2018) No new evidence Moderate (v10, 2024)
LARS2 17095 | AR Perrault syndrome (MONDO:0017312) Strong (v5, 2018) Genetic Definitive (v9, 2023)
MET 7029 | AR nonsyndromic genetic deafness (MONDO:0019497) Limited (v5, 2017) Both Limited (v8, 2021)
MSRB3 27375 | AR nonsyndromic genetic deafness (MONDO:0019497) Moderate (v5, 2017) Genetic Definitive (v8, 2021)
MYO3A 7601 | AR nonsyndromic genetic deafness (MONDO:0019497) Strong (v6, 2017) Genetic Definitive (v9, 2023)
NARS2 26274 | AR nonsyndromic genetic deafness (MONDO:0019497) Limited (v6, 2017) No new evidence Limited (v8, 2021)
P2RX2 15459 = AD nonsyndromic genetic deafness (MONDO:0019497) Moderate (v5, 2018) Both Moderate (v9, 2022)
ROR1 10256 | AR nonsyndromic genetic deafness (MONDO:0019497) Limited (v5, 2018) Functional Limited (v9, 2022)
SERPINBG6 8950 | AR nonsyndromic genetic deafness (MONDO:0019497) Moderate (v6, 2018) Genetic Moderate (v9, 2022)
SLC17A8 20151 | AD nonsyndromic genetic deafness (MONDO:0019497) Strong (v6, 2018) Genetic Definitive (v9, 2023)
SLC26A5 9359 | AR nonsyndromic genetic deafness (MONDO:0019497) Limited (v5, 2017) No new evidence Limited (v8, 2022)
SLC44A4 13941 | AD nonsyndromic genetic deafness (MONDO:0019497) Limited (v6, 2018) No new evidence Limited (v9, 2022)
SYNE4 26703 | AR nonsyndromic genetic deafness (MONDO:0019497) Moderate (v5, 2017) Genetic Moderate (v7, 2020)
TBC1D24 29203 | AD nonsyndromic genetic deafness (MONDO:0019497) Limited (v6, 2018) Both Limited (v10, 2024)
TJP2 11828 = AD nonsyndromic genetic deafness (MONDO:0019497) Limited (v6, 2017) No new evidence Limited (v8, 2022)
TMEMI132E | 26991 | AR autosomal recessive nonsyndromic deafness (MONDO:0019588) Limited (v5, 2017) Genetic Limited (v8, 2022)
TMTC2 25440 @ AD nonsyndromic genetic deafness (MONDO:0019497) Disputed (v5, 2017) No new evidence Disputed (v9, 2022)
TNC 5318 | AD nonsyndromic genetic deafness (MONDO:0019497) Limited (v6, 2018) Genetic Limited (v9, 2022)
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