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Abstract. In this paper, we present an extension of large network visualization
(LaNet-vi), a tool to visualize large scale networks using the k-core
decomposition. One of the new features is how vertices compute their angular
position. While in the later version it is done using shell clusters, in this version
we use the angular coordinate of vertices in higher k-shells, and arrange the
highest shell according to a cliques decomposition. The time complexity goes
from O(n

√
n) to O(n) upon bounds on a heavy-tailed degree distribution. The

tool also performs a k-core-connectivity analysis, highlighting vertices that are
not k-connected; e.g. this property is useful to measure robustness or quality
of service (QoS) capabilities in communication networks. Finally, the actual
version of LaNet-vi can draw labels and all the edges using transparencies,
yielding an accurate visualization. Based on the obtained figure, it is possible
to distinguish different sources and types of complex networks at a glance, in a
sort of ‘network iris-print’.
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1. Introduction

The study and analysis of complex systems presents a vast field of research today, covering
from biological systems, going through social networks, up to Internet and WWW networks.
The distinctive feature of these systems is their emerging behaviour, e.g. the way their members
become connected or their self-organized hierarchical structure. Several studies have been
done on social sciences, critical infrastructures and epidemiology [1]–[4] among others, where
systems are normally represented by a graph, called a complex network.

In this paper, we propose visualization as a tool to show internal properties of complex
networks. The first version of our tool, large network visualization (LaNet-vi) [5] presents
the network graph in a two-dimensional (2D) figure, where each vertex’s position is computed
mainly using the k-core decomposition and other algorithms, uncovering the hierarchy and the
way that vertices are connected, like a precise fingerprint of the complex network. The main key
is the low complexity of the k-core decomposition (O(e): linear in the number of edges), which
makes it suitable for visualizing large networks. In the second version (LaNet-vi2), presented
in this paper, we preserve a low complexity algorithm (O(n3/B) for networks with heavy tailed
degree distribution, where n is the number of vertices and 26 B 6 3 is the exponent of a power
law bounding the distribution), adding the following new features.

Firstly, we draw the maximum core as a collection of cliques4 and then the remaining
vertices compute their angle from the angle of neighbours in higher shells. This allows to
establish an ‘order’ giving an accurate picture of network structure.

Secondly, this new version also produces scalable vector graphics (SVG) figures. In these
figures, we can display all the graph edges without overwhelming the picture, by taking
advantage of transparencies and thus showing the complete network connectivity.

Thirdly, LaNet-vi2 allows visualization of vertices not observing the core-connectivity, i.e.
that the minimum number of paths edge-disjoint is k, where k is the core that contains both ends.

4 A clique is a complete graph, i.e. all vertices are pairwise adjacent.
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We present a theorem that assures k-edge-connectivity, and all vertices infringing this property
are highlighted in the visualization. This property can be interpreted as the network robustness,
e.g. having k paths to connect two vertices means that the network can support at least k broken
edges to become disconnected.

Finally, LaNet-vi2 can include vertex labels, which helps to find vertices in the picture,
improving the interpretation of the figure.

The remainder of the paper is organized as follows: a brief state of the art is presented in
section 2, then new algorithms are shown in section 3, some examples are given in section 4,
and finally section 5 concludes the paper.

2. Related work

To the best of our knowledge, there are a few visualization tools using k-core decomposition.
The first approach to use k-core decomposition on visualization is a work by Batagelj et al [6],
where the adjacency-matrix of some cores has been analysed.

Then, the algorithm presented on ‘Drawing the AS graph in 2.5 dimensions’ by Baur
et al [7] is the first one that combines k-cores and visualization of the complete network. This
proposal uses directed spectral analysis to draw the maximum core, and then a combination of
barycentric and iteratively directed-forces allows them to draw other shells in decreasing order,
each in one layer, resulting in a 3D figure. This approach is not able to represent several shell’s
components.

The next tool is the first version of LaNet-vi [5, 8], which gives a 2D representation of
the whole graph, allowing to distinguish between different graphs and also to validate models
of complex systems. It is important to stress that 2D representations are more suitable for
information visualization than others due to human perception reasons (see [9] and references
therein).

The Halfmoon [10] paradigm proposes a visualization where all vertices and edges are
drawn, vertices are placed in a half-circle grouped by shell index. Here, transparency is used to
show how shells are connected. This visualization cannot distinguish between components on
the same core.

Finally, pajek [11] is a software package for the analysis and visualization of large
networks, which can compute several parameters measured on complex networks (k-core
decomposition included).

Visualization is not the unique application of k-core decomposition. It has been used in
the analysis of protein interaction networks by Bader and Hogue [12], and in the prediction of
protein functions by Altaf-Ul-Amin et al [13] and Wuchty and Almaas [14]. Another interesting
application was done in the networking area by Gkantsidis et al [15] and by Batagelj and
Zaversnik [16], who used the k-cores to filter out peripheral autonomous systems for Internet
networks. We can add, also in the networking area, a paper of Mahadevan et al [17] which
depicts the usual parameters for characterizing autonomous systems maps, the k-cores being one
of them. The work of Ducheneaut et al [18] presents the analysis of a game players’ network
using the k-core decomposition. Finally, the Complex System SCILAB tool [19], which is a
plug-in for SCILAB (http://scilab.org), is capable of computing parameters like those obtained
from the k-core decomposition.

New Journal of Physics 10 (2008) 125003 (http://www.njp.org/)

http://scilab.org
http://www.njp.org/


4

3. How LaNet-vi2 works

This tool is an open source project hosted on sourceforge [20] running on Linux as well as
Windows. It is also included inside Network Workbench (NWB) [21], a toolkit for network
research, composed by a framework developed in Java language and tools on binary (pre-
compiled) format. There is also available an online [22] version that accepts networks and sends
the results by e-mail.

A problem with the first version is that it cannot show the internal organization, which is
the central improvement on this new version. Observing that the highest core has diameter 2
in most complex networks, we decomposed it into cliques, drawing them in different sectors
of the central circle. This clique decomposition is not unique, but is an interesting way to
organize the central core. Then, sons in lower shells can use the fathers’ angles to compute their
angle, achieving the organization of the whole graph. This method is different from the previous
version [5], which grouped vertices by clusters, placing each of them in a random angular sector
according to their size. The problem is the high amount of clusters, whose sizes follow a Zipf
law resulting in lots of sectors with very different sizes. Now, each vertex chooses its position
according to the angles of neighbours in higher shells and also their cluster neighbours. In this
way, we eliminate a lot of cross-connections across the centre of each shell, yielding a clearer
figure. The rest of the positioning parameters are the same as those in the previous version, that
is the radius is computed using neighbours in higher shells and the component information (for
more details see [5]).

This new version can draw both kinds of graphs, the old ones using clusters to place
shells, or the new approach where the highest core organizes the remaining vertices. In the
previous version of LaNet-vi rendering was carried out with PovRay software. As mentioned,
compatibility with SVG has recently been added, which is an open language that offers, among
other things, an effect of transparency on objects, allowing to smoothly visualize all edges in
big networks without hiding vertices. This new version can produce SVG and PovRay files for
both visualizations (clusters or cliques), calling the appropriate render to produce final figures
in PNG format. The rest of this section is dedicated to presenting new algorithms, to discussing
their time complexity, and to giving a formal treatment of the relation between connectivity and
the k-shell index.

3.1. New visualization algorithm

The new algorithm keeps on doing the k-core decomposition and components analysis. We will
briefly introduce some notations and definitions used through the paper, and then present the
algorithm.

An undirected graph is denoted as G = (V, E), where V = {vi} is the set of vertices and
E = {ei j} is the set of edges, where ei j denotes an edge between vi and v j . A vertex degree will
be named dG(vi), or d(vi) for short. The highest degree is dmax. The number of vertices and
edges will be n = |V | and e = |E |, respectively. The k-core definition [23] is the following,

Definition 1. A subgraph H = (C, E |C) induced by the set C ⊆ V is a k-core or a core of
order k if and only if the degree of every vertex v ∈ C induced in H is greater than or equal to
k (in symbolic form, this reads ∀v ∈ C : dH (v)> k), and H is the maximum subgraph with this
property.
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A k-core of G can therefore be obtained by recursively removing all the vertices of degree
lower than k, until all vertices in the remaining graph have degree greater than or equal to k. This
decomposition can be easily implemented: the algorithm by Batagelj and Zversnik [16] presents
a time complexity of order O(n + e) for a general graph. This makes the algorithm very efficient
for sparse graphs, where e is in the order of n.

Definition 2. A vertex i has shell index k, that is s(i) = k, if it belongs to the k-core but not to
the (k + 1)-core, and the k-shell Sk is composed by all the vertices whose shell index is k. The
maximum value k such that Sk is not empty is denoted kmax.

Notice that the k-core is thus the union of all shells Ss with s > k.

Definition 3. Every connected component of Ss will be called a cluster Qs .

Each shell Ss is thus composed by clusters Qs
m , such that Ss = ∪16m6qs

max
Qs

m , where qs
max is

the number of clusters in Ss .
LaNet-vi2 takes the complex network and computes the k-core decomposition, analysing

whether each core has multiple components, as is done in the previous version [5]. Then, it picks
out the subgraph corresponding to the highest core which is decomposed into cliques.

Once cliques have been built, the central core is decomposed into several circular sectors
proportional to the cliques’ sizes. For each clique, its vertices are placed uniformly on the
periphery of the corresponding sector.

The central core is given a radius Rkmax such that its area is proportional to the amount of
vertices and their sizes, to assure they do not get overlapped. The remaining space in the image
is divided into equidistant rings, one for each core.

Vertices in lower cores are positioned in sectors close to their neighbours of higher cores.
In this way the central cliques organize the deployment of the whole graph. The algorithm for
positioning each vertex computes a radius ρ and an angle φ. The radius is computed by

ρi = Rkmax +
kmax − Rkmax

kmax
f (vi), (1)

where

f (vi) = (1 − ε)(kmax − s(i) + 1) +
ε

|Ni/>s(i)|

∑
j∈Ni/>s(i)

(s( j) − s(i)), (2)

Ni/>s(i) being the subset of Ni formed by those vertices which are in a shell higher than or equal
to vi .

The angle is a circular average of all its neighbours’ angles from higher cores and those
from the same core whose angle is already computed (denoted by φC

j ), as

cos φi =

∑
j∈Ni/>s(i)∩φC

j
(s( j) − s(i) + 1) cos φ j∑

j∈Ni/>s(i)∩φC
j
(s( j) − s(i) + 1)

, (3)

sin φi =

∑
j∈Ni/>s(i)∩φC

j
(s( j) − s(i) + 1) sin φ j∑

j∈Ni/>s(i)∩φC
j
(s( j) − s(i) + 1)

. (4)

As the main difference between the previous version and the new one is the cliques
decomposition, we present the algorithm that we used. It is important to highlight that finding
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the maximum clique in a graph is an NP-complete problem [24], and is unfeasible for complex
networks, so we used an heuristic that attempts to find the biggest cliques first. We will use the
following concepts:

The neighbourhood of a vertex vi ∈ V is the induced subgraph of G that includes all
vertices connected to vi . It will be denoted by

Ni =
{
v j ∈ V/ei j ∈ E

}
. (5)

The set of connections among neighbours Ti is the set of edges whose vertices belong to
vi ’s neighbourhood, this is

Ti =
{
e jk ∈ E/v j , vk ∈ Ni

}
. (6)

The clustering coefficient cc(vi) for vi ∈ V is the relation between the amount of
connections among vi ’s neighbours w1, w2, . . . , wN i and the maximum possible connections
among them, specifically Ni (Ni −1)

2 . In effect,

cc(vi) =
2 |Ti |

|Ni | (|Ni | − 1)
. (7)

The common neighbourhood Ci j is the induced graph of G formed by every vertex adjacent
to both vi and v j .

A useful result for our algorithm is that the amount of neighbours’ connections |Ti | can be
computed having Ci j for every v j adjacent to vi , in this way: for v j , vk adjacent to vi , if they are
connected to each other, then v j ∈ Cik and vk ∈ Ci j , so

|Ti | =

∑
j/v j ∈Ni

|Ci j |

2
. (8)

The detailed algorithm is described in table 1. First of all, we isolate the central core,
which is a subgraph G = (V, E) of the whole network. The objective consists of finding the
main cliques in G. As vertices in the biggest clique should have neighbours with a great number
of connections among them, we order V by this parameter, |Ti |. We take then the vertex with
more connected neighbours, v j , to form a subset V1 and proceed to add neighbours subject to
the constraint that they are connected to every vertex in this subset, until no more neighbours
can be added. The first ones to be added are those that have more shared neighbours with v j ,
because they have more possibilities of being part of a big clique. Once no more neighbours can
be added the clique is closed and a new one is started taking the first of the remaining vertices.
This procedure continues until there are no more vertices left. Finally, a partition composed
by cliques {V1, V2, . . . , Vn} will be obtained, which are collectively exhaustive and mutually
exclusive with respect to V .

As can be seen, the algorithm makes extensive use of the coefficients |Ci j |, so they will be
computed at the beginning.

3.2. Complexity analysis

Naming nkmax the number of vertices on the maximum core kmax, and dkmax its maximum degree,
we begin the analysis. On lines 7–10 of algorithm 1 (first step) every pair of neighbours v j , vk

of the same vertex vi is taken, and as vi is a neighbour of both, |C jk| is incremented. There is
no need to build the set C jk , we only have to know its size. The condition k > j is necessary
so that the pair does not appear twice, in different order. There are d(vi) (d(vi) − 1)/2 pairs of
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Table 1. Algorithm for decomposing the central core into cliques.

Algorithm 1
1 input: a graph G = (V, E)

2 output: set of cliques V1, V2, . . . , Vn that cover V
3 initialise |Ci j | (common neighbourhoods) in 0 for every vi , v j ∈ V
4 initialise |Ti | in 0 for every vi ∈ V
5 initialise n = 0
6
7 for each vertex vi ∈ V do
8 for each neighbour v j ∈ Ni do
9 for each neighbour vk ∈ Ni , k > j do
10 increment |C jk |

11
12 for each vertex vi ∈ V do
13 compute connections among neighbours |Ti | using equation (8)
14
15 order V by decreasing |Ti | generating W
16
17 while W is not empty do
18 start clique Vn

19 v f = {first vertex in W }

20 insert first vertex v f into clique Vn and remove it from W
21 generate N with all vertices adjacent to v f that are in W (those without clique yet)
22 order N by decreasing |C f j |

23 for each vertex v j ∈ N (in order) do
24 if it’s adjacent to every vertex in Vn (Vn ⊂ N j ) then
25 add v j to clique Vn

26 remove v j from W
27 n = n + 1
28
29 return {Vi }

neighbours for vi , which is less than d2
kmax

, so the number of operations for this step is bounded
by nkmax d2

kmax
.

On lines 12–13 (second step) every |Ti | is obtained by adding the |Ci j |’s for every
neighbour v j , as shown in equation (8). There is one operation per neighbour, so d(vi)

operations for vi and 2ekmax for the whole core (denoting by ekmax the number of edges in the
highest core). An upper bound for ekmax is nkmax dkmax , then this step is O(nkmax dkmax).

Line 15 (third step) orders vertices in V by |Ti |. The number of operations here is
O(nkmax log nkmax).

Finally, lines 17–27 (fourth step) perform the cliques decomposition. The ‘while’ loop is
executed once per clique. Starting the clique (line 18) and inserting the first vertex (line 20)
take constant time. Generating N (line 21) is O(d(v f )) which is bounded by O(dkmax). Ordering
(22) is O(dkmax logdkmax). The ‘for’ loop in line 23 is run d(v f ) times. The first time, line 24
implies one verification because there is just one vertex, v f , in N j . Second time one or two
verifications are made, depending on the result of the previous one. The worst case for this step
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is that of a complete graph, in which 1 + 2 + · · · + d(v f ) checks have to be made, and a bound
for this is d2

kmax
. Lines 25–27 take constant time. Then, the complexity of the ‘while’ loop is

O(ncliques d2
kmax

).
The two steps that govern time are the first and the last ones, and taking into account that

the number of cliques ncliques is lower than nkmax , we have O(n(kmax) d2
kmax

). Now, dkmax is bounded
by dmax, and nkmax can be bounded also by dmax for most real complex networks (as we verified;
for Internet maps see [8]). Therefore, the whole algorithm 1 complexity is

O(d3
max). (9)

Now, we need to bound dmax in terms of n. Complex networks usually have a heavy tailed
degree distribution [3], which can be bounded by a power law

n(d) = A · d−B, (10)

where n(d) is the number of vertices with degree d. This is because degree distributions
are either a power law or Weibull distribution, with an exponential cutoff (due to the finite
size of networks). Some early work on Internet topology [25] reports exponents in the range
2.16 B 6 2.5 for Internet topology, and in general complex networks have exponents in the
range 26 B 6 3.

From equation (10) we obtain

n(1)

n(d)
∝ d B, (11)

from where

d ∝

(
n(1)

n(d)

)1/B

< (n(1))
1/B

< n1/B . (12)

Therefore, from equations (9) and (12) the total time complexity to perform the
organization of the highest core is O(n3/B), considering a degree distribution bounded by a
power law with exponent B of equation (10).

3.3. Connectivity analysis

Let us introduce the following:

Definition 4. Considering a graph G and its k-core decomposition,

(i) given k, two vertices in the k-core are core-connected if there are k edge-disjoint paths
between them; and

(ii) the graph is core-connected if given two vertices in a k-core, they are core-connected.

In other words, taking the minimum shell index of a pair of vertices gives a lower bound
of edge-connectivity when the graph is k-core-connected. Notice that each core’s graph has to
be connected, i.e. to have only one component; otherwise it is not possible to find paths.

LaNet-vi2 can evaluate if a graph is k-core-connected for simple graphs having only one
component for all k-cores. The Internet is an example of this kind of network, as well as some
biological networks [13, 14], the international flights network [26, 27], etc. Examples of other
networks that do not belong to this category are scientific collaborations [28] or the World Wide
Web [8].
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The connectivity is important in terms of what the network represents. For example,
considering the Internet, the connectivity expresses the number of independent paths (more
precisely edges independent paths for edge-connectivity) between a couple of routers or
autonomous systems. In this case, connectivity gives a measure of robustness, if you are
considering the probability of isolation; or a measure of the probability to find a path with
an specified quality of service (QoS).

The following theorem states conditions for k-edge-connectivity in a graph with minimum
degree k. Let G = (V, E) be a simple graph (i.e. without loops, without multiple edges). Let
V1 ⊂ V, V2

.
= V \ V1 (the complement of V1 in V ), and set G1 = (V1, E |V1), G2 = (V2, E |V2).

Let r and rG1 denote the usual distance in G and G1, respectively. A cut between two sets of
vertices A and B is denoted by [A, B]. We assume in the following that V1 and V2 are nonvoid,
and define

δ(x, y)
.
= min{rG1(x, y), rG(x, V2) + rG(y, V2)}, x, y ∈ V1,

δ(x, y) = δ(y, x)
.
= rG(x, V2), x ∈ V, y ∈ V2.

If x ∈ V and A ⊂ V , we set δ(x, A)
.
= mina∈A δ(x, a).

We shall also use the notations

∂V1
.
= {x ∈ V1 : rG(x, V2) = 1},

V 0
1

.
= V1 \ ∂V1.

Theorem 1. Assume that

(i) dG(x)> k, x ∈ V ,

(ii) G2 is k-edge connected,

(iii) maxx,y∈V δ(x, y)6 2,

(iv) One of the following:

(a) ∂V1 > k or
(b)

∑
x∈V1

min{|[x, V 0
1 ]|, |[x, V2]|}> k.

Then G is k-edge-connected.

The proof is presented in [29]. This theorem is related to a well-known theorem of Plesník
(see [30], theorem 6), which states that in a simple graph of diameter 2 the edge connectivity
is equal to the minimum degree. In fact, under hypothesis (iv)a, our theorem follows from
Plesník’s result by ‘contracting’ V2 to a vertex. The resulting graph is not simple, but we can
avoid this problem by replacing all edges joining one vertex to the contracted one by only one
edge.

Therefore, we can apply theorem 1 recursively to all shells of a graph, starting from
the highest one, in order to determine when a couple of vertices are core-connected (see
definition 4(i)). For instance, taking G to be the highest core (i.e., kmax-core), and V2 as a vertex,
if G has diameter 2, it is kmax-edge-connected. Then, taking each cluster (from those with shell-
index kmax to kmin), we can apply theorem 1 and thus prove that this cluster is k-edge-connected
if it verifies the hypothesis.
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kmax

kmax

kmax

( −1)−shell

−core

( −2)−shell

e

c

b

a

d

k

max

max
−2 edges

−1 edgesk
edgesm

Figure 1. The cluster a is connected through cluster e, d and b to the highest core.
Here cluster a has a kmax − 2 connectivity, but cluster b has only m < kmax − 1
connectivity.

LaNet-vi2 begins from the highest core checking that it has diameter 2. Then, it takes one
by one all clusters of shell k − 1, where k is the previous shell (first time the highest one),
and verifies hypothesis (iii) and (iv) of theorem 1. Notice that hypothesis (i) is assured by the
definition of the shell, and hypothesis (ii) is guaranteed by the previous shell. However, a certain
cluster in the s-shell can have a lower connectivity than s, while their sons (clusters connected
to it in lower shells) can have a good connectivity (equal to or larger than its shell index). This
case is illustrated in figure 1.

The time complexity is not modified by the verification of hypothesis (iii) and (iv) of
theorem 1. Computing hypothesis (iii) requires a breadth-search on the cluster plus edges
connecting towards higher shells, which has a complexity of O(ec + eh), ec being the number of
edges in the cluster and eh the number of edges towards higher shells. Testing hypothesis (iv) is
shorter and requires only O(eh). This process is done from higher to lower shells, and each edge
of the graph is visited a constant number of times. Therefore, the total complexity of this step is
O(e), e being the total number of edges, which is the same as for the k-core decomposition.

The picture obtained with Lanet-vi2 picks out the vertices in a k-shell that do not satisfy
core-connectivity by drawing them in white or black for colour pictures, or using a square
instead of a circle for greyscale images. Therefore, the set of vertices in colour (or greyscale)
forms a k-core-connected graph.

3.4. Adding labels

The functionality of visualizing the vertices’ names or numbers has been added. We
implemented a mesh to control the overlapping of names, in the following way: the image of
W × H pixels is divided into cells of 10 × 12 pixels, which is the monospaced font size. After
each vertex is drawn, the closest cells to it in the mesh are analysed (left-side, right-side, up and
right, up and left, down and right and down and left), considering a number of consecutive cells
equal to the name string size, and all the cells bordering them. If the number of overlaps (cells
that are already occupied by text) is lower than a certain amount (which we defined as one to
avoid superpositions almost completely), then the name is stamped and all these consecutive
cells on the mesh are marked as occupied. This method does not assure that all the names are
stamped, but the stamped ones will certainly be legible. If all names are necessary, using a
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bigger resolution will always help, because for greater resolutions the text uses less space and
does not cover the vertices.

The user can also select which names to show, by only including in the names file those
ones, and omitting the names for the rest of the vertices.

4. Complex networks analysis using LaNet-vi

This section is dedicated to analysing a complex network using real data. We focus on the
autonomous systems Internet map (or AS map for short), which is a network composed by
autonomous systems as vertices and their peer-relationships as edges. ASes are networks whose
administration is centralized. They are used either for connecting institutions or customers to
the Internet (called stub ASes), or to interconnect stub ASes and interconnection ASes. The AS
map is the top hierarchy view of the Internet, where each AS is identified by a number from 1 to
65 535. One of the most important reasons for such organization is the freedom to apply policies
to interconnect different ASes, reflecting commercial agreements. It is important to note that
even if these relationships can be directed, it is needed to treat them as undirected ones to apply
the k-core decomposition as it is explained here. We are not interested in searching ‘commercial
relationships’ but ‘possible connections’ because all communication links are bidirectional (i.e.
on any link data flows in both directions).

The analysis presented in this paper uses the three following databases: The first one is the
Oregon Route Views [31], which collects the BGP [32] routing tables of several BGP routers
having a great number of peer connections. This method allows knowledge of the public routes
on the Internet, but not all routes are public due to the policies of each AS. The second source
is CAIDA [33], that uses a couple of tens of skitter probes (a tool based on traceroute and
ping) to survey Internet maps [34]. These probes discover paths by sending packets to Internet
addresses; then paths can be merged to obtain a map at different levels, here we focus only
on the AS level. The main difference with respect to the first technique, is that information is
gathered from real paths, i.e. a path traversed by data packets. This allows us to obtain routes
that are not declared on public BGP tables. The third source is the DIMES project [35], that
uses a distributed system (based on traceroute and ping) composed by several thousands of
probes to measure Internet maps [36], also using real paths. The main difference between this
project and the former is the number of probes, which is a thousand times greater than CAIDA
and yields a more detailed map [37]; besides the techniques are different (see [36] for more
details).

The new layering algorithm of LaNet-vi maintains some features from the previous version
(for these ones see [5]), others have changed (marked as ∗), and there are some new ones
(marked with #).

Shells width. Vertices within the same shell are initially placed on a circle, but then they
are moved to the centre according to their neighbours on higher shells, producing a thick
ring. Its thickness gives an idea of how high their neighbours are, and is controlled by the
ε parameter [5].

Degree-shell index correlation. Degree and shell-index are centrality measures, so it is
very important to study their correlation. Degree is represented by the vertex size (in a
logarithmic scale), and shell-index by colours (going from blue for the lowest shell, to red
for the highest one); both scales and their maximum values are displayed.
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Disconnected components. A k-core can have more than one component, which is
highlighted by drawing each component in separated circles, each of them proportional
to its component size. A γ parameter controls the diameter and δ controls the distance
between components [5].
Shell clusters*. This feature is only available when the cliques decomposition is
deactivated. Clusters of vertices having the same shell index are drawn in the same angular
sector.
Edges*. Due to layout changes in this new version, edges are placed in a different way,
giving a better image. For PovRay-based figures, we continue using a random fraction of
edges, because they are solid (not transparent) and drawing all edges would result in a
non intelligible figure. Instead, for SVG figures we draw all edges taking advantage of
transparency. In both cases, the edges show how shells are connected. Each extreme of an
edge is drawn with the same colour as the vertex at the opposite side.
Highest core#. It is displayed as a collection of cliques, assigning a different circular
sector of the central core for each one, depending on its size. This feature allows us to
observe the proximity of vertices. Since the remaining vertices choose their angle using
this information, it is possible to see when a clique or a group of them is more connected
to the whole network.
Core-connectivity#. Setting this option, LaNet-vi2 corroborates whether a vertex verifies
all conditions for core-connectivity, highlighting those which do not. This property is useful
on networks with only one component, but if it is used on other graphs, LaNet-vi2 will
apply it only to the greatest component. For example, due to exploration issues it is possible
to obtain a network with several components for the Internet, but the only meaningful one
is the greatest (the others are too small).
Labels#. In this version, labels scaled to the size of the figure are added and superimposed
labels are avoided, i.e. when a label occupies a place already used it is not displayed. The
order in which labels are placed is from the highest k-shell to the lowest one, and is random
inside a k-shell. Through an input file the user can provide the names of all vertices or just
those he is interested in. Anyway, in order to have all labels displayed, it is essential to
generate a high resolution image.
Multigraphs#. Networks with several edges between vertices are called multigraphs, and
we can compute the k-core decomposition taking these edges into account. For this option,
we cannot assure the core-connectivity, so it is set off.
Zoom#. It is possible to draw a portion of the whole image, in order to focus on an
interesting part in high resolution.
Detailed information#: This version gives (under user command-line request) a list of
vertices by core, the vertices in each clique for the highest core, and the list of vertices that
are not core-connected.

In the presented case, AS Internet maps, we cannot show all features LaNet-vi2 is capable
of, but we illustrate how to use our tool to analyse these complex networks.

The main characteristics of AS maps are the following (several are obtained from [5]):

• lower shells are mostly connected to the highest one, shown by the predominant red colour
(that of the kmax-core) of edges at the external radius and violet colour near the central
circle;
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Figure 2. AS obtained from Route Views project [31]. Maps in April 2005 (first
column) and February 2008 (second column). Upper figures are rendered with
PovRay, bottom ones with SVG.

• high degree-shell index correlation, which means most connected vertices are in the most
robust subgraph (or the one with most routing capabilities), i.e. there are no star-like
subgraphs;

• distribution of lower shells is sparse (e.g. thick rings), meaning that vertices in these shells
are widely connected to different higher shells;

• several cliques exist in the kmax-core, where normally one is the biggest;

• they are k-core-connected.

These characteristics identify AS maps from others. It is important to stress that the first
and second characteristics together imply a disassortative [38] behaviour, because low degree
vertices are connected to high degree ones. For instance, there are other Internet maps at more
detailed granularity: Internet Routers (IR), which have different characteristics. As an example,
IR maps have shells mostly interconnected without a particular hierarchy, and no degree-shell
index correlation [5], yielding a quasi planar (neither assortative nor disassortative) nearest-
neighbour distribution [4].

This networks classification, which we call ‘network fingerprint’, could also be done by
the previous LaNet-vi version, but this new version is able to identify also the maps source. We
call this feature the ‘network iris-print’.

We present images from three AS map sources: Oregon Route Views in figure 2, CAIDA in
figure 3 and DIMES in figure 4, all graphics are in high resolution (use the zoom to see details).
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Figure 3. AS obtained from CAIDA project [33]. Maps in April 2005 (first
column) and January 2008 (second column). Upper figures are rendered with
PovRay, bottom ones with SVG.

Figure 4. AS obtained from DIMES project [35]. Maps in April 2005 (first
column) and September 2007 (second column). Upper figures are rendered with
PovRay, bottom ones with SVG.
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Figure 5. AS obtained from CAIDA project [33] in January 2008. Upper
figure has AS names, and bottom figure has two-letter country codes
(http://www.iana.org/domains/root/db/).
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As a first observation, Oregon Route Views maps have several cliques on their highest
core and edges arise from all angles. There is a little concentration of middle shells on first
and second quadrant, but not a significant amount. It is interesting to see that even though the
maximum degree has increased, the number of shells has decreased from 2005 to 2008. CAIDA
maps show a big clique that concentrates vertices of all shells on the first quadrant in 2005
and first and second quadrant in 2008. We appreciate that degree and number of shells are
decreasing, justified by the number of probes: 21 in 2005 and 10 in 2008. DIMES maps present
one big clique (about a half of the first quadrant) and several small cliques, where most vertices
are concentrated in the first quadrant for both years. It is worth remarking that the number of
shells is also reduced since the maximum degree is increased.

We observe that CAIDA and DIMES are the most similar, because both exploration
methods gather information from real paths, whereas Oregon Route Views uses the public BGP
routing tables. The most important difference between CAIDA and DIMES is the number of
probes, because DIMES uses several thousand.

Finally, we present visualizations with labels in figure 5. We can observe shortcuts of
ASes’ names on the top graph, and their origin countries on the bottom one. Notice there
are no geographic groups (e.g. we cannot identify Asian ASes in a specific angular sector),
mainly due to the highest core composition (most of the ASes are located in the US) and
because the larger ASes span over several countries.

5. Conclusions

In this paper, we have presented the second version of LaNet-vi, a Large Network visualization
tool, capable not only of identifying different types of networks like AS or IR maps (‘network
fingerprint’), but also of recognizing its source, providing a useful tool to see at a glance
connectivity properties (‘network iris-print’). We also performed a core-connectivity analysis,
and visualized through LaNet-vi the vertices that do not verify this property. In communication
networks, core-connectivity can be interpreted as robustness or QoS capability.

Moreover, LaNet-vi2 is now capable of producing SVG figures, which combined with edge
transparency yields a precise visualization. As a final feature, our tool can now display labels,
deal with multigraphs and draw a portion of the picture.

Finally, we envisage visualization of weighted graphs as future work, including these edge
weights in the graphical algorithm. This might help to interpret the properties of new networks
and to better understand their organization.
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