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In the last twenty years great efforts were carried out to develop the concept of energy dissipation in
structures to bring it into an applicable technology. Several devices based on different energy dissipation
principles have been developed and implemented worldwide. One of the most important tasks for the
designer is to define the locations and sizes of these devices in order to maximize their efficiency and
safety. In this work, an efficiently procedure to optimally define the energy dissipation capacity of added
nonlinear hysteretic dampers, to meet an expected level of performance on planar structures under
seismic excitation is proposed. Knowing that the main contribution to the total uncertainty is due to
the excitation and with the aim of achieving a robust design, the excitation is modeled as a stationary
stochastic process characterized by a power spectral density compatible with a response spectrum
defined by seismic code provisions of the region. Since the analysis is performed in the frequency domain,
the nonlinear behavior of dampers is included through stochastic equivalent linearization of Bouc–Wen
hysteretic model. The proposed procedure is verified numerically through nonlinear time history analysis
using artificial ground motion records.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that, in order to reduce the structural response,
external energy dissipation devices may be advantageously used.
The effectiveness of these systems depends on the type and capac-
ity of energy dissipation, as well as, the placement of dampers into
the structure. In view of these considerations, optimum design
studies on energy dissipation systems have been of great interest,
principally in earthquake engineering over the last twenty years.

Optimal placement of linear devices (viscous and viscoelastic)
have been extensively discussed in the scientific literature. Many
research papers have been published in the last two decades
[1–12] in which most of the optimization methods were based
on transfer functions of structural parameters such as the sum of
interstory drift, top displacement, top absolute acceleration and
base shear. Other important strategies that make use of genetic
algorithms were developed by Singh and Moreschi [13] and Bishop
and Striz [14]. A gradient-based method including a performance
index defined as a weighted combination of displacements, drifts
and absolute accelerations was presented by Singh and Moreschi
[15].

With regard to the optimization of nonlinear dissipation sys-
tems, Uetani et al. [16] described an optimum structural design
method for building frames provided with hysteretic dampers. Ni
et al. [17] estimated the stochastic seismic response of adjacent
structures connected with hysteretic nonlinear dampers, using
the statistical linearization technique and considering that the
structure remains in elastic range. Through a parametric study,
the authors showed the existence of optimum parameters in
metallic dissipation systems. Basili and De Angelis [18] explored
the same idea of interconnected structures with hysteretic devices
under filtered white noise excitation using a stochastic equivalent
linearization technique. The efficiency of the control system was
assessed through a performance index which takes into account
the ratio between the energy dissipated in the devices and the seis-
mic energy entering into the structure. A similar study, but using
genetic algorithm was published by Ok et al. [19]. Moreschi and
Singh [20] presented a methodology conducted in time domain,
also based on genetic algorithms, to define optimal design param-
eters in dissipation systems that use yielding metallic and friction
dampers. Jensen [21] investigated the optimization of nonlinear
systems through the statistical equivalent linearization technique,
using as objective function a linear combination of the statistical
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moments of the structural response. Vargas and Bruneau [22] stud-
ied the effectiveness on the reduction of lateral displacement and
acceleration of one degree of freedom systems, in which viscous
and metallic dampers work together. Based on the results of a
parametric study on nonlinear SDOF systems subjected to syn-
thetic ground motions, Vargas and Bruneau [23] proposed a struc-
tural fuse design procedure for MDOF structures. The study was
carried out using buckling-restrained braces used as metallic struc-
tural fuses and verified by experimental tests performed on a shak-
ing table at the University at Buffalo. Jensen et al. [24] presented a
methodology based on reliability, for optimizing structural sys-
tems under stochastic excitation, using a linear search algorithm.
Later, Jensen and Sepúlveda [25] proposed a similar procedure to
design structures equipped with dissipation systems, taking into
account the uncertainties of the structure and excitation. Bena-
vent-Climent [26] developed a method to determine lateral
strength, stiffness and energy dissipation capacity of the hysteretic
devices needed in each story to achieve a prescribed target perfor-
mance for a given seismic hazard. Leu and Chang [27] proposed a
relocation strategy of nonlinear viscous dampers in 3D structures.
The procedure starts from a uniform distribution and then itera-
tively moves the dampers to positions of maximum interstory
drift. Ohsaki and Nakajima [28] presented an optimization method
to design eccentrically braced frames, in which the plastic defor-
mation in the link is used as energy dissipating device.

While many studies have been proposed to optimize viscous
damper placement, only a few of them deal with nonlinear damp-
ers and explicitly define the total capacity of the dissipation system
to achieve an expected seismic performance. In this paper, a simple
procedure to optimally define the location and size of nonlinear
hysteretic dampers to meet an expected level of performance on
structures under seismic excitation is proposed. The analysis is
performed in the frequency domain including the nonlinear behav-
ior of the dampers through the stochastic equivalent linearization
of the Bouc–Wen [29] hysteretic model. Assuming that, in seismic
problems, the main contribution to the total uncertainty is due to
the excitation, a stationary stochastic process characterized by a
power spectral density function compatible with the response
spectrum defined by seismic code provisions was chosen to repre-
sent the excitation.

Through numerical examples, on different planar frames, the
proposed procedure is demonstrated. In order to verify the effi-
ciency of the optimization procedure and the validity of the results,
nonlinear time history analysis using artificial ground motion re-
cords were performed.
2. Model of earthquake excitation

Studies on the efficiency of the dissipation systems and the
influence of the excitation characteristics are usually carried out
in time domain through Monte Carlo simulation using a sufficient
number of deterministic artificially generated records [30]. How-
ever, in optimization problems with high computational cost due
to numerous iterations, an alternative simple method is required.
Spectral analysis, conducted in frequency domain, is an attractive
method in which, a power spectral density function (PSDF), rather
than a collection of time histories, can be advantageously used for
modeling the excitation.
2.1. Derivation of design spectrum compatible power spectral density
function

It is known that earthquake excitation is inherently random,
however, if the evolution of the frequency content with time can
be neglected, the input ground motion can be characterized by a
power spectral density function (PSDF). In this study the earth-
quake excitation is assumed as a stationary Gaussian random pro-
cess with zero mean represented by means of a design spectrum
compatible PSDF. Following the methodology developed by Van-
marcke [31] cited in the work conducted by Giaralis and Spanos
[32], the design spectrum compatible PSDF can be approximated
by the following recursive equation:

GðxjÞ ¼
4n

xjp� 4nxj�1

S2
aðxjnÞ

g2
j ðxj; nÞ

� Dx
Xj�1

k¼1

GðxkÞ
 !

xj > x0 ð1Þ

in which G(xj) and Sa(xjn) are the one-sided PSDF and the median
pseudo-acceleration response spectrum, respectively, at a specific
frequency xj and n = 0.05 is the assumed damping ratio; Dx is
the frequency step in which the frequency range was discretized;
the peak factor gj is calculated by Eq. (2) and it represents the factor
by which the rms value of the response of a SDOF oscillator must be
multiplied to predict the level Sa below which the peak response of
the oscillator will remain, with probability p, throughout the dura-
tion of the input process Ts. Herein, the following approximated
semi-empirical formula for the calculation of the peak factor is
adopted, which is known to be reasonably reliable for earthquake
engineering applications [31]:
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Eqs. (3) and (4) are close form expressions derived for a white
noise PSDF which has to be a priori assumed without knowledge
of G(xj) when the peak factor is calculated by Eq. (2). Ts = 20 s is
the duration assumed for the underlying stationary process;
p = 0.5 is an appropriate probability assumed for the purposes of
this study and x0 = 0.36 rad/s denotes the lowest bound of the
existence domain of Eq. (2) for a PSDF [32].

The power spectrum density estimation obtained by Eq. (1) can
be improved via the following iterative scheme [32]:

Giþ1ðxjÞ ¼ GiðxjÞ
St

aðxj; nÞ
Si

aðxj; nÞ

" #2

ð5Þ

in which St
aðxj; nÞ and Si

aðxj; nÞ are the target design spectrum and
the associated design spectrum estimated in the i-th iteration,
respectively.

3. Evaluation of stochastic response

The equations of motion of an n-story planar frame structure
provided with hysteretic perfectly elastoplastic dampers subjected
to earthquake excitation may be written in the matrix form as [33]:

M€xðtÞ þ C _xðtÞ þ KxðtÞ þ KhXyzðtÞ ¼ �Mr€xgðtÞ ð6Þ

where M, K and C are the mass, stiffness and the proportional
damping matrices of size n � n, respectively; Kh is the pre-yielding
stiffness matrix of the added hysteretic dampers of size n � n, Xy is a
diagonal matrix of the assumed yield displacement of each damper,
r is the influence vector of size n � 1, €xgðtÞ is the horizontal acceler-
ation of ground motion and €xðtÞ, _xðtÞ and x(t) are the generalized
acceleration, velocity and displacement vectors of size n � 1,
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respectively. Assuming one device per story, z(t) is the vector of
non-dimensional internal hysteretic variables satisfying the follow-
ing nonlinear first order differential equation [29] for each device:

_zi ¼ x�1
y A _ui � c _uij jzi zij jg�1 � b _ui zij jg
	 


i ¼ 1; . . . ;n ð7Þ

where A, b, c and g are non-dimensional parameters that character-
ize the hysteresis loop and are selected such that the predicted re-
sponse from the model closely matches with the experimental
results of the dampers [34]; _ui is the relative velocity between ends
of dampers (usually, _ui ¼ _xi � _xi�1 being _xi the velocity of i-th story).

Since the analysis is performed in the frequency domain, the Eq.
(7), representing the hysteretic force–deformation characteristics
of the dampers, is linearized as [35,36]

_zi ¼ �keizi � cei _ui ð8Þ

where kei and cei are the linearization coefficients, which are
obtained by minimizing the mean square error between the linear
and nonlinear terms of Eqs. (7) and (8). For g = 1, the equivalent
constants kei and cei are given by:

kei ¼ x�1
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where E(.) is the expectation operator.
When the excitation is an uncorrelated shot noise (including

white noise), Eqs. (6) and (8) can be written as the following sys-
tem of first-order differential equations

d
dt

y ¼ Gy þw ð11Þ

where y is the state vector

y ¼ xT _xT zT
� �T ð12Þ

G is the augmented system matrix

G ¼
½0� ½I� ½0�

�M�1K �M�1C �M�1KhXy

½0� �CeT �Ke

2
64

3
75 ð13Þ

in which [0] and [I] denotes the null and identity matrix, respec-
tively, of size n � n; M�1 is the inverse of mass matrix M, Ce and
Ke are diagonal matrices of the linearization coefficients (Eqs. (9)
and (10)); T is a constant matrix consisting of 1, �1 and 0 and w
is the excitation vector given by:

w ¼ f0g f0g �f1g€x0f gT ð14Þ

where {0} and {1} denotes the null and unit vector, respectively, of
size 1 � n; and €x0ðtÞ denotes the ground motion assumed as a zero-
mean white noise random process with a constant PSDF of inten-
sity, So.

Let the covariance matrix of y be S with

Sij ¼ EðyiyjÞ ð15Þ

in which E(.) is the expectation operator and yi is the i-th element of
vector y.

It can be shown [30] that for zero-mean white noise random
process, the matrix S satisfies the following differential equation:

d
dt

S ¼ GST þ SGT þ D ð16Þ

in which D is a matrix of the expected values of the product be-
tween excitation and state vectors being Dij = E(yi zj) = 0 except that
D3n,3n = 2p S0.
Since the excitation is assumed stationary, the matrix D is time
independent, then, the stationary solution of Eq. (16) can be ob-
tained by solving the following Lyapunov matrix equation

GST þ SGT þ D ¼ 0 ð17Þ

Note that the covariance matrix S is obtained by solving the Eq.
(17) for a white noise type excitation with constant PSDF; how-
ever, Eq. (5) represents the PSDF of the stationary Gaussian random
process, €xgðtÞ. This obstacle can be circumvented by filtering the
white noise €x0ðtÞ through two linear filters as follows:

€xgðtÞ þ 2ngxg _xgðtÞ þx2
g xgðtÞ ¼ � €xf ðtÞ þ €x0ðtÞ

 �
; ð18Þ

€xf ðtÞ þ 2nf xf _xf ðtÞ þx2
f xf ðtÞ ¼ �€x0ðtÞ ð19Þ

in which xg, ng, xf and nf are the ground filter parameters. Eqs. (18)
and (19) lead to the following Clough and Penzien stationary PSDF
[37]

GCPðxjÞ ¼ S0
1þ 4n2
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þ 4n2
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1� ðxj=xf Þ2
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0
B@

1
CA ð20Þ

Thus, to make compatible the PSDF given by Eqs. (5) and (20),
the filter parameters are estimated by fitting both functions.

On the basis of the above considerations, the stochastic struc-
tural response is obtained by solving the Eq. (17) in which, the
state vector, y, the augmented system matrix, G, and excitation
vector, w, can be re-written as follows:

y ¼ xT _xT zT xf _xf xg _xg

� �T ð21Þ

G¼

½0� ½I� ½0� f0gT f0gT f0gT f0gT

�M�1K �M�1C �M�1KhXy �f1gTx2
f �f1g

T 2nf xf f1gTx2
g f1g

T 2ngxg
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f0g f0g f0g 0 1 0 0
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f �2nf xf x2
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f0g f0g f0g 0 0 0 1
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2
6666666666664

3
7777777777775

ð22Þ

w ¼ f0g f0g f0g 0 0 0 �€x0f gT ð23Þ

and the elements of the covariance matrix D of size 3n + 4 � 3n + 4
are Dij = 0 except that D3n+4,3n+4 = 2p S0.

It can be observed from Eqs. (9) and (10) that, the linearization
coefficients depend on the response through S, so an iterative
procedure is required. The initial values of the coefficients can be
arbitrarily chosen and the convergence is achieved after a few
iterations [38].
4. Optimal placement of hysteretic dampers

4.1. Optimization problem

The challenge of the optimization problem to place hysteretic
dampers consists in finding the capacities of the added dampers
in each story, fyi, expressed as a vector of yielding forces fy = {fyi},
which minimize a given objective function. Then, the optimization
problem is stated as follows:

fy

min
f ðfyÞ ð24Þ
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subject to the constraints on the total added capacity and the yield-
ing force of each damper given by:

Xn

i¼1

fyi
¼W ; i ¼ 1; . . . ;n ð25Þ

0 6 fyi
6W ð26Þ

where W is the total dissipation capacity needed to achieve the re-
quired structural performance.

4.2. Objective function: sum of maximum interstory drift and base
shear force

It is clear that to determine the locations and sizes of hysteretic
dampers, the minimization of the interstory drifts is essential [7,8].
However, the structural deformation reduction can be achieved by
increasing the stiffness, which can lead to an increase of the base
shear force. Therefore, both, interstory drift and base shear force
should be considered in the optimization problem. Accordingly,
the objective function to be minimized may be stated as the sum
of the root mean square values (rms) of maximum interstory drift
and base shear force, both, relative to the values obtained on the
uncontrolled structure (without added dampers). Thus, Eq. (24)
takes the form:

fy

min rd max

rd0 max
þ rv

rv0

� �
; ð27Þ

where the subscript 0 indicates values of the original structure and

rd max ¼max rd1
;rd2

; . . . ;rdn

 �
; ð28Þ
Fig. 1. Flowchart of the pr
in which the vector of the rms values of interstory drifts can be ob-
tained as [39]

rd ¼ diag TSTT
	 
1=2

; ð29Þ

where T is a constant matrix consisting of 1, �1 and 0 and the
covariance matrix S is obtained by solving the Eq. (17). The rms va-
lue of base shear force can be obtained as follows [39]

rv ¼ rT V SVT r
	 
1=2

ð30Þ

in which the auxiliary matrix V, of size n � 3n + 4, is defined by:

V ¼ K C KhXy f0gT f0gT f0gT f0gT
� �

ð31Þ
4.3. Required performance

Limitations on interstory drift are given by seismic design code
provisions to control deformations and to prevent potential insta-
bilities in both structural and non-structural elements. To define
the minimum capacity of the dissipation system, the peak of the
maximum interstory drift was adopted as performance criterion.
In accordance with the provision of the IBC 2003 [40] and other
outstanding seismic codes, for a typical shear structure similar to
those used in the next examples, the limit of maximum interstory
drift is 1.0%, which will be assumed as level of performance re-
quired for the dissipation system design.

For a given excitation, the mean peak of the maximum intersto-
ry drift can be calculated from the root mean square value deter-
mined by Eq. (28) as follows [41]:
oposed methodology.
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ld max ¼ pf rd max; ð32Þ
pf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln mes

p
þ 0:5775ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ln mes
p ; ð33Þ

where ldmax is the mean peak of the maximum interstory drift, pf is
the peak factor, rdmax is the rms value of the maximum interstory
drifts, me is the modified mean zero-crossing rate, and s is the time
duration of the excitation. Kieureghian [41] derived a simple
expression for me from a SDOF subjected to white noise ground
acceleration given by

me ¼
ð1:90n0:15 � 0:73Þm; ðn < 0:54Þ
m; ðn P 0:54Þ

(
ð34Þ

where

m ¼ x1

p
ð35Þ

in which m is the zero-crossing rate of the response, and x1 and n
are the natural frequency and the critical damping ratio of the SDOF
structure, respectively. For multi-degree-of-freedom (MDOF) struc-
tures, both parameters of the fundamental vibration mode are used
under the assumption that the fundamental mode dominates the
dynamic response.
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Fig. 2. Reinforcement concrete structure. (Example 1) [44].
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Fig. 3. Excitation characterized by: (a) IC 103 design spectrum and (b) design
spectrum compatible PSDF.
4.4. Optimization procedure

In this study, the optimization problem stated by Eqs. (24)–(26),
is solved by using an iterative algorithm that includes a Sequential
Quadratic Programming (SQP) method [42,43]. The algorithm finds
sequentially the dissipation capacity, fyi, in every possible location
(in this study, one damper in each story is assumed) for a gradual
increase in the total capacity until the required performance is
achieved.

The flowchart of Fig. 1 summarizes the proposed methodology
as follows: Having defined the excitation PSDF, the proposed pro-
cedure starts by estimating the stochastic response (Eq. (17)) con-
sidering the structure without added dampers. The mean peak of
the maximum interstory drift calculated from Eqs. (28), (29), and
(32) is compared with the limit provided by the seismic code pro-
vision. If the desired performance level is achieved, the procedure
ends, else, the total dissipation capacity W is increased by an
appropriate step DW. The vector of the capacities of added damp-
ers fy is optimally determined through the SQP algorithm, taking
into account the selected objective function. In every step of the
SQP algorithm, an iterative procedure is required to determine
the linearization coefficients according to Eqs. (9) and (10). Once
fy has been optimally calculated, the pre-yielding stiffness matrix
of the added dampers Kh is assembled [33] from the pre-yielding
stiffness of each damper determined as:
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khi ¼
fyi

xyi
ð36Þ

Thus, the augmented matrix G (Eq. (22)) is updated with the
matrices, Kh, Ke and Ce (Eqs. (9) and (10)) to re-evaluate the sto-
chastic response (Eq. (17)). The procedure continues until the ex-
pected level of performance is achieved.
−4
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0
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4
6
8

ce
le

ra
tio

n 
[m

/s
2 ]
5. Numerical examples

5.1. Example 1: 6 story concrete building frame

The first example consists of a three bays, six-stories high rein-
forced concrete frame [44], in a building designed in accordance
with the provisions of the Argentine Code IC103 [45]. Fig. 2 shows
the geometric characteristics of the structure. The total mass per
floor is 1 � 105 kg, Young’s modulus of concrete E = 24,800 MPa
which lead to a fundamental period T1 = 1 s. The internal damping
was adopted equal to 5% of critical damping ratio. It is important to
note that a linear behavior was assumed to the structure and the
nonlinearities were concentrate in the dissipation devices, which
were represented by the elastoplastic Bouc–Wen model with
shape parameters assumed constant equal to xy = 0.005 m; A = 1;
b = c = 0.5; g = 1. Excitation was defined from pseudo-acceleration
response spectrum for seismic zone 4 and soil profile type II given
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(b) peak interstory drift.
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Fig. 7. Structural response for different designs (total installed capacity, 3297 kN).
by IC 103 [45] which it is shown in Fig. 3(a). The corresponding
compatible PSDF obtained by Eq. (5) (dashed line) and the
Clough–Penzien approach (Eq. (20)) (continuous line) are dis-
played in Fig. 3(b).

Fig. 4 shows the optimal damper placement for increasing dis-
sipation capacity obtained by using the proposed methodology.
As can be observed, different damper locations are found for differ-
ent total capacities, showing that the distribution of the dampers
changes for different levels of desired performance.

The final distribution of added dampers that leads to the re-
quired level of performance (max interstory drift = 1.0%) is pre-
sented in Fig. 5. For comparison purposes, a 1st mode story shear
proportional distribution [46] is also included. The required total
dissipation capacity of 3297 kN is mainly distributed between
the 2nd and 4th story, with capacities of 1137, 1313 and 767 kN
respectively and, to a lesser extent, in the fifth story (80 kN).
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Fig. 8. Artificial ground motion record, compatible with IC 103 design spectrum.
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Fig. 9. Time history of the 3rd story relative displacement.
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Fig. 10. Time history of the base shear force.

Table 1
Rms values of interstory drift obtained in the frequency domain and from nonlinear
dynamic analysis for 100 artificial ground motions.

Story Rms values of interstory drift (optimal design)

Frequency domain Nonlinear dynamic analysis Difference (%)

1 0.1937 0.2061 �6.0165
2 0.3216 0.3269 �1.6213
3 0.3653 0.3325 9.8647
4 0.3653 0.3378 8.1409
5 0.3564 0.3796 �6.1117
6 0.2777 0.3007 �7.6488
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Fig. 6(a) and (b) shows the reduction of the peak of the maxi-
mum interstory drift and base shear force with increasing total
capacity. Thus, it can be appreciated that the optimal placement
obtained by the proposed procedure leads to a lower interstory
drift and base shear force than the story shear proportional (SSP)
distribution up to a total capacity of 4400 kN.

It can also be noted that, the proposed optimal solution requires
about 32% less of installed capacity than the 1st mode story shear
proportional distribution to achieve the desired level of perfor-
mance (max interstory drift = 1.0%).
Fig. 11. Steel structure
The structural responses for both damper distributions with a
total capacity of 3297 kN are displayed in Fig. 7. It can be observed
(Fig. 7(a)) that both designs lead to an important reduction of the
absolute displacements respect to the structure without external
dissipation. Clearly, Fig. 7(b) shows a significant efficiency of the
proposed procedure, given that with the same installed capacity,
the optimal damper distribution reduces the maximum interstory
drift about 22% when compared to the story shear proportional
distribution and 62% with respect to the uncontrolled structure.

5.2.1. Verification by time history analysis
To verify the validity of the proposed methodology, a nonlinear

time history analysis was performed using a set of 100 artificial
ground motion records [47], compatible with the IC 103 design
spectrum. Fig. 8 shows one example of those records.

The relative displacement of the 3rd story for the aforemen-
tioned record is shown in Fig. 9. As expected, the peaks of relative
displacement of the 3rd story obtained through optimal design re-
main below those obtained through a 1st mode story shear propor-
tional distribution. It can also be observed that the maximum peak
of the relative displacement obtained by the proposed procedure is
0.02956 m, which corresponds to an interstory drift of 0.985%,
slightly below the expected level of performance (max drift = 1.0%).

While base shear force does not display major differences be-
tween both damper distributions (Fig. 10), it is clear the reduction
with respect to uncontrolled structure.

To confirm the validity of the proposed procedure, the mean
rms values of interstory drifts obtained via nonlinear dynamic
analysis with the 100 artificial ground motions and those obtained
in frequency domain through the proposed procedure are
compared in Table 1. As can be observed, the differences are lower
than 10%.

5.3. Example 2: 15 story steel building frame

This example consists of four steel moment-resisting frames in
each direction, 15-stories high, in a building with two planes of
symmetry [48]. Fig. 11 shows the geometric characteristics of the
(Example 2) [48].
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structure, the mass per floor and story stiffness on the z–y plane
are indicated in Table 2. For low amplitude vibration, the funda-
mental period resulted equal to T1 = 1.89 s. The internal damping
was adopted equal to 2% of critical damping ratio. As in the preced-
ing example the structural behavior was assumed linear and the
nonlinearities of the dissipation devices were represented by the
elastoplastic Bouc–Wen model with shape parameters assumed
constant equal to xy = 0.01 m; A = 1; b = c = 0.5; g = 1.

Excitation was defined from the pseudo-acceleration response
spectrum (Fig. 12(a)) for seismic zone 4, soil profile type SB, and
seismic source type A, with a closest distance of 5 km to known
seismic source given by UBC 97 [49]. The corresponding compati-
ble PSDF obtained by Eq. (5) (dashed line) and the Clough–Penzien
approach (Eq. (20)) (continuous line) are displayed in Fig. 12(b).

Fig. 13 shows the optimal damper placement for increasing dis-
sipation capacity. The procedure indicates that, in order to effi-
ciently meet the required level of performance (max drift = 1.0%),
the total capacity of 30,318 kN should be non-uniformly distrib-
uted between 1st and 7th story as outlined in Fig. 14. For compar-
ison, the SSP distribution is also included.

The structural responses obtained through both damper distri-
butions with the same total capacity (30 MN) and those corre-
sponding to the uncontrolled structure are displayed in Fig. 15.
As in the previous example, in Fig. 15(a) can be observed that
the peak values of the absolute displacements are effectively re-
duced through added dampers. Furthermore, the optimal design
displays a greater reduction in the maximum interstory drift
(about 22%) with respect to the SSP distribution (Fig. 15(b)).
Table 2
Example 2: model properties.

Story Mass per floor (106 kg) Stiffness (108 N/m)

1 0.2464 4.905
2 0.3986 4.905
3 0.3932 4.905
4 0.3932 4.4145
5 0.3905 4.4145
6 0.3905 4.4145
7 0.3905 4.1202
8 0.3905 4.1202
9 0.3905 3.924

10 0.3905 3.924
11 0.3905 3.924
12 0.3905 3.924
13 0.3905 3.7278
14 0.5844 3.5316
15 0.3624 2.7468

(a) (b)

Fig. 12. Excitation characterized by: (a) UBC 97 design spectrum and (b) design
spectrum compatible PSDF.
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Fig. 17. Time history of the base shear force.

C.A. Martínez et al. / Engineering Structures 65 (2014) 89–98 97
5.3.1. Verification by time history analysis
As before, a nonlinear time history analysis was performed

using a set of 100 artificial ground motion records [47], compatible
with the UBC 97 design spectrum.

The relative displacement for the first sample record of the 4th
story (where drift is maximum) and base shear force are shown in
Figs. 16 and 17, respectively. As expected, there is an important dif-
ference between both damper distributions in the relative dis-
placement of 4th story and virtually negligible in the base shear
force. It can also be observed that the maximum peak of the rela-
tive displacement obtained by the optimal distribution is
0.03906 m, which corresponds to an interstory drift close to target
1.0%.

As in the previous example, the differences between the mean
rms values of interstory drift obtained via nonlinear dynamic anal-
ysis with 100 artificial ground motions and those obtained in fre-
quency domain are lower than 10%.
6. Conclusions

Unlike others methods based on cumbersome procedures such
as genetic algorithm and others, the paper presents a new and effi-
cient methodology to optimally design passive nonlinear hyster-
etic energy dissipation systems in linear behaving buildings. The
methodology allows defining the minimal energy dissipation
capacity required to achieve a desired level of structural perfor-
mance. According to the most important seismic codes provisions,
the maximum allowed interstory drift was used as performance
criterion. To ensure effective energy dissipation a linear combina-
tion between maximum interstory drift and base shear force is
considered as objective function to be minimized. With the aim
of achieving a robust design of the dissipation system, the struc-
tural response is stochastically determined in the frequency do-
main assuming as excitation a stationary stochastic process
characterized by a design spectrum compatible power spectral
density. This feature makes the procedure computationally effi-
cient in contrast to other methods based on multiple time history
analysis.

Through examples in planar frames, numerical results showed
that with the optimal damper design, it can be achieved greater
efficiency than with other damper distributions. The validity of
the proposed procedure was confirmed by nonlinear dynamic anal-
ysis in time domain using artificial ground motion records.
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