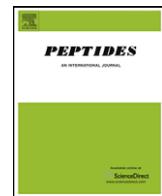


Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.



This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

<http://www.elsevier.com/copyright>

C-type natriuretic peptide effects on cardiovascular nitric oxide system in spontaneously hypertensive rats

Carolina Caniffi ^a, Rosana Elesgaray ^a, Mariela Gironacci ^b, Cristina Arranz ^a, María Ángeles Costa ^{a,*}

^a Cátedra de Fisiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Instituto de Química y Metabolismo del Fármaco, CONICET, Junín 956, Piso 7, 1113 Ciudad de Buenos Aires, Argentina

^b Dpto. Química Biológica, Instituto de Química y Fisicoquímica Biológicas, CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina

ARTICLE INFO

Article history:

Received 23 September 2009

Received in revised form 23 March 2010

Accepted 23 March 2010

Available online 2 April 2010

Keywords:

CNP

Spontaneously hypertensive rats

Nitric oxide synthase

Heart

Aorta artery

ABSTRACT

The aim was to study the effects of C-type natriuretic peptide (CNP) on mean arterial pressure (MAP) and the cardiovascular nitric oxide (NO) system in spontaneously hypertensive rats (SHR), and to investigate the signaling pathways involved in this interaction. SHR and WKY rats were infused with saline or CNP. MAP and nitrites and nitrates excretion (NO_x) were determined. Catalytic NO synthase (NOS) activity and endothelial (eNOS), neuronal (nNOS) and inducible NOS (iNOS) were measured in the heart and aorta artery. NOS activity induced by CNP was determined in presence of: iNOS or nNOS inhibitors, NPR-A/B natriuretic peptide receptors blocker and Gi protein and calmodulin inhibitors. CNP diminished MAP and increased NO_x in both groups. Cardiovascular NOS activity was higher in SHR than in WKY. CNP increased NOS activity, but this activation was lower in SHR. CNP had no effect on NOS isoforms expression. iNOS and nNOS inhibitors did not modify CNP-induced NOS activity. NPR-A/B blockade induced no changes in NOS stimulation via CNP in both tissues. Cardiovascular NOS response to CNP was reduced by Gi protein and calmodulin inhibitors in both groups. CNP interacts with NPR-C receptors, activating Ca²⁺-calmodulin eNOS via Gi protein. NOS response to CNP is impaired in the heart and aorta of SHR. Alterations in the interaction between CNP and NO would be involved in the maintenance of high blood pressure in this model of hypertension.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

C-type natriuretic peptide (CNP) belongs to a family of natriuretic peptides and plays an important role in cardiovascular homeostasis [29,37,40,41]. CNP is extensively distributed in the cardiovascular system, particularly in endothelial cells and cardiac myocytes [8,14,39,41].

This peptide would act in paracrine and/or autocrine manner causing local vasodilatation and preventing smooth muscle cell and cardiac fibroblast proliferation [2,36].

The cardiovascular actions of CNP are mediated via activation of natriuretic peptide receptors subtype B and subtype C (NPR-B, NPR-C), which are expressed in cardiac atria and ventricle, as well as in the aorta and peripheral vasculature [30,33]. NPR-B is a membrane guanylyl cyclase (GC) and its activation induces cGMP synthesis, which mediates cellular responses [33]. In contrast, NPR-C is coupled to adenyllyl cyclase through an inhibitory guanine nucleotide regulatory (Gi) and/or to phospholipase C (PLC) activation [4,27].

On the other hand, the free radical nitric oxide (NO) is synthesized by a family of nitric oxide synthases (NOS) that involves neuronal (nNOS), inducible (iNOS) and endothelial (eNOS) isoforms. These isoforms are expressed in several tissues, such as endothelial cells, cardiomyocytes and smooth muscle cells [15]. nNOS and eNOS are expressed constitutively and influenced by intracellular concentrations of Ca²⁺. The complex Ca²⁺-calmodulin is necessary to maintain the enzyme active [32]. In contrast, iNOS is expressed after transcriptional induction and independent of intracellular Ca²⁺ [3]. With regard to eNOS activity, this isoform is regulated by various kinases [26]. Phosphorylation of eNOS at Ser¹¹⁷⁷ close to the carboxy-terminal is a critical requirement for eNOS activation [26].

It seems that both factors, CNP and NO, are closely related in cardiovascular homeostasis regulation. In coronary and mesenteric resistance vessels, CNP acts as an endothelial derived hyperpolarizing factor inducing relaxation mediated by the NPR-C pathway [7,19]. Moreover, it has been demonstrated that CNP induces coronary vasculature relaxation partially mediated via NO-cGMP [6]. In addition, CNP inhibits the proliferation of smooth muscle cells [1,22] as well as cardiomyocytes hypertrophy, an effect associated with the increase in cGMP concentration [36]. On the other hand,

* Corresponding author. Tel.: +54 11 49648279; fax: +54 11 49648280.
E-mail address: mcosta@ffyb.uba.ar (M.Á. Costa).

NO blocks hypertrophic response to growth factor stimulation in cultured cardiac myocytes [21].

In previous studies, we demonstrated that CNP induces a hypotensive effect related to an enhancement of vascular NOS activity as well as cardiac NO system activation in normotensive rats. Moreover, we showed that those actions are mediated by coupled G protein NPR-C receptor and subsequently Ca^{2+} -calmodulin dependent NOS activation in the heart and aorta [10].

In addition, Simon et al. showed that CNP hyperpolarizes pulmonary microvascular endothelial cells by activating large-conductance calcium-activated potassium channels mediated by the activation of NPR-B, PKG, eNOS, and sGC [35].

Spontaneously hypertensive rats (SHR) are genetic models of hypertension that show endothelial dysfunction, augmented oxidative stress, enhanced vasoconstrictor factors and decreased bioavailability of NO [15,18,26].

In view of these previous findings and the fact that a link exists between both NO and CNP and arterial blood pressure regulation, we can speculate that alterations in the interaction between both systems are involved in the maintenance of high levels of blood pressure in this model of hypertension.

Bearing in mind this hypothesis, in the present study we therefore set out to investigate the effects of CNP on the NO system in SHR, studying the changes in cardiovascular NOS activity and expression in response to peptide infusion. In addition, the signaling pathways implicated in the interaction between CNP and NOS were investigated, identifying natriuretic peptide receptors and NOS isoforms involved in this model of hypertension.

2. Materials and methods

2.1. Animals

Sixteen-week-old male SHR and WKY animals were purchased from the Instituto de Investigaciones Médicas A. Lanari (UBA, Argentina). Rats were housed in a humidity and temperature-controlled environment with an automatic 12-h light/dark cycle. They were fed standard rat chow from Nutrimentos Purina (Buenos Aires, Argentina) and tap water ad libitum up to the day of the experiments.

Animals were care according to the Argentina's National Drug, Food and Medical Technology Administration (ANMAT) (Regulation 6344/96) and the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, Revised 1996) and experimental procedures were approved by the Ethic Committee of the School of Biochemistry and Pharmacy (CEFFB), Buenos Aires University, Argentina.

2.2. Experimental design

2.2.1. Protocol 1

2.2.1.1. Effects of CNP infusion on mean arterial pressure and the NO system. Rats were anaesthetized with urethane (1 g/kg body-weight, i.p.; Sigma, St. Louis, MO, USA). The femoral vein and artery and the urinary bladder were cannulated with a polyethylene catheter for drug administration (saline or CNP infusion), mean arterial pressure (MAP; Power Lab and Lab Chart soft from ADInstruments, Bella Vista, NSW, Australia) recording and urine collection, respectively.

After surgery, an isotonic saline infusion (NaCl 0.9% w/v) was started at a rate of 0.05 ml/min and maintained for 40 min to allow stabilization of hemodynamic and renal parameters. The first 30 min following stabilization were considered the control period, during which the rate of saline infusion was maintained at 0.05 ml/min. At the end of this period, one group of SHR and WKY

rats received first a bolus of CNP (10 $\mu\text{g kg}^{-1}$; Sigma, St. Louis, MO, USA) and then an infusion with CNP (1 $\mu\text{g kg}^{-1} \text{ min}^{-1}$) over 1 h, and the other group received first a bolus of saline and then continued with the isotonic saline infusion.

Experimental groups:

WKY+NaCl ($n=8$): control period (NaCl infusion) and experimental period (bolus of saline + NaCl infusion over 1 h).

SHR+NaCl ($n=8$): control period (NaCl infusion) and experimental period (bolus of saline + NaCl infusion over 1 h).

WKY+CNP ($n=8$): control period (NaCl infusion) and experimental period (bolus CNP + infusion CNP over 1 h).

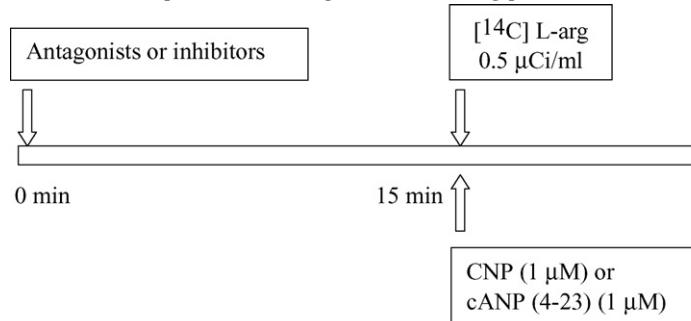
SHR+CNP ($n=8$): control period (NaCl infusion) and experimental period (bolus CNP + infusion CNP over 1 h).

Taking into account dose response curve on blood pressure of CNP, we selected the lower dose of CNP (bolus + infusion) that induced the maximum hypotensive effect (data not shown).

MAP was recorded and urine samples were collected at the end of the control and experimental periods in all groups.

The concentration of nitrites and nitrates (NO_x), end products derived from NO metabolism, was determined in urine samples according to the procedure described by Verdon et al. [39].

At the end of the experimental period animals were sacrificed by decapitation and the right atria, left ventricle and aorta artery were removed in order to determine NOS activity and expression, and eNOS phosphorylation.


2.2.1.2. Determination of NOS activity. Tissue NOS activity was measured, using [^{14}C] L-arginine (PerkinElmer, Boston, MA, USA) as substrate as described previously [12]. Tissue slices (2–3 mm thick) were incubated 30 min at 37 °C in Krebs solution with 0.5 $\mu\text{Ci/mL}$ [^{14}C] L-arginine. The reaction was stopped by adding 500 μL stop buffer (0.5 mmol/L EGTA, 0.5 mmol/L EDTA, 20 mmol/L HEPES, pH 5.5). Tissue samples were homogenized in the stop solution. The homogenates were centrifuged at 12,000 $\times g$ for 20 min. The supernatants were then applied to a 1 mL Dowex AG 50W-X8 column (Na^+ form, Bio-Rad), hydrated with the stop buffer and eluted with 2 mL distilled water. The amount of [^{14}C] L-citrulline was determined with a liquid scintillation counter (Wallac 1414 Win-Spectral). Specific NOS activity was assessed in the presence of 10⁻⁴ M L-N-nitro-arginine methyl ester (L-NAME; Sigma, MO, USA). Nitric oxide production (measured as pmol of [^{14}C] L-citrulline) in each tube was normalized to the weight of the tissue slices incubated with the substrate during equal periods of time and thus expressed as pmol/g wet weight min. All chemicals were purchased from Sigma (St. Louis, MO, USA).

2.2.1.3. NOS expression and eNOS phosphorylation. NOS expression and eNOS phosphorylation were determined by Western blot. Samples of different tissues containing equal amounts of protein (0.10 mg protein/lane) were separated by electrophoresis in 7.5% SDS-polyacrylamide gels, transferred to a nitrocellulose membrane and then incubated with rabbit polyclonal anti-NOS antibodies (1/500 dilution: anti-iNOS, anti-eNOS, anti-nNOS) or rabbit anti-phospho-eNOS Ser¹⁷⁷ (1/500 dilution) and a horseradish peroxidase-conjugated goat anti-rabbit secondary antibody (1/5000 dilution). Samples were revealed by chemiluminescence using the enhanced chemiluminescence reagent for 2–4 min. Quantification of the bands was performed by digital image analysis using a Hewlett-Packard scanner and TotalLab analyzer software. All antibodies and Western blot reagents were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

2.2.2. Protocol 2

2.2.2.1. Effects of CNP on NOS activity in isolated heart and aorta artery. Signaling cascade involved in CNP and NOS interaction in SHR. SHR and WKY rats were sacrificed by decapitation and NOS activity

was measured in the aorta, right atria and left ventricle using [¹⁴C] L-arginine as substrate. Tissue slices (2–3 mm thick) were incubated 30 min at 37 °C as described in protocol 1. Agonists (15 min after incubation was started) and/or antagonists or inhibitors (at the beginning of the 30 min incubation period) were added during the incubation period according to the following protocol:

cANP(4-23), NPR-C receptor selective agonist (Sigma, St. Louis, MO, USA).

Antagonists or inhibitors: L-nitro arginine methyl ester (L-NAME, 1 μM), NOS inhibitor; aminoguanidine (AG, 1 mM), iNOS inhibitor; 7-nitroindazole (7-NI, 10 μM), nNOS specific inhibitor; calmidazolium (Cz, 1 μM), calmodulin antagonist; anantin (AN, 100 nM), NPR-A/B receptor antagonist; pertussis toxin (PTx, 800 ng/ml), Gi₁₋₂ protein inhibitor; U-73122 (10 μM), phospholipase C inhibitor; GF-109203 (100 nM), protein kinase C inhibitor; wortmannin (10 μM) PI3-K/Akt pathway inhibitor; LY-294002 (10 μM), PI3K inhibitor; LY-294002 (10 μM), PI3K inhibitor; U-0126 (10 μM), p42/p44 mitogen-activated protein kinase (MAPK) inhibitor; SB-203580 (10 μM), p38 MAPK inhibitor; SP-600125 (10 μM), JNK 1/2 inhibitor; PD-98059 (10 μM), MEK1/ERK 1/2 inhibitor. All antagonists above described were purchased from Sigma (St. Louis, MO, USA). Each in vitro experiment was performed with a slice of tissue (atria, ventricle or artery) from both groups, SHR and WKY ($n=8$).

Concentration-dependent stimulation of NOS activity by CNP in all studied tissues in SHR and WKY had been performed in previous studies (data not shown). The lowest concentration of CNP that induced the maximum effect on NOS was used in this experimental protocol.

2.3. Statistical analysis

All values are expressed as means \pm SEM. The program Prism (Graph Pad Software, Inc., San Diego, CA, USA) was used for statistical analysis. The mean and standard deviation or median values of each variable for each group were calculated. The results of each variable for each experimental group were analyzed with a two-way analysis of variance (ANOVA), where one factor was the different treatments and the other genotypes (WKY or SHR). The effects of each factor were tested independently of the effect of the other, as well as the interaction between both factors. We did not find interaction between treatments and genotype. Multiple comparisons were performed using Bonferroni post hoc test. p value <0.01 was considered a significant difference.

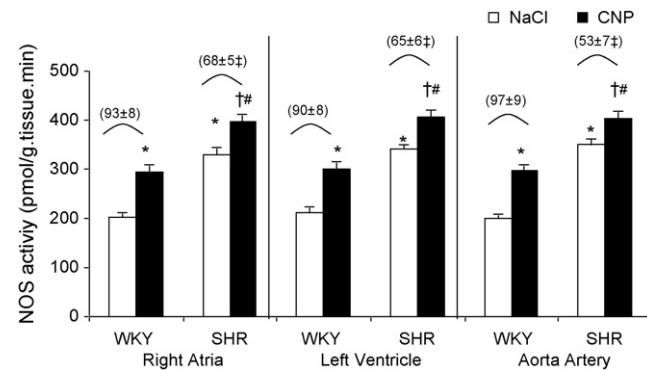
3. Results

3.1. Protocol 1: effects of CNP infusion on MAP and the NO system

In this model of hypertension, we found that MAP and NO_x excretion were significantly higher in SHR than in WKY (Table 1). CNP infusion reduced MAP in both groups of animals and this reduction was higher in normotensive than in hypertensive animals. The reduction in MAP was accompanied by a rise in NO_x excretion in

both groups, but the increase in NO_x was more marked in WKY than in SHR, indicating a lower response to the peptide in hypertensive animals.

Then we verified whether the increase in NO_x excretion was associated with increased NOS activity in the heart and aorta. NOS


activity in response to saline or CNP infusion is shown in Fig. 1. In all studied tissues, NOS activity was higher in SHR than in WKY. CNP infusion enhanced this activity in both groups of animals. NOS stimulation induced by CNP was lower in SHR than in WKY, suggesting an impaired response of the enzyme to CNP in this hypertensive model.

eNOS and iNOS isoforms were expressed in the right atria, left ventricle and aorta (Fig. 2). SHR showed greater protein levels of both isoforms in all tissues compared with WKY. Reactivity against the antibody for the neuronal isoform was observed in the heart but not in the aorta in both groups of animals. Heart nNOS expression was more marked in SHR than in WKY. CNP induced no changes in protein level of eNOS, nNOS and iNOS isoforms, neither in the heart nor artery in both, normotensive and hypertensive, animals (Fig. 2).

Given that phosphorylation of eNOS at Ser¹¹⁷⁷ close to the carboxy-terminal is a critical requirement for eNOS activation, the role of CNP in eNOS activation was evaluated by measuring eNOS phosphorylation at Ser¹¹⁷⁷. As shown in Fig. 3, CNP infusion significantly increased Ser¹¹⁷⁷ phosphorylation in ventricle.

3.2. Protocol 2: effects of CNP on NOS activity in isolated heart and aorta artery. Signaling cascade involved in CNP and NOS interaction.

In vitro experiments showed that CNP increases cardiac and vascular NOS activity in both groups of animals. These effects of CNP on NOS activity were abolished when L-NAME was previ-

Fig. 1. Effect of NaCl and CNP infusion on cardiac and vascular NOS activity in SHR and WKY. Data corresponding to the difference (Δ) between saline and CNP treatment in each group are shown between brackets. Data are mean \pm SEM, $n=8$ rats/group. * $p < 0.01$ vs. WKY + NaCl; † $p < 0.01$ vs. SHR + NaCl; # $p < 0.01$ vs. WKY + CNP; $\ddagger p < 0.01$ vs. Δ WKY.

Table 1

Effects of CNP infusion on mean arterial pressure and nitrites and nitrates excretion in SHR and WKY.

Treatment	NaCl	CNP					
		C	E	Δ	C	E	Δ
MAP	WKY	103 ± 6	102 ± 5	4 ± 2	104 ± 4	86 ± 5*	18 ± 3
	SHR	180 ± 8*	185 ± 6	5 ± 4	179 ± 4*	168 ± 5#,†	11 ± 3‡
NO _x	WKY	0.93 ± 0.11	1.01 ± 0.09	0.08 ± 0.06	0.99 ± 0.10	1.38 ± 0.08*	0.40 ± 0.05
	SHR	1.54 ± 0.10*	1.48 ± 0.10	0.06 ± 0.05	1.52 ± 0.07*	1.80 ± 0.11#,†	0.28 ± 0.04‡

C: control period (NaCl infusion at 0.05 ml/min for 30 min); E: experimental period (saline bolus + NaCl infusion or bolus CNP + infusion CNP over 1 h).

MAP, mean arterial pressure (mm Hg); NO_x, nitrites and nitrates excretion (nmol/min 100 g body weight); Δ, change induced by each treatment on MAP and NO_x.

Data are mean ± SEM, n = 8 rats/group.

* p < 0.01 vs. WKY control period.

p < 0.01 vs. NaCl infused SHR.

† p < 0.01 vs. CNP infused WKY.

‡ p < 0.01 vs. ΔCNP infused WKY.

Table 2

Effect of NOS blockade with L-NAME on basal or CNP-induced NOS activity in isolated heart and aorta artery in SHR and WKY.

		Basal	L-NAME (1 μM)	CNP (1 μM)	CNP + L-NAME
Right atria	WKY	224.9 ± 9.2	115.2 ± 6.9*	322.1 ± 14.3*	122.3 ± 8.7†
	SHR	345.1 ± 15.4*	206.5 ± 8.3#	424.7 ± 19.6#	212.9 ± 9.1‡
Left ventricle	WKY	228.5 ± 7.2	110.1 ± 5.8*	304.4 ± 16.1*	115.1 ± 7.5*,†
	SHR	351.9 ± 13.8*	212.7 ± 9.6#	417.1 ± 20.4#	202.6 ± 10.1‡
Aorta artery	WKY	208.8 ± 7.1	104.9 ± 7.1*	311.5 ± 15.4*	110.2 ± 5.9*,†
	SHR	365.7 ± 14.9*	128.4 ± 10.5#	429.4 ± 18.7#	122.5 ± 4.2‡

L-NAME, L-nitro arginine methyl ester (L-NAME); NOS activity, pmol/g tissue min.

Data are mean ± SEM, n = 8 rats/group.

* p < 0.01 vs. basal activity WKY.

p < 0.01 vs. basal activity SHR.

† p < 0.01 vs. CNP-induced activity WKY.

‡ p < 0.01 vs. CNP-induced activity SHR.

ously added, verifying that measured activity was NOS specific (Table 2).

Similar to in vivo experiments, NOS activation induced by CNP in the heart and aorta was lower in SHR than in WKY.

In order to analyze the isoform involved in NOS activation via CNP in this model, the experiments were performed in the presence of an inhibitor of iNOS (AG) or an inhibitor of nNOS (7-NI). In all tissues in both, WKY and SHR, nNOS inhibition did not modify either basal or CNP induced NOS activity (Fig. 4). Meanwhile, the blockade of iNOS provoked a decrease in basal NOS activity in both groups. This reduction was higher in SHR than in WKY in all tissues (Table 3).

In addition, the decrease in basal NOS activity induced by Ca-calmodulin inhibition was more marked in WKY than in SHR, which confirms that iNOS is the main isoform involved in basal NOS activity observed in SHR (Fig. 4). Then the effect of iNOS blockade on NOS activity was similar in basal and in CNP-stimulated con-

ditions in all studied tissues, indicating that the inducible isoform was not stimulated by CNP.

The increase in NOS activity induced by CNP was abolished by calmidazolium, a calmodulin inhibitor, in the heart and aorta artery of both SHR and WKY, implying a Ca^{2+} -calmodulin-dependent NOS pathway (Fig. 4).

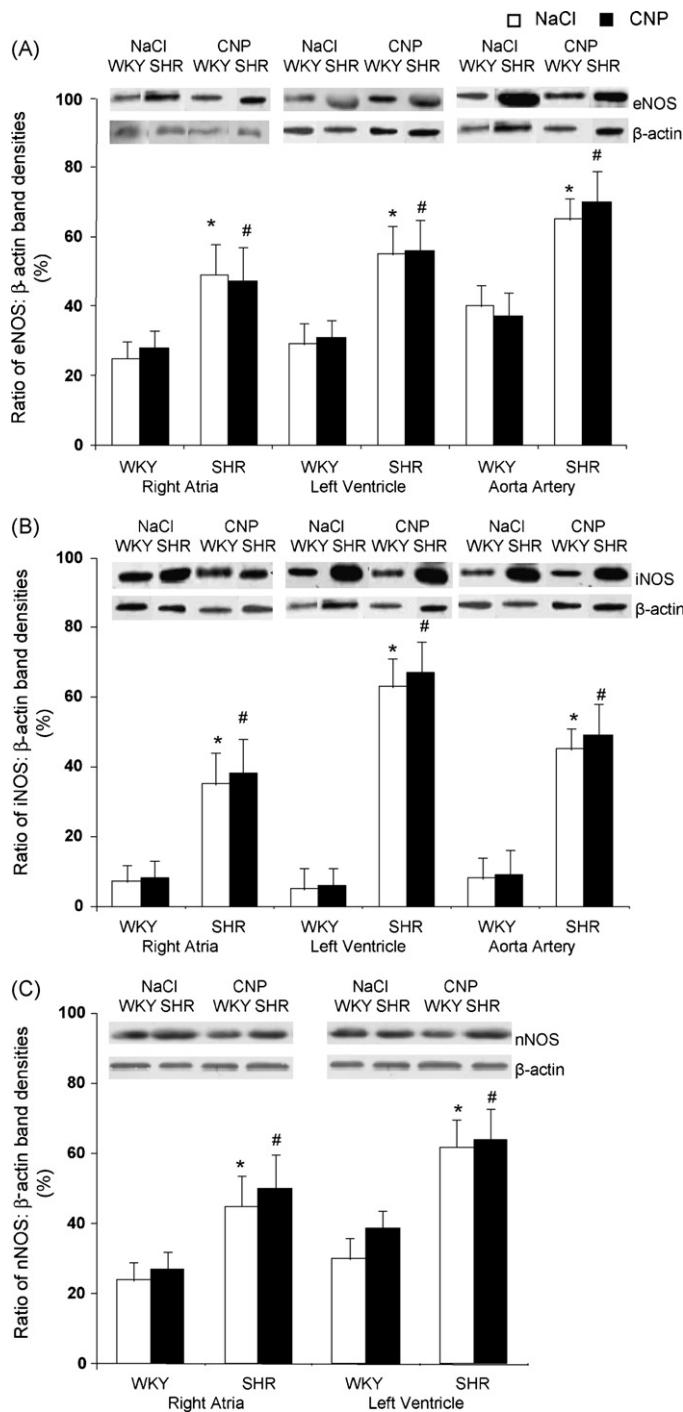
On the other hand, the NPR-A/B receptor antagonist, anantin, did not modify NOS basal activity in the studied tissues in both groups. NPR-A/B receptor blockade induced no changes in CNP-stimulated NOS activity in cardiac atria and ventricle and in aorta in both groups. This latter finding suggests that the NPR-A/B receptors are not involved in NOS activation via CNP in these tissues in WKY and SHR (Fig. 5). In addition, the selective agonist of the NPR-C receptor, cANP(4–23), increased NOS activity in all studied tissues, provoking similar stimulation as CNP (Fig. 5).

As NPR-C receptors are Gi-protein coupled receptors, the effect of CNP on NOS activity in the presence of pertussis toxin, a Gi_{1-2} protein inhibitor, was investigated. The toxin did not modify basal NOS activity in the heart and aorta in neither group (data not shown). Uncouple NPR-C receptor/Gi protein complexes abolished CNP induced NOS activity in atria, ventricle and aorta artery (Fig. 5).

In view of these observations, we sought to establish the participation of the PLC/PLC pathway by using selective inhibitors of PLC (U-73122) and PKC (GF-109203). In all tissues of WKY and SHR, the inhibitors did not modify the effects of CNP on NOS activity (Fig. 5).

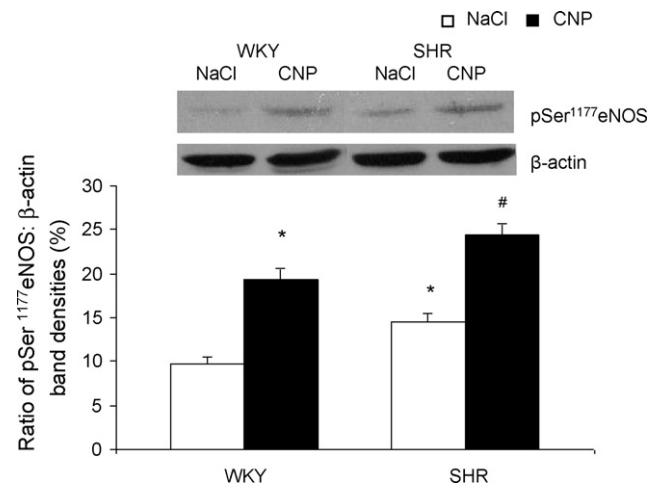
Recent studies have revealed that the PI3 kinase/Akt pathway may participate in the signaling cascade that mediates eNOS activation in vascular endothelial cells [31]. In order to evaluate the participation of this pathway in NOS activation via CNP, experiments were carried out in the presence of wortmannin, an inhibitor of the PI3-kinase/Akt pathway, and LY-294002, PI₃K inhibitor. Results showed that these inhibitors do not affect NOS activity induced by CNP in all tissues of WKY and SHR (Fig. 6).**Table 3**

Effect of iNOS blockade on basal or CNP-induced NOS activity in isolated heart and aorta artery in SHR and WKY, with aminoguanidine.


		Δ[Basal-AG]	Δ[CNP – (CNP+AG)]
Right atria	WKY	–21.8 ± 3.9	–16.4 ± 6.5
	SHR	–35.7 ± 3.1*	–39.8 ± 6.9#
Left ventricle	WKY	–30.0 ± 4.8	–38.1 ± 5.7
	SHR	–62.6 ± 7.7*	–57.9 ± 11.8#
Aorta artery	WKY	–26.3 ± 3.4	–22.2 ± 3.7
	SHR	–60.2 ± 10.7*	–58.7 ± 10.1#

AG, aminoguanidine; Δ NOS activity, pmol/g tissue min.

Data are mean ± SEM, n = 8 rats/group.


* p < 0.01 vs. Δ[Basal-AG] WKY.

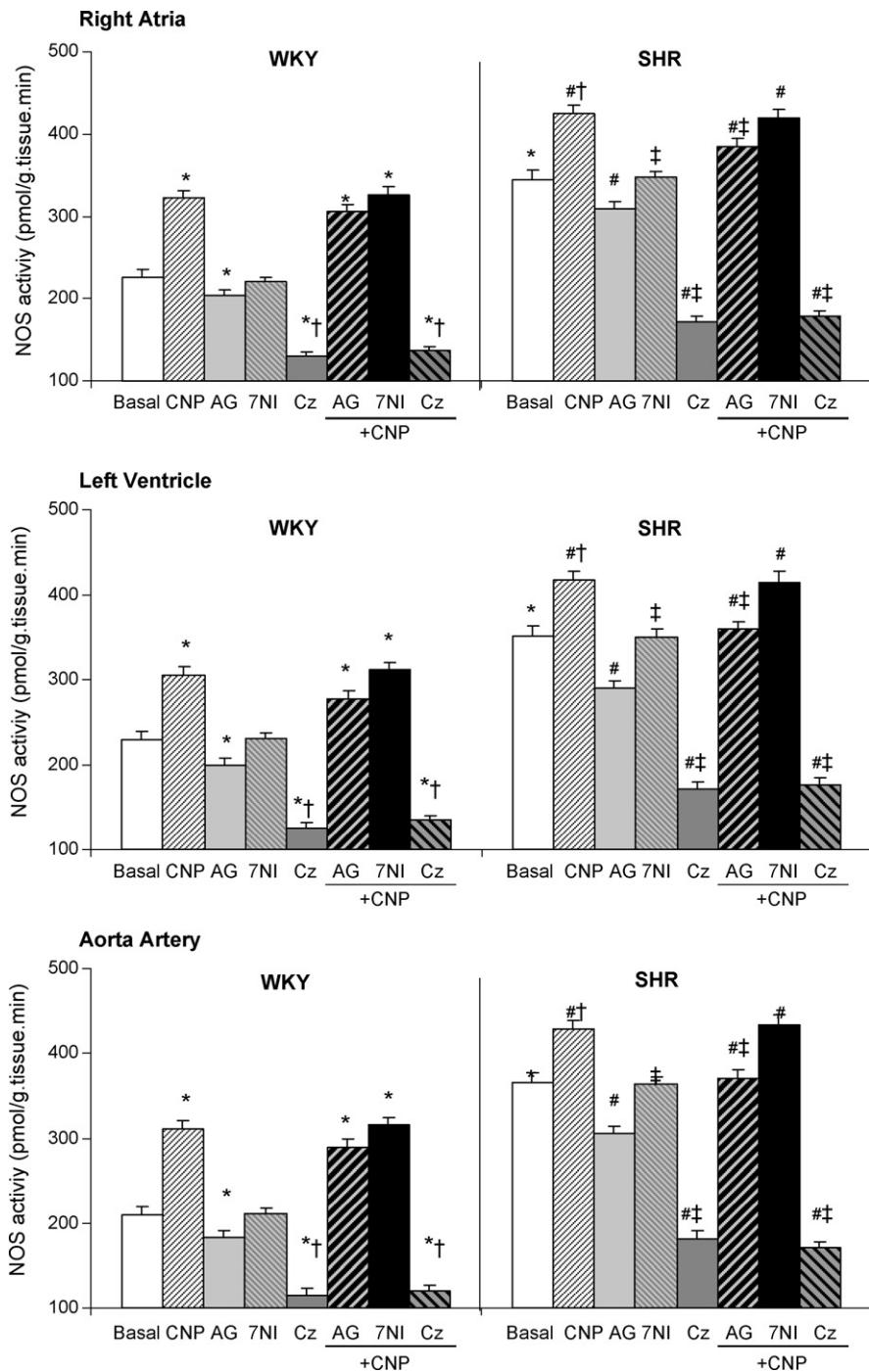
p < 0.01 vs. Δ[CNP – (CNP+AG)] WKY.

Fig. 2. Representative Western blot analysis of right atria, left ventricle and aorta artery from WKY and SHR, for NaCl and CNP infusion groups to anti-eNOS (A), anti-iNOS (B) and anti-nNOS (C) antibodies. Data are mean \pm SEM, $n=8$ rats/group. All experiments were performed in triplicate. Each blot was normalized with the expression of marker β -actin from the same gels. * $p<0.001$ vs. WKY + NaCl; # $p<0.001$ vs. WKY + CNP.

There are many reports that suggest the involving of MAPK pathway in eNOS upregulation [5,20,28]. In this regard, NOS activation induced by CNP was not modified by MAPKs inhibitors, indicating that, in heart and aorta of SHR and WKY, the activation of NOS via CNP does not involve MAPK pathway (Fig. 6).

Fig. 3. eNOS phosphorylation at Ser¹¹⁷⁷ in ventricles from WKY and SHR infused with saline or CNP. eNOS phosphorylation at Ser¹¹⁷⁷ was measured by Western blot analysis. Data are mean \pm SEM, $n=8$ rats/group. * $p<0.01$ vs. WKY + NaCl; # $p<0.01$ vs. SHR + NaCl.

4. Discussion

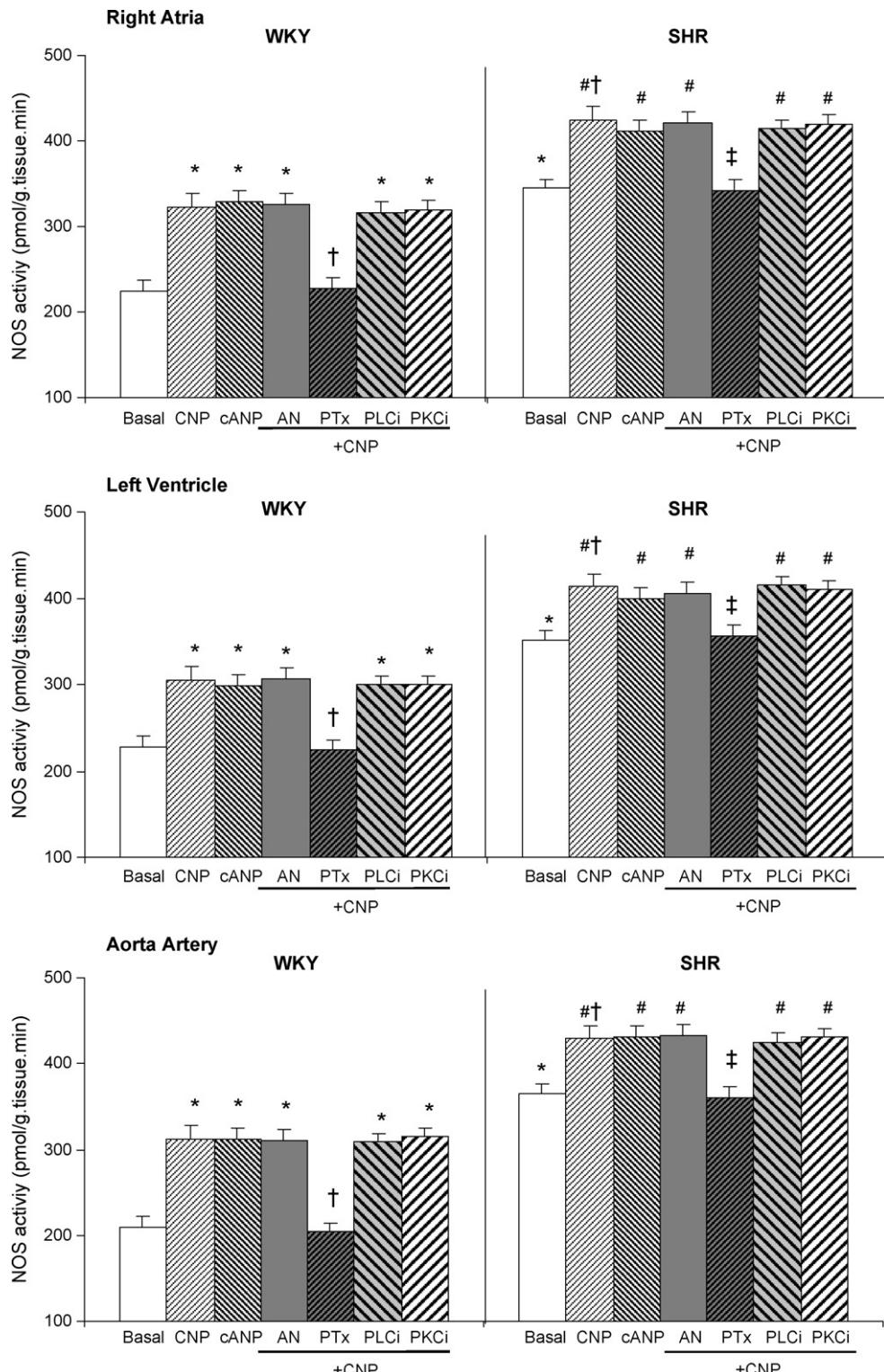

The elevated arterial blood pressure in this model of hypertension is associated with significant increase in urinary excretion of NO metabolites, indicating that the NO system is upregulated in adult SHR in accordance with previous reports [23].

Furthermore, our results showed that basal NOS activity in the heart and aorta artery was higher in hypertensive animals than in normotensive ones. We also showed that the blockade of iNOS diminished basal activity of the enzyme. The fact that the decrease in basal NOS activity induced by Ca-calmodulin inhibition was more marked in WKY than in SHR, confirm that iNOS, a Ca-calmodulin independent enzyme, is the main isoform involved in basal NOS activity in SHR.

This model of hypertension shows controversial results concerning the expression of the different NOS isoforms. Studies performed in different vascular beds showed an increase in the expression of iNOS and eNOS in 8- and 12-week-old SHR [37,38]. Conversely, other authors found a decrease in eNOS and iNOS expression in cardiac myocyte and vascular smooth muscle of hypertensive animals [13,16]. With regards to these findings, our results show that the three isoforms of the enzyme are expressed in the right atria and left ventricle, and that eNOS and iNOS were expressed in the aorta in both groups of animals. Accordingly, tissues from hypertensive rats showed greater protein levels of the three isoforms than normotensive ones. These results suggest that the up-regulation of NOS isoforms in vascular and cardiac tissues may play an important role in the compensatory mechanism in response to elevation of systolic blood pressure during development of hypertension in SHR.

Our *in vivo* studies showed that CNP treatment reduced MAP in both, normotensive and hypertensive animals. In addition, the hypotensive effect of CNP was lower in hypertensive animals than normotensive ones, indicating an impaired response to the peptide in this model.

Moreover, we also showed that acute infusion with CNP increases NOS activity in the heart and aorta artery in both groups. However, in agreement with our previous results in normotensive rats, the increase in NOS activity is not associated with an increase in NOS protein expression in this model of hypertension. This fact indicates that CNP would exert a positive effect on NOS activity, without modifying expression of the enzyme.


Fig. 4. Changes in CNP-induced cardiovascular NOS activity provoked by aminoguanidine (AG, iNOS inhibitor), 7-nitroindazole (7NI, nNOS specific inhibitor) or calmidazolium (Cz, calmodulin antagonist) in SHR and WKY. Data are mean \pm SEM, $n=8$ rats/group. * $p < 0.01$ vs. basal activity WKY; † $p < 0.01$ vs. CNP-induced activity WKY; # $p < 0.01$ vs. basal activity SHR; ‡ $p < 0.01$ vs. CNP-induced activity SHR.

Additionally, we have also shown that CNP increased NOS activity in cardiac atria and ventricle and in aorta *in vivo* as well as *in vitro* in both groups, suggesting that NOS stimulation induced by CNP infusion is independent of the hemodynamic changes induced by the peptide in this model of hypertension.

With regard to the NOS isoform involved in CNP effects, nNOS did not participate since its inhibition did not modify activation of the enzyme induced by CNP. Moreover, the blockade of iNOS induced a similar drop in basal NOS activity than in CNP-stimulated one. These findings suggest that neither nNOS nor iNOS participate in the interaction between CNP and the NO system in this model

of hypertension. Moreover, increased NOS activity induced by CNP was abolished by the antagonist of calmodulin, suggesting that the signaling cascade is mediated by Ca^{2+} /calmodulin-dependent NOS. The present findings indicate that eNOS is the isoform involved in the effects of CNP on NO-system in hypertensive animals.

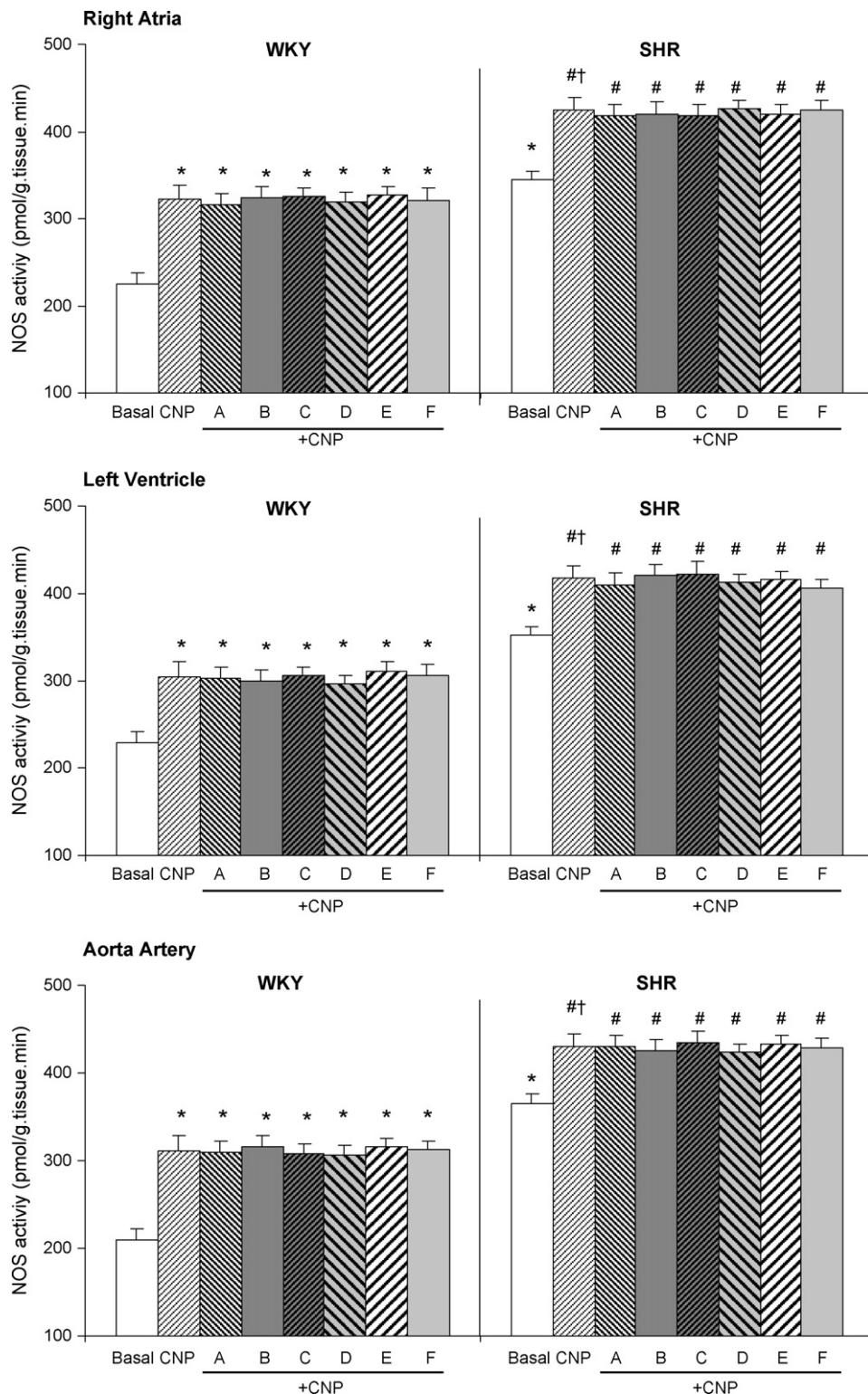

With respect to the natriuretic peptide receptor involved in this mechanism, our results showed that the specific NPR-C receptor agonist, cANP(4-23), in the same way as CNP, induced an increase in NOS activity, indicating that this receptor is involved in NOS activation by CNP in the heart and aorta in both groups of animals. Although, Simon et al. showed in pulmonary endothelial cells

Fig. 5. Changes in CNP-induced cardiovascular NOS activity provoked by cANP(4–23), anantin (AN, NPR-C receptor selective agonist), pertussis toxin (PTx, Gi_{1–2} protein inhibitor), U-73122 (PLCi, phospholipase C inhibitor) or GF-109203 (PKCi, protein kinase C inhibitor) in SHR and WKY. Data are mean \pm SEM, $n=8$ rats/group. * $p < 0.01$ vs. basal activity WKY; † $p < 0.01$ vs. CNP-induced activity WKY; # $p < 0.01$ vs. basal activity SHR; ‡ $p < 0.01$ vs. CNP-induced activity SHR.

the hyperpolarization induced by CNP involved NPR-B receptors to activate eNOS, we demonstrated that the blockade of NPR-A/NPR-B did not modify the effect of CNP on cardiovascular NOS [35]. This fact confirms that NPR-C is the unique natriuretic peptide receptor involved in the interaction between CNP and NOS in heart and aorta of normotensive and hypertensive animals.

With regard to NPR-C signaling pathway and NOS stimulation, previous results showed that CNP interacts with Gi coupled NPR-C receptor, but another G protein could also participate in this pathway, and we also reported that renal NOS stimulation via atrial natriuretic peptide is blocked when G protein is inhibited in normotensive rats [10,17]. Accordingly, our present results show that

Fig. 6. Changes in CNP-induced cardiovascular NOS activity provoked by MAPKs and PI3K/Akt pathway inhibitors in SHR and WKY. MAPKs: mitogen-activated protein kinases; A: wortmannin (PI3-K/Akt pathway inhibitor); B: LY-294002 (PI3K inhibitor); C: U-0126 (p42/p44 MAPK inhibitor); D: SB-203580 (p38 MAPK inhibitor); E: SP-600125 (JNK 1/2 inhibitor); F: PD-98059 (MEK1/ERK 1/2 inhibitor). Data are mean \pm SEM, $n=8$ rats/group. * $p<0.01$ vs. basal activity WKY; $^{\dagger}p<0.01$ vs. CNP-induced activity WKY; $^{\#}p<0.01$ vs. basal activity SHR.

cardiovascular NOS activation induced by CNP is inhibited by pertussis toxin, indicating that a Gi is involved in this mechanism in hypertensive animals. Meanwhile, Marcil et al. have demonstrated that there are no differences in Gi protein abundance and mRNA expression in the heart between SHR and WKY [24]. Our stud-

ies show that NOS response to CNP in hypertensive animals is impaired in all studied tissues when the interaction involves the NPR-C receptor and Gi protein pathway. In view of this fact we could speculate that this receptor or any of its pathway steps are altered in this model of hypertension.

Recent findings suggest that, in the exocrine pancreas, by activating NPR-C, atrial natriuretic peptide induces the release of G $\beta\gamma$ subunits that lead to PLC stimulation and subsequent PKC activation [25]. However, in the present work the selective inhibition of PLC or PKC failed to alter cardiovascular NOS activation induced by CNP in SHR and WKY.

On the other hand, our results failed to demonstrate participation of the PI3 kinase/Akt pathway in the signaling cascade mediating eNOS activation in the studied tissues while other authors have shown that this pathway is involved in eNOS activation in different experimental conditions [34].

Recent findings of Aregian et al. have shown that NO induces the downregulation of NPR-C [5]. Besides taking into account these findings and our results, we can speculate that the activation of NO production via CNP contributes to modulate CNP actions, through NPR-C receptor. Moreover, Aregian et al. also postulate that NO-induced decreased expression of NPR-C may upregulate the expression of guanylyl cyclase receptor NPR-A which binds with high affinity. In this regard, a cross-talk between NPR-C and NPR-A has been shown [5]. Furthermore, we showed that ANP stimulates cardiovascular eNOS via NPR-A and NPR-C, and this activation is impaired in normotensive and hypertensive animals [9,11]. Then impaired ANP actions in this model of hypertension may be related, almost in part, to a minor NOS activation via CNP.

Taken together, it may be suggested that the NOS impaired response to the natriuretic peptides, CNP and ANP, through linked pathways, would be involved in the maintaining of the high arterial blood pressure levels, in this model of hypertension.

Moreover, we cannot dismiss the possibility that NOS response to CNP in SHR, a model in which basal activity is enhanced may be the upper limit of the enzyme response. This fact could also explain the impaired response to CNP observed in this model of hypertension.

5. Conclusions

It is well known that CNP inhibits hypertrophy of cardiomyocytes and has hyperpolarizing actions on different vascular beds [7,21]. We previously demonstrated that these physiological effects of CNP involve the activation of NOS via NPR-C [10]. The present results show that the cardiovascular effects of CNP would be mediated, at least in part, by the interaction with the NO system in this model of genetic hypertension. According to our results neither nNOS nor iNOS, which activity is increased in this model of hypertension, would participate in NO system stimulation via CNP. In this regard we postulate that CNP induces eNOS stimulation interacting with the NPR-C receptor in heart and aorta artery, activating a pathway that involves G i_{1-2} protein and Ca $^{2+}$ /calmodulin. Taking these above mentioned findings into account, the impaired NO-system response to CNP in hypertensive animals, could participate in the development and/or maintenance of arterial hypertension in this model of genetic hypertension.

In patients with heart failure, levels of endogenous natriuretic peptides are increased and the body becomes resistant to their vasodilatory, diuretic and natriuretic effects. Nevertheless, exogenous natriuretic peptides infusion appears to overcome this apparent resistance, at least temporarily.

CNP has not yet found a role in the pharmacological treatments of arterial hypertension and associated pathologies. The study of the molecular mechanisms in models of arterial hypertension and their relation with other regulating systems, like the NO system, can contribute to the development of new therapeutic strategies.

Acknowledgements

The authors thank Daniela Rodríguez Ierace and Sebastián Finella for their technical assistance, Sandra Landín for secretarial work and Ana Borthwick for proofreading and language assistance.

This work was supported by the University of Buenos Aires [UBACYT: B040, 2004–2007, UBACYT: B038, 2008–2010]; the CONICET [PIP-5206]; and the IQUIMEFA-CONICET, Argentina.

References

- Ahluwalia A, Hobbs AJ. Endothelium-derived C-type natriuretic peptide: more than just a hyperpolarizing factor. *Trends Pharmacol Sci* 2005;26:162–7.
- Ahluwalia A, MacAllister RJ, Hobbs AJ. Vascular actions of natriuretic peptides. *Basic Res Cardiol* 2004;99:83–9.
- Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. *Biochem J* 2001;357:593–615.
- Anand-Srivastava MB, Sehl PD, Lowe DG. Cytoplasmic domain of natriuretic peptide receptor-C inhibits adenylyl cyclase. *J Biol Chem* 1996;271:19324–9.
- Arejan M, Li Y, Anand-Srivastava MB. Nitric oxide attenuates the expression of natriuretic peptide receptor C and associated adenylyl cyclase signaling in aortic vascular smooth muscle cells: role of MAPK. *Am J Physiol Heart Circ Physiol* 2009;296(6):H1859–67.
- Brunner F, Wolkart G. Relaxant effect of C-type natriuretic peptide involves endothelium and nitric oxide-cGMP system in rat coronary microvasculature. *Cardiovasc Res* 2001;51:577–84.
- Chauhan SD, Nilsson H, Ahluwalia A, Hobbs AJ. Release of C-type natriuretic peptide accounts for the biological activity of endothelium-derived hyperpolarizing factor. *Proc Natl Acad Sci* 2003;100:1426–31.
- Chen HH, Burnett Jr JC. C-type natriuretic peptide: the endothelial component of the natriuretic peptide system. *J Cardiovasc Pharmacol* 1998;32:S22–8.
- Costa MA, González Bosc L, Majowicz M, Vidal NA, Balaszcuk AM, Arranz CT. Atrial natriuretic peptide (ANP) modifies arterial blood pressure through nitric oxide (NO) pathway in rat. *Hypertension* 2000;35(5):1119–23.
- Costa MA, Elesgaray R, Caniffi C, Fellet A, Arranz C. Role of cardiovascular nitric oxide system in C-type natriuretic peptide effects. *Biochem Biophys Res Commun* 2007;359:180–6.
- Costa MA, Elesgaray R, Caniffi C, Fellet A, Mac Laughlin M, Arranz C. Role of nitric oxide as a key mediator on cardiovascular actions of atrial natriuretic peptide in spontaneously hypertensive rats. *Am J Physiol Heart Circ Physiol* 2010;298(3):H778–86.
- Costa MA, Elesgaray R, Loria A, Balaszcuk AM, Arranz C. Atrial natriuretic peptide influence on nitric oxide system in kidney and heart. *Regul Pept* 2004;118:151–7.
- Crabot M, Coste P, Paccalin M, Tariot L, Daret D, Besse D, et al. Reduce basal NO-mediated dilation and decreased NO-synthase expression in coronary vessels of spontaneously hypertensive rats. *J Mol Cell Cardiol* 1997;29:55–65.
- D'Souza SP, Davis M, Baxter GF. Autocrine and paracrine actions of natriuretic peptides in the heart. *Pharmacol Ther* 2004;101:113–29.
- De Forstermann U, Schmidt HW, Pollock JS, Sheng H, Mitchell JA, Warner TD, et al. Isoforms of nitric oxide synthase: characterization and purification from different cell types. *Biochem Pharmacol* 1991;42:1849–57.
- Dubois G. Decreased L-arginine–nitric oxide pathway in cultured myoblasts from spontaneously hypertensive versus normotensive Wistar-Kyoto rats. *FEBS* 1996;392:242–412.
- Elesgaray R, Caniffi C, Rodríguez Ierace D, Visintini Jaime MF, Fellet A, Arranz C, et al. Signaling cascade that mediates endothelial nitric oxide synthase activation induced by atrial natriuretic peptide. *Regul Pept* 2008;151:130–4.
- Félix M, Vanhoutte PM. Endothelial dysfunction: a multifaceted disorder. *Am J Physiol Heart Circ Physiol* 2006;291:H985–1002.
- Hobbs A, Foster P, Prescott C, Scotland R, Ahluwalia A. Natriuretic peptide receptor-C regulates coronary blood flow and prevents myocardial ischemia/reperfusion injury: novel cardioprotective role for endothelium-derived C-type natriuretic peptide. *Circulation* 2004;110:1231–5.
- Kan WH, Hsu JT, Ba ZF, Schwacha MG, Chen J, Choudhry MA, et al. p38 MAPK-dependent eNOS upregulation is critical for 17 β -estradiol-mediated cardioprotection following trauma-hemorrhage. *Am J Physiol Heart Circ Physiol* 2008;294:H2627–36.
- Kempf T, Wollert KC. Nitric oxide and the enigma of cardiac hypertrophy. *Bioessays* 2004;26:608–15.
- Komatsu Y, Itoh, Suga S, Ogawa Y, Hama N, Kishimoto I, et al. Regulation of endothelial production of C-type natriuretic peptide in coculture with vascular smooth muscle cells. Role of vascular natriuretic peptide system in vascular growth inhibition. *Circ Res* 1996;78:606–14.
- Llorens S, Fernández AP, Nava E. Cardiovascular and renal alterations on the nitric oxide pathway in spontaneous hypertension and ageing. *Clin Hemorheol Microcirc* 2007;37:149–56.
- Marcel J, Thibault C, Anand-Srivastava MB. Enhanced expression of G i -protein precedes the development of blood pressure in spontaneously hypertensive rats. *J Mol Cell Cardiol* 1997;29:1009–22.
- McClay JS, Chatterjee PK, Jardine AG, Hawksworth GM. Atrial natriuretic factor modulates nitric oxide production: an ANF-C receptor-mediated effect. *J Hypertension* 1995;13:625–30.

[26] Mount PF, Kemp BE, Power DA. Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. *J Mol Cell Cardiol* 2007;42:271–9.

[27] Murthy KS, Teng BQ, Zhou H, Jin JG, Grider JR, Makhlouf GM. Gi-1/Gi-2-dependent signaling by single-transmembrane natriuretic peptide clearance receptor. *Am J Physiol Gastrointest Liver Physiol* 2000;278:C974–80.

[28] Nakai K, Yoneda K, Morio T, Igarashi J, Kosaka H, Kubota Y. HB-EGF-induced VEGF production and eNOS activation depend on both PI3 kinase and MAP kinase in HaCaT cells. *J Dermatol Sci* 2009;55:170–8.

[29] Nishikimi T, Maeda N, Matsuoka H. The role of natriuretic peptides in cardioprotection. *Cardiovasc Res* 2006;69:318–28.

[30] Pandey KN. Biology of natriuretic peptides and their receptors. *Peptides* 2005;26:901–32.

[31] Peng X, Haldar S, Deshpande S, Irani K, Kass DA. Wall stiffness suppresses Akt/eNOS and cytoprotection in pulse-perfused endothelium. *Hypertension* 2003;41:378–81.

[32] Piech A, Dessy C, Havaux X, Feron F, Balligand JL. Differential regulation of nitric oxide synthases and their allosteric regulators in heart and vessels of hypertensive rats. *Cardiovasc Res* 2003;57:456–67.

[33] Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. *Endocr Rev* 2006;27:47–72.

[34] Sabbatini ME, Vatta M, Davio C, Bianciotti L. *Am J Physiol Gastrointest Liver Physiol* 2007;292:349–57.

[35] Simon A, Harrington EO, Liu GX, Koren G, Choudhary G. Mechanism of C-type natriuretic peptide-induced endothelial cell hyperpolarization. *Am J Physiol Lung Cell Mol Physiol* 2009;296:L248–56.

[36] Tokudome T, Horio T, Soeki T, Mori K, Kishimoto K, Suga S, et al. Inhibitory effect of C-type natriuretic peptide (CNP) on cultured cardiac myocyte hypertrophy: interference between CNP and Endothelin-1 signaling pathways. *Endocrinology* 2004;145:2131–40.

[37] Vapaatalo H, Mervaala E, Nurminen ML. Role of endothelium and nitric oxide in experimental hypertension. *Physiol Res* 2000;49:1–10.

[38] Vaziri ND, Ni Z, Oveis F. Upregulation of renal and vascular nitric oxide synthase in young spontaneously hypertensive rats. *Hypertension* 1998;31:1248–54.

[39] Verdon CP, Burton BA, Prior RL. Sample pretreatment with nitrate reductase and glucose-6-phosphate dehydrogenase quantitatively reduces nitrate while avoiding interference by NADP⁺ when the Griess reaction is used to assay for nitrite. *Anal Biochem* 1995;224:502–8.

[40] Wilkins MR, Redondo J, Brown LA. The natriuretic peptide family. *Lancet* 1997;349:1307–10.

[41] Woodard GE, Rosado JA. Natriuretic peptides in vascular physiology and pathology. *Int Rev Cell Mol Biol* 2008;268:59–93.

Glossary

7-NI: 7-nitroindazole, nNOS specific inhibitor
 AN: anantin, NPR-A/B receptor antagonist
 AG: aminoguanidine, iNOS inhibitor
 cANP(4–23): NPR-C receptor selective agonist
 cGMP: cyclic guanosine monophosphate
 CNP: C-type natriuretic peptide
 Cz: calmidazolium, calmodulin antagonist
 eNOS: endothelial nitric oxide synthase
 iNOS: inducible nitric oxide synthase
 L-NAME: L-nitro arginine methyl ester, NOS inhibitor
 MAP: mean arterial pressure
 MAPK: mitogen-activated protein kinase
 nNOS: neuronal nitric oxide synthase
 NO: nitric oxide
 NOS: nitric oxide synthase
 NO_x: nitrites and nitrates excretion
 NPR-A: A-type natriuretic peptide receptor
 NPR-B: B-type natriuretic peptide receptor
 NPR-C: C-type natriuretic peptide receptor
 PTx: pertussis toxin, Gi_{1–2} protein inhibitor
 SHR: spontaneously hypertensive rats
 WKY: Wistar Kyoto rats