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In this paper we classify the irreducible quasifinite highest weight modules over
the symplectic type Lie subalgebra of the Lie algebra of all regular differential
operators on circle that kill constants. We also realize them in terms of the repre-
sentations theory of the complex Lie algebra g�[m]

∞ of infinite matrices with a finite
number of non-zero diagonals with entries in the algebra of truncated polynomials
and the corresponding subalgebras of type C. C© 2011 American Institute of Physics.
[doi:10.1063/1.3596180]

I. INTRODUCTION

The study of representations of the Lie algebra W1+∞(the universal central extension of the Lie
algebra of differential operators on the circle) was initiated in Ref. 7, where a characterization of its
irreducible quasifinite highest weight representations was given. These modules were constructed
in terms of irreducible highest weight representations of the Lie algebra of infinite matrices and the
unitary ones were described. This analysis was continued in the framework of vertex algebra theory
for the W1+∞ algebra4, 8 and for its matrix version.3 The case of orthogonal subalgebras of W1+∞
was studied in Ref. 9. The symplectic subalgebra of W1+∞ was considered in Ref. 1 in relation to
number theory.

In Ref. 6 a similar study was carried out for the Lie subalgebras W∞,p of W1+∞, where W∞,p

(p ∈ C[x]) is the central extension of the Lie algebra Dp(t∂t ) of differential operators on the circle
that are a multiple of p(t∂t ). The most important of these subalgebras is W∞ = W∞,x that is obtained
by taking p(x). In this paper, Kac and Liberati also give some general results on the characterization
of quasifinite representations of any Z-graded Lie algebra. In the present paper we classify all
irreducible quasifinite highest weight modules of the symplectic type DN

x,θ , subalgebra of the Lie
algebra of all regular differential operators on circle that kill constants, given by the minus fixed
points of the anti-involution θ related to those introduced in Ref. 10.

The paper is organized as follows: In Sec. II we present some standard facts of representations
of ĝ�∞ and the subalgebra of type C . In Sec. III we introduce the subalgebra DN

x,θ , and we study
its structure of parabolic subalgebras. In Sec. IV a characterization of quasifinite highest weight
modules of D̂N

x,θ is given. In Sec. V we establish the interplay between DN
x,θ ĝ�∞ and its subalgebra

of type C. Finally, in Sec. VI we give the realization of quasifinite highest weight modules of D̂N
x,θ .

II. LIE ALGEBRAS ĝ�
[m]
∞ AND c[m]

∞

Denote by Rm = C[u]/(um+1), the quotient algebra of the polynomial algebra C[u] by the ideal
generated by um+1(m ∈ Z�0). Let 1 be the identity element in Rm . Denote by g�[m]

∞ the complex
Lie algebra of all infinite matrices (ai j )i, j∈Z with only finitely many nonzero diagonals with entries
in Rm . Denote by Ei, j the infinite matrix with 1 at (i, j)-entry and 0 elsewhere. There is a natural
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automorphism ν of g�[m]
∞ given by

ν(Ei, j ) = Ei+1, j+1. (2.1)

Let the weight of Ei, j be j − i . This defines the principal Z-gradation g�[m]
∞ = ⊕ j∈Z

(
g�[m]

∞
)

j .

Denote by ĝ�
[m]
∞ = g�[m]

∞ ⊕ Rm the central extension of g�[m]
∞ given by the following two-cocycle

with values in Rm :

C(A, B) = Tr([J, A] B), (2.2)

where J = ∑
i≤0 Ei,i . The Z-gradation of the Lie algebra g�[m]

∞ extends to ĝ�
[m]
∞ by putting the

weight of Rm to be 0. In particular we have the triangular decomposition

ĝ�
[m]
∞ =

(
ĝ�

[m]
∞
)

−
⊕
(

ĝ�
[m]
∞
)

0
⊕
(

ĝ�
[m]
∞
)

+
, (2.3)

where (
ĝ�

[m]
∞
)

±
=
⊕
j∈N

(
ĝ�

[m]
∞
)

± j
and

(
ĝ�

[m]
∞
)

0
= (

g�[m]
∞
)

0 ⊕ Rm .

Given λ ∈
(

ĝ�
[m]
∞
)∗

0
, we let,

ci = λ(ui ),
aλ

(i)
j = λ(ui E j, j ),

ah(i)
j = aλ

(i)
j − aλ

(i)
j+1 + δ j,0 ci , (2.4)

where j ∈ Z and i = 0, . . . , m. Let L(ĝ�
[m]
∞ , λ) be the irreducible highest weight ĝ�

[m]
∞ -module with

highest weight λ. The aλ
(i)
j are called the labels and ci are the central charges of L(ĝ�

[m]
∞ , λ).

Consider the vector space Rm[t, t−1], and take the Rm-basis vi = t−i , i ∈ Z. Now consider the
following C-bilinear form on Rm[t, t−1]:

C(umvi , unv j ) = um(−un)δi,1− j . (2.5)

Denote by c̄[m]
∞ the Lie subalgebra of g�[m]

∞ , which preserves the bilinear form C( , ). We have

c̄[m]
∞ = {(ai j (u))i, j∈Z ∈ g�[m]

∞ | ai j (u) = (−1)i+ j+1a1− j,1−i (−u) } .

Denote by c[m]
∞ = c̄[m]

∞ ⊕ Rm the central extension of c̄[m]
∞ given by the restriction of the two-cocycle

(2.2), defined in g�[m]
∞ . This subalgebra inherits from ĝ�

[m]
∞ the principal Z-gradation and the trian-

gular decomposition, (see Refs. 5 and 9 for notation)

c[m]
∞ = ⊕ j∈Z(c[m]

∞ ) j c[m]
∞ = (c[m]

∞ )+ ⊕ (c[m]
∞ )0 ⊕ (c[m]

∞ )− .

In particular when m = 0, we have the usual Lie subalgebra of g�∞, denoted by c∞.
Given λ ∈ (c[m]

∞ )∗0, denote by L(c[m]
∞ ; λ) the irreducible highest weight module over c[m]

∞ with
highest weight λ. For each λ ∈ (c[m]

∞ )∗0, we let

ci = λ(ui ),
cλ

(i)
j = λ(ui E j, j − (−u)i E1− j,1− j ),

ch(i)
j = cλ

(i)
j − cλ

(i)
1+ j ,

ch(i)
0 = cλ

(i)
1 + ci (i even), (2.6)

where j ∈ N and i = 0, . . . , m. The cλ
(i)
j are called the labels and ci are the ¨central charges of

L(c[m]
∞ , λ).

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



063507-3 QHWM of a symplectic type subalgebra J. Math. Phys. 52, 063507 (2011)

III. THE SUBALGEBRA D̂N
θ,x AND ITS STRUCTURE OF PARABOLIC SUBALGEBRAS

Let N be a positive integer. Denote byDN
as the associative algebra of all regular matrix differential

operators on C× of the form

E = ek(t)∂k
t + ek−1(t)∂k−1

t + · · · + e0(t),

where

ei (t) ∈ MatNC[t, t−1]

and denote by DN the corresponding Lie algebra. Here and further we denote by MatN R the
associative algebra of all N × N matrices over an algebra R.

Set D = t∂t . The elements t k Dmei, j (k ∈ Z, m ∈ Z�0, i, j ∈ {1 . . . N }) form a basis of DN .

Here and further ei, j is the standard basis of MatNC.

We have the following two-cocycle on DN , (cf. Ref. 3)

ψ(tr f (D)A, t s g(D)B) =
⎧⎨⎩tr(AB)

∑
−r≤m≤−1

f (m)g(m + r ) if r = −s > 0

0 otherwise,
(3.1)

where r, s ∈ Z, f, g ∈ C[w], A, B ∈ MatNC and tr is the usual trace.
Let

D̂N = DN
⊕

CC,

denote the central extension ofDN by a one-dimensional centerCC corresponding to the two-cocycle
ψ. The bracket in D̂N is given by

[tr f (D)A, t s g(D)B] = tr+s
(

f (D + s)g(D)AB − f (D)g(D + r )B A
)

+ ψ
(
tr f (D)A, t s g(D)B

)
C. (3.2)

Define the weight wt on D̂N by

wt t k f (D) ei, j = k N + i − j, wt C = 0. (3.3)

This gives us the principal Z-gradation ofD̂N :

D̂N =
⊕
j∈Z

(D̂N ) j . (3.4)

Consider the following Lie subalgebra of DN

DN
x = DN DI.

Denote by W N
∞ the central extension of DN

x by CC corresponding to the restriction of the
two-cocycle ψ.

Thus, W N
∞ inherits the principal gradation of D̂N , namely,

W N
∞ =

⊕
j∈Z

(W N
∞) j .

Consider

θ̃ (t k f (D)Dei, j ) = −t k f (−D − k)De j,i ,

the anti-involution corresponding to those that defines the symplectic type conformal subalgebra
in gcN ,x (cf. Ref. 10 p. 56). This anti-involution does not preserve the principal gradation of
DN . However, it is conjugated by the automorphism σ (t k f (D)Dei, j ) = t k f (D)Dei,N+1− j , to the
following anti-involution

θ (t k f (D)Dei, j ) = −t k f (−D − k)DeN+1− j,N+1−i , (3.5)
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where k ∈ Z. Observe that this coincides with Bloch’s anti-involution for N=1 (cf. Ref. 1).
We denote by DN

θ,x the Lie subalgebra of DN
x consisting of minus θ -fixed points.

Here and further we denote Dk = D + k
2 . A set of generators of this subalgebra is

{t k
(

f (Dk)Dei,N+1− j + f (−Dk)De j,N+1−i
)

: k ∈ Z, f ∈ C[x], 1 � i < j � N }
together with the generators in the opposite diagonal

{t k f (Dk)Dei,N+1−i : k ∈ Z, f ∈ C[x] even , 1 � i � N }.
We denote again by ψ the restriction of the two-cocycle in (3.1) to DN

θ,x . Denote by D̂N
θ,x

the central extension of DN
θ,x by the one dimensional center CC corresponding to the two-cocycle

above.Thus, D̂N
θ,x inherits the principal gradation of W N

∞, namely,

D̂N
θ,x =

⊕
j∈Z

(D̂N
θ,x ) j .

Recall that a parabolic subalgebraP of D̂N
θ,x is a subalgebraP = ⊕

j∈Z P j , whereP j = (D̂N
θ,x ) j

if j � 0, and P j �= 0 for some j < 0.

Given a ∈ (D̂N
θ,x )−1, with a �= 0, define Pa = ⊕

j∈Z Pa
j , where Pa

j = (D̂N
θ,x ) j if j � 0, and

recursively

Pa
−1 =

∑
[. . . [[a, (D̂N

θ,x )0], (D̂N
θ,x )0], . . .] and Pa

− j−1 = [Pa
−1,Pa

− j ],

for j > 0.
Here and further, we denote by

δn,even =
{

1 if n is even

0 otherwise,
(3.6)

for any n ∈ N. Similarly for δn,odd. Also we denote by [s] the closest integer to s, which is not
larger than s.

Remark 3.1:

(a) We have that the following properties are satisfied by D̂N
θ,x :

(P1) (D̂N
θ,x )0 is commutative,

(P2) if a ∈ (D̂N
θ,x )− j ( j > 0) and [a, (D̂N

θ,x )1] = 0, then a = 0.

Observe that (P1) is immediate from the definition of (D̂N
θ,x )0. (P2) follows by computing the

bracket

0 = [a , Deq+1,q + DeN+1−q,N−q ],

with a ∈ (D̂θ,x )− j ; j, q ∈ N,1 ≤ q ≤ [
N
2

]− δN ,even, under the following considerations:
• If j = k N , k ∈ Z>0, let q be such that 1 � q �

[
N
2

]− δN ,even;
• If j = k N + r, k ∈ Z>0, with 1 ≤ r ≤ N − 1 and suppose that 1 ≤ r <

[
N
2

]− δN ,even then
q is chosen in {

2 ≤ q ≤ N − r + 1

2

}⋃{[
r − 1

2

]
− δN ,even ≤ q ≤ r

}
;

and if
[

N
2

]− δN ,even ≤ r ≤ N − 1,q is running in{
2 ≤ q ≤ N − r + 1

2

}⋃{
1 ≤ q ≤

[
r − 1

2

]
+ δN ,even

}⋃
{q = N − r + 1} .

(b) By Lemmas 2.1 and 2.2 in Ref. 6 we have that for any parabolic subalgebra P of D̂N
θ,x ,

P−k �= 0, implies P−k+1 �= 0 and Pa is the minimal subalgebra containing a.
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Following Ref. 6 we call a parabolic subalgebra Pnon-degenerate if P− j has finite codimension

in (D̂N
θ,x )− j , for all j > 0, and an element a ∈ (D̂N

θ,x )−1 non-degenerate if Pa is non-degenerate.

Let P be a parabolic subalgebra of D̂N
θ,x . Using (3.3) and observing that for each positive integer

j there exists a positive integer k such that j = k N + r = (k + 1)N − (N − r ) with 0 � r � N − 1,
we can describe P− j as follows:

P− j =
{

t−k
(

fi (D−k) ei, i+r + fi (−D−k) eN+1−r−i, N+1−i

)
: fi ∈ I i

− j and

1 ≤ i ≤
[

N + 1 − r

2

] }
⋃ {

t−(k+1)
(

gi (D−(k+1)) ei, i−N+r + gi (−D−(k+1)) e2N+1−i−r, N+1−i

)
: gi ∈ Li

− j and N − r + 1 ≤ i ≤
[

2N − r + 1

2

] }
,

where I i
− j and Li

j are subspaces of wC[w]. Let us take i such that 1 ≤ i ≤ [
N+1−r

2

]
, fi (w) ∈ I i

− j ,

and gi (w) ∈ C[w]. Computing the bracket[
t−k
(

fi (Dk)ei, i+r+ fi (−D−k)eN+1−i−r, N+1−i

)
,

gi (D0)Dei, i + gi (−D0)DeN+1−i, N+1−i

]
for j = Nk with N ≥ 2, we see that I i

− j satisfies

Ai
j I i

− j ⊆ I i
− j , (3.7)

where Ai
j = {gi (w)w − gi (w − k)(w − k) : gi (w) ∈ C[w]} . For j = Nk + r with N > 1, r �= 0,

as above, we see that I i
− j satisfies (3.7) for Ai

j = {gi (w − k)(w + k) : gi (w) ∈ C[w]} .

Now take l such that N − r + 1 ≤ l ≤ [
2N+1−r

2

]
, gl(w) ∈ C[w], and fl(w) ∈ Ll

− j . Computing
the bracket[

t−(k+1)
(

fl (D(k+1))el, l−N+r+ fl (−D−(k+1))e2N+1−l−r, N+1−l

)
,

gl(D0)Del, l + gl(−D0)DeN+1−l, N+1−l

]
for j = Nk + r with N > 1, r �= 0 we see that Ll

− j satisfies

Al
j Ll

− j ⊆ Ll
− j , (3.8)

where Al
j = {gl(w − (k + 1)(w − (k + 1)) : gl(w) ∈ C[w]} .

Thus we have proved the following result:

Lemma 3.2:

(a) I i
− j and Ll

− j are ideals for all j ∈ N where j = k N + r with 0 � r � N − 1 and 1 ≤ i ≤[
N+1−r

2

]
, 1 ≤ l ≤ [

2N+1−r
2

]
.

(b) If I i
− j �= 0, and Ll

− j �= 0 then they have finite codimension in C[w].

Proof: The proof is analogous to that of Lemma 3.5 in Ref. 6. �
Now we have the following important proposition:
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Proposition 3.3:

(a) Any non-zero element d ∈ (D̂N
θ,x )−1

d =
[ N

2 ]−δN ,even∑
i=1

fi (D0)Dei, i+1 + fi (−D0)DeN−i, N+1−i

+ δN ,even f (D0)De N
2 , N

2 +1 + t−1h(D−1)DeN ,1 ∈ (D̂N
θ,x )−1,

where fi (w), f (w), and h(w) are non-zero polynomials with f and h even, is non-degenerate.
(b) Let d ∈ (D̂N

θ,x )−1 as in (a). Then

(D̂N
θ,x )d

0 := [(D̂N
θ,x )1, d]

= span
{

gk (D) D (D)l
(
ek+1,k+1 − ek,k

)+
gk (−D) D (−D)l

(
eN−k,N−k − eN+1−k,N+1−k

)
:

k = 1, . . . ,

[
N

2

]
− δN ,even and l ∈ Z�0

}
⋃

δN ,even
{

g(D)(D)r D
(

e N
2 , N

2
− e N

2 +1, N
2 +1

)
r ∈ Z�0, even and g ∈ C[w] is odd

}
⋃{

h(D−1)D(Dl + (−D − 1)l) e1,1 + h(−D−1)D((D − 1)l

+ (−D)l) eN ,N : l ∈ Z�0, even integer and h ∈ C[w] is even
}
,

where gk(D) = fk(D)D + fN−k(−D)D with k = 1, . . . ,
[

N
2

]− δN ,even and g(D) = f (D)D.

Proof: Let d ∈ (D̂N
θ,x )−1, as in (a), since each fi (w), f (w), and h(w) is a non-zero polynomial

L N
− j and I i

− j �= 0 for 1 ≤ i ≤ N − 1 and for all j ≥ 1. So, by lemma 3.2 (b), part (a) follows. Finally,
part (b) follows by computing the commutator [a, d] with a = (D0)l D ek+1,k + (−D0)l D eN+1−k,N−k

with k = 1 . . . [ N
2 ] − δN ,even;a = δN ,even (D0)r De N

2 +1, N
2

and a = t(D1)m D e1,N with l, r, m ∈
Z≥0 and r, m even integers. �

Remark 3.4: In Ref. 11 Proposition 3.3 (a) and (b) are not correct. There exists parabolic
subalgebra pd of D̂N

o for N > 1, such that pd
j �= 0 for some j < 0, but pd

j = 0 for j 
 0, d ∈ (D̂N
o )−1

(cf. Ref. 3. Remark 2.2). For example

d = f (D0)De1, 2 + f (−D0)DeN−1, N , f ∈ C[w].

It should be restated as Proposition 3.3 (a) above with the corresponding adjustment. The remaining
results in Ref. 11 are valid since we always considered non-degenerate elements for the proof of the
main theorem.Summarizing, we have that the following properties are satisfied by D̂N

θ,x :

(P1) (D̂N
θ,x )0 is commutative,

(P2) if a ∈ (D̂N
θ,x )− j ( j > 0) and [a, (D̂N

θ,x )1] = 0, then a = 0,

(P3) if P is non-degenerate parabolic subalgebra of D̂N
θ,x , then there exists a non-degenerate

element a such that Pa ⊆ P .

Observe that (P3) follows from Proposition 3.3 (a) and the fact that P is non-degenerate.
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IV. CHARACTERIZATION OF QUASIFINITE HIGHEST WEIGHT MODULES OF D̂N
θ,x

Now, we begin our study of quasifinite representations over D̂N
θ,x . Consider g = ⊕ j∈Zg j any

Z-graded Lie algebra overC, and let g+ = ⊕ j>0g j . A g-module V is calledZ-graded if V = ⊕ j∈ZVj

and gi Vj ⊂ Vi+ j . A Z -graded g-module V is called quasifinite if dim Vj < ∞ for all j .
Given λ ∈ g∗

0, a highest weight module with weight λ is a Z-graded g-module V (g, λ) generated
by a highest weight vector vλ ∈ V (g, λ)0 which satisfies

hvλ = λ(h)vλ (h ∈ g0), g+vλ = 0. (4.1)

A non-zero vector v ∈ V (g, λ) is called singular if g+v = 0.
The Verma module over g is defined as usual:

M(g, λ) = U(g) ⊗U(g0⊕g+) Cλ, (4.2)

where Cλ is the one-dimensional (g0 ⊕ g+)-module given by h 
→ λ(h) if h ∈ g0, g+ 
→ 0, and the
action of g is induced by the left multiplication inU(g). Here and further U(g) stands for the universal
enveloping algebra of the Lie algebra g. Any highest weight module V (g, λ) is a quotient module of
M(g, λ). The irreducible module L(g, λ) is the quotient of M(g, λ) by the maximal proper graded
submodule.

Consider a parabolic subalgebra P = ⊕ j∈ZP j of g and let λ ∈ g∗
0 be such that λ|g0∩[P,P] = 0.

Then the (g0 ⊕ g+)-module Cλ extends to a P-module by letting P j act as 0 for j < 0, and we may
construct the highest weight module

M(g,P, λ) = U(g) ⊗U(P) Cλ,

called the generalized Verma module. Clearly all these highest weight modules are graded.

From now on we will consider g = D̂N
θ,x and λ ∈ (D̂N

θ,x )∗0. By Theorem 2.5 in Ref. 6 we
have,

Theorem 4.1: Since D̂N
θ,x satisfies (P1), (P2), and (P3) the following conditions on λ ∈ (D̂N

θ,x )∗

are equivalent:

(a) M(D̂N
θ,x ; λ) contains a singular vector avλ ∈ M(D̂N

θ,x ; λ)−1, where a ∈ (D̂N
θ,x )−1 is non-

degenerate ;
(b) There exists a non-degenerate element a ∈ (D̂N

θ,x )−1, such that λ([(D̂N
θ,x )1, a]) = 0;

(c) L(D̂N
θ,x ; λ) is quasifinite;

(d) There exists a non-degenerate element a ∈ (D̂N
θ,x )−1, such that L(D̂N

θ,x ; λ) is the irreducible

quotient of a generalized Verma module M(D̂N
θ,x ; P a, λ).

We shall write M(λ) and L(λ) in place of M(D̂N
θ,x , λ) and L(D̂N

θ,x , λ) if no ambiguity arises.

A functional λ ∈ (D̂N
θ,x )∗0 is described by its labels


i,l = −λ
(

(D0)l D ei,i + (−D0)l DeN+1−i,N+1−i

)
with l ∈ Z�0, i = 1 . . .

[
N
2

]+ δN ,odd and the central charge c = λ(C). We shall consider the gen-
erating series


i (x) =
∑
l�0

xl

l!

i,l i = 1 . . .

[
N

2

]
+ δN ,odd. (4.3)
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Recall that a quasipolynomial is a linear combination of functions of the form p(x)eαx , where
p(x) is a polynomial and α ∈ C, and an even quasipolynomial (odd quasipolynomial) is a quasipoly-
nomial that is a solution of a non-trivial linear differential equation with constant coefficients
p(∂t ) = 0, where p(x) is an even polynomial (respectively, odd polynomial).

One has the following characterization of quasifinite highest weight modules over D̂N
θ,x .

Theorem 4.2: A D̂N
θ,x -module L(λ) is quasifinite if and only if

G1(x) =
(

d

dx
− 1

2

)
e− x

2 
1(x) −
(

d

dx
+ 1

2

)
e

x
2 
1(−x)

with G1(x) an even quasipolynomial,


k(x) − 
k+1(x) = Fk(x)

for k = 1, . . . , [ N
2 ] − δN ,even, where each Fk(x) is a quasipolynomial, and

F N
2

(x) = δN ,even

(

 N

2
(x) − 
 N

2
(−x)

2

)
,

where F N
2

(x) is an odd quasipolynomial.

Proof: From Proposition 3.3 (c) and Theorem 4.1 part (b), we have that L(λ) is quasifinite if
only if there exists (monic) polynomials gk(x), g(x), and h(x) with g(x) odd polynomial, h(x) even
polynomial and k = 1 · · · [ N

2 ] − δN ,even, such that

λ
(
cosh(D − 1/2)h(D − 1/2)(D − 1)De1,1−

cosh(D + 1/2)h(D + 1/2)(D + 1)DeN ,N
) = 0 (4.4)

λ
(
gk(D)Dex D

[
ek+1,k+1 − ek,k

]
+ gk(−D)De−x D

[
eN−k,N−k − eN+1−k,N+1−k

]) = 0 (4.5)

with k = 1, . . . ,
[

N
2

]− δN ,even, and

δN ,even λ
(

g(D)D cosh(x D)
[
e N

2 , N
2

− e N
2 +1, N

2 +1

])
= 0. (4.6)

Using (4.3) together with the identities

f (D)ex D = f

(
d

dx

) (
ex D

)
, p(D)ex(D+1) = ex p(D)ex D = ex p

(
d

dx

)
ex D,

ex p

(
d

dx

)
f (x) = p

(
d

dx
− 1

)
ex f (x)
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and the fact that g is an odd polynomial and h is an even polynomial, conditions (4.4)–(4.6) can be
rewritten as follows:

0 = λ
(
cosh(D − 1/2)h(D − 1/2)(D − 1)De1,1−

cosh(D + 1/2)h(D + 1/2)(D + 1)DeN ,N
)

= 1

2
λ

([
h

(
d

dx

)(
d2

dx2
− 1

4

)
ex(D−1/2)+

+ h

(
− d

dx

)(
− d

dx
− 1

2

)(
− d

dx
+ 1

2

)
e−x(D−1/2)

]
e1,1

−
[

h

(
d

dx

)(
d

dx
− 1

2

)(
d

dx
+ 1

2

)
ex(D+1/2) −

− h

(
− d

dx

)(
− d

dx
− 1

2

)(
− d

dx
+ 1

2

)
e−x(D+1/2)

]
eN ,N

)

= 1

2
h

(
d

dx

) (
d2

dx2
− 1

4

)
λ
((

ex(D−1/2) + e−x(D−1/2)
)

e1,1−
(
ex(D+1/2) + e−x(D+1/2)

)
eN ,N

)
= 1

2
h

(
d

dx

) (
d2

dx2
− 1

4

)
λ
(
e−x/2(ex De1,1 − e−x DeN ,N )

−ex/2(ex DeN ,N − e−x De1,1)
)

= 1

2
h

(
d

dx

)
λ

((
d

dx
− 1

2

)
e−x/2(Dex De1,1 + De−x DeN ,N )

−
(

d

dx
+ 1

2

)
ex/2(Dex DeN ,N + De−x De1,1)

)

= −1

2
h

(
d

dx

)((
d

dx
− 1

2

)
e− x

2 
1(x) −
(

d

dx
+ 1

2

)
e

x
2 
1(−x)

)
(4.7)

0 = λ
(
gk(D)Dex D

[
ek+1,k+1 − ek,k

]
+ gk(−D)De−x D

[
eN−k,N−k − eN+1−k,N+1−k

])
= λ

(
gk

(
d

dx

)
Dex D

[
ek+1,k+1 − ek,k

]
+ gk

(
d

dx

)
De−x D

[
eN−k,N−k − eN+1−k,N+1−k

])

= λ

(
gk

(
d

dx

) [
Dex Dek+1,k+1 + De−x DeN−k,N−k

]
− gk

(
d

dx

) [
Dex Dek,k + De−x DeN+1−k,N+1−k

])

= −gk

(
d

dx

)
(
k+1(x) − 
k(x)) . (4.8)
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and,

0 = λ
(

g(D)D cosh(x D)
[
e N

2 , N
2

− e N
2 +1, N

2 +1

])
= λ

(
g

(
d

dx

)(
d

dx

)
cosh(x D)

[
e N

2 , N
2

− e N
2 +1, N

2 +1

])

= 1

2
λ

(
g

(
d

dx

)(
d

dx

)(
ex De N

2 , N
2

− e−x De N
2 +1, N

2 +1+

+ e−x De N
2 , N

2
− e−x De N

2 +1, N
2 +1

))
= 1

2
g

(
d

dx

)
λ
(

Dex De N
2 , N

2
+ De−x De N

2 +1, N
2 +1

−De−x De N
2 , N

2
− Dex De N

2 +1, N
2 +1

)
= −g

(
d

dx

)

 N

2
(x) − 
 N

2
(−x)

2
. (4.9)

Thus, L(λ) is quasifinite if and only if there exist polynomials gk(x), g(x), and h(x) with g(x)
odd polynomial, h(x) even polynomial and k = 1 · · · [ N

2 ] − δN ,even, such that

0 = h

(
d

dx

)((
d

dx
− 1

2

)
e− x

2 
1(x) −
(

d

dx
+ 1

2

)
e

x
2 
1(−x)

)
, (4.10)

0 = gk

(
d

dx

)
(
k+1(x) − 
k(x)) , (4.11)

0 = g

(
d

dx

)

 N

2
(x) − 
 N

2
(−x)

2
. (4.12)

Therefore, G1(x) = (
d

dx − 1
2

)
e− x

2 
1(x) − (
d

dx + 1
2

)
e

x
2 
1(−x) is an even quasipolynomial,

Fk(x) = 
k+1(x) − 
k(x) are quasipolynomials, and F N
2

=
(

 N

2
(x) − 
 N

2
(−x)

)
/2 is an odd

quasipolynomial. �
Remark 4.3: It is easy to see that this result coincides with the case N = 1 developed in Ref. 2.

V. INTERPLAY BETWEEN D̂N
θ,x AND THE INFINITE RANK CLASSICAL LIE ALGEBRAS

OF TYPE A AND C

Let O denotes the algebra of all holomorphic functions on C with the topology of uniform
convergence on compact sets. We consider the vector space (DN

x )O spanned by the differential
operators (of infinite order) of the form t k f (D)D ei, j , where f ∈ O. The bracket in DN

x extends
to (DN

x )O. The principal gradation extends as well (DN
x )O = ⊕

l∈Z(DN
x )Ol , where t k f (D)Dei, j ∈

(DN
x )Ol if l = k N + i − j and f ∈ O. Similarly, we obtain the gradation for the central extension

̂(DN
x )

O
. In the same way, we define a completion (DN

θ,x )O of DN
θ,x consisting of all differential

operators of the form

{t k
(

f (Dk)Dei, j + f (−Dk)DeN+1− j, N+1−i
)

: k ∈ Z, 1 � i < j � N , f ∈ O},
and on the opposite diagonal,

{t k f (Dk)Dei, N+1−i : k ∈ Z, 1 � i � N , f ∈ O even }.
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Then the two-cocycle ψ on DN
θ,x extends to a two-cocycle on (DN

θ,x )O. Let (D̂N
θ,x )O =

(DN
θ,x )O

⊕
CC be the corresponding central extension. In this case one obtains the gradation

(DN
θ,x )O = ⊕

k∈Z(D̂N
θ,x )Ok by restriction of the gradation of ̂(DN

x )
O
.

Given s ∈ C, we have, (cf. (3.2) in Ref. 3), the embedding ϕs : DN
x → g�[m]

∞ (respectively,
ϕs : (DN

x )O → g�[m]
∞ ) given by

ϕ[m]
s

(
t k fi (D)D ei, j

) =
∑
l∈Z

fi (−l + s + u) (−l + s + u)E(l−k)N−i+1, l N− j+1 ,

which is an homomorphism of Lie algebras. Restricting these homomorphisms of Lie algebras to
DN

θ,x , we obtain a family of homomorphism of Lie algebras ϕs : DN
θ,x → g�[m]

∞ (respectively, to
(DN

θ,x )O,ϕs : (DN
θ,x )O → g�[m]

∞ ), namely,

ϕ[m]
s

(
t k
(

fi (Dk)D ei, j + fi (−Dk)D eN+1− j, N+1−i
)) =

=
∑
l∈Z

[
fi

(
−l + k

2
+ s + u

)
(−l + s + u)E(l−k)N−i+1, l N− j+1

+ fi

(
l − k

2
− s − u

)
(−l + s + u) E(l−k−1)N+ j, (l−1)N+i

]

=
m∑

r=0

∑
l∈Z

[
f (r )
i

(
−l + k

2
+ s

)
(−l + s)ur + ur+1

r !
E(l−k)N−i+1, l N− j+1

+ (−1)r f (r )
i

(
l − k

2
− s

)
(−l + s)ur + ur+1

r !
E(l−k−1)N+ j, (l−1)N+i

]
, (5.1)

where 1 � i < j � N and f (r ) denote the r th derivative of, f and similarly, in the other set of
generators

ϕ[m]
s

(
t k fi (Dk)Dei,N+1−i

) =

=
∑
l∈Z

fi

(
−l + k

2
+ s + u

)
(−l + s + u)E(l−k)N−i+1, (l−1)N+i

=
m∑

r=0

∑
l∈Z

f (r )
i

(
−l + k

2
+ s

)
(−l + s)ur + ur+1

r !
E(l−k)N−i+1, (l−1)N+i , (5.2)

where as above, 1 � i � N , f is even and f (r ) denote the r th derivative of f. For each s ∈ C and
k ∈ Z, set

I [m]
s,k =

{
f ∈ O : f (r )

(
n + k

2
+ s

)
= 0 and

f (r )

(
−n − k

2
− s

)
= 0, for all n ∈ Z, and all r = 0, . . . , m

}
and

Ĩ [m]
s,k = {

f ∈ O : f is even and

f (r )

(
n + k

2
+ s

)
= 0, for all n ∈ Z, and all r = 0, . . . , m

}
.
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Let

J [m]
s =

⊕
k∈Z

{
t k
(

f (Dk)D ei, j + f (−Dk)D eN+1− j,N+1−i
)

: f ∈ I [m]
s,k and

1 � i < j � N
}⊕⊕

k∈Z

{
t k f (Dk)D ei,N+1−i : f ∈ Ĩ [m]

s,k

}
.

We clearly have

ker ϕ[m]
s = J [m]

s . (5.3)

Fix �s = (s1, . . . , sM ) ∈ CM , such that si − s j /∈ Z if i �= j and si + s j /∈ Z for all i, j . Also fix
�m = (m1, . . . , mM ) ∈ ZM

�0. Let g�[ �m]
∞ = ⊕M

i=1 g�[mi ]∞ and consider the homomorphism

ϕ
[ �m]
�s =

M⊕
i=1

ϕ[mi ]
si

:
(
DN

θ,x

)O −→ g�[ �m]
∞ .

Proposition 5.1: Given �s and �m as above we have the following exact sequence of Lie algebras:

0 −→ J [ �m]
�s −→ (

DN
θ,x

)O ϕ
[ �m]
�s−→ g�[ �m]

∞ −→ 0,

where J [ �m]
�s =

M⋂
i=1

J [mi ]
si

.

Proof: For simplicity we prove this in the case M = 1. By the assumptions above we have that
�m = m ∈ Z�0 and �s = s /∈ Z/2. The general case is similar. It is clear that ker ϕ[m]

s = J [m]
s . For the

surjectivity we recall the following well known fact: for every discrete sequence of points in C and
a non-negative integer t there exists f (w) ∈ O having the prescribed values of its first t derivatives
at these points. Since s /∈ Z/2 the sequences {−l + k

2 + s}l∈Z and {l − k
2 − s}l∈Z are disjoint, then

the Proposition follows. �
Now we want to extend the homomorphism ϕs : DN

θ,x → g�[m]
∞ (respectively, ϕs : (DN

θ,x )O →
g�[m]

∞ ) to a homomorphism between the central extensions of the corresponding Lie algebras. Observe
that these homomorphisms preserve the principal gradation.

Introduce the following functions, (cf. Ref. 9)

η j (x, μ) =
(

eμx + (−1) j e−μx

2

)
x j

j!
( j ∈ Z+, μ ∈ C). (5.4)

The functions η j (x, μ) satisfy

η j (−x, μ) = η j (x, μ), η j (x,−μ) = (−1) jη j (x, μ), η0(x, μ) = cosh(μx).

We have the following.

Proposition 5.2: The homomorphism ϕ[m]
s lifts to a Lie algebra homomorphism ϕ̂[m]

s of the
corresponding central extensions as follows:

ϕ̂[m]
s |(D̂N

θ,x ) j
= ϕ[m]

s |(DN
θ,x ) j

if j �= 0, (5.5)
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ϕ̂[m]
s

(
ex D D ei,i + ex D D eN+1−i,N+1−i

)
= ϕ[m]

s

(
ex D D ei,i + e−x D D eN+1−i,N+1−i

)− d

dx

((
cosh

((
s − 1

2

)
x
)− cosh

(
x
2

)
sinh( x

2 )

)

+
∑

1� j�m,

η j (x, s)

sinh( x
2 )

u j

⎞⎠ , (5.6)

and

ϕ̂[m]
s (C) = 1. (5.7)

Proof: Straightforward using formulas (6) in Ref. 3 and the explicit formulas for ϕ[m]
s given in

(5.1) and (5.2). �
The homomorphism ϕ[m]

s is defined for any s ∈ C. However, for s ∈ Z/2, it is no longer
surjective. These cases are described by the following Propositions.

Proposition 5.3: For s = 0 and s = 1
2 , we have the following exact sequence of Lie algebras:

0 −→ J [m]
s −→ (DN

θ,x )O
ϕ[m]

s−→ C −→ 0,

where C � c̄[m]
∞ .

Proof: First consider s = 1/2. The homomorphism ϕ[m]
s : DN

x −→ g�[m]
∞ introduced in Sec. VI

in Ref. 3 is surjective. Recall that we defined in DN
x the anti-involution θ given in (3.5). It is easy to

see that it transfers, via the ϕ[m]
s , to an anti-involution ω : g�[m]

∞ −→ g�[m]
∞ as follows:

ω(uk − (1/2 + m̃)uk−1)Ei, j ) =
((−u)k − (1/2 + n)(−u)k−1)E1− j,1−i ) for k ≥ 1, (5.8)

where i = nN + q + q; j = m̃ N + q with 1 ≤ q, q̃ ≤ N .

Therefore, the Lie algebra of −θ -fixed points in DN
x , namely, DN

θ,x , maps surjectively to the
Lie algebra of −ω fixed points in g�[m]

∞ . Then it is enough to show that ω is conjugated by an
automorphism T of g�[m]

∞ to the anti-involution defining c̄[m]
∞ .

For this define

T (um Ei,i+1) = (m̃ + 1/2) um Ei,i+1,

T (ul Ei,i+1) = (ul+1 − (m̃ + 1/2) ul) Ei,i+1 for 0 ≤ l ≤ m − 1,

T (um Ei+1,i ) = −1

(n − 1/2)
(−u)m Ei+1,i ,

T (ul Ei+1,i ) = 1

u − (n − 1/2)
(−u)l Ei+1,i for 0 ≤ l ≤ m − 1, (5.9)

where i + 1 = m̃ N + q, i = nN + q̄ with 1 ≤ q, q̄ ≤ N . It is a straightforward verification that this
extends to an automorphism of the associative algebra g�[m]

∞ that conjugates ω to the anti-involution
defining c̄∞.

Now, consider the case s = 0. In this case, The homomorphism ϕ
[m]
0 : DN

x −→ g�[m]
∞ introduced

in Sec. VI in Ref. 3 is no longer surjective. However, it is surjective if we restrict ϕ
[m]
0 : DN

x −→
g[m], where g[m] is the subalgebra of g�[m]

∞ generated by {Es N−i+1, s N− j+1 : i �= 1, . . . N and j �=
1, . . . , N } with entries in Rm . We will call such homomorphism also ϕ

[m]
0 . Now, as above the

anti-involution θ in (3.5) transfers to g[m] as follows:

ω0((uk − (m̃ + 1)uk−1)Ei j ) = ((−u)k − (n + 1)(−u)k−1)E−N+1− j,−N+1−i , (5.10)
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for k ≥ 1, where i = nN + q; j = m̃ N + q̄ with 1 ≤ q, q̄ ≤ N . As above, it is enough to show that
ω0 is conjugated by an isomorphism T : g[m] −→ g�[m]

∞ to the anti-involution defining c̄[m]
∞ .

One should take T = π ◦ T ′, where π is the natural projection of g[m] onto g�[m]
∞ and T ′ is the

automorphism of g[m] defined by

T ′(um Ei,i+1) = −(m̃ + 1) (−u)m Ei,i+1,

T ′(ul Ei,i+1) = (−1)l(ul+1 − (m̃ + 1) ul) Ei,i+1 for 0 ≤ l ≤ m − 1,

T ′(um Ei+1,i ) = −1

(n + 1)
(−u)m Ei+1,i ,

T ′(ul Ei+1,i ) = 1

u − (n + 1)
(−u)l Ei+1,i for 0 ≤ l ≤ m − 1, (5.11)

where i + 1 = m̃ N + q; i = nN + q̄ with 1 ≤ q ≤ N . Finishing the proof. �
Remark 5.4:

(a) For s = 0 and s = 1/2, in view of the proposition above, by an abuse of notation we will
denote again ϕ[m]

s the surjective homomorphism Dθ,x onto c̄[m]
∞ given by the old ϕ[m]

s composed
with the isomorphism C � c̄[m]

∞ .
(b) For s ∈ Z/2 the image of DN

θ,x under the homomorphism ϕ[m]
s is ν s̃(c̄[m]

∞ ), where ν was defined
in (2.1) and s̃ = s if s ∈ Z and s̃ = s − 1/2 if s ∈ Z + 1/2. Therefore, we will only consider
s = 0, 1/2 throughout the paper.

Given �m = (m1, . . . mM ) ∈ ZM
�0 and �s = (s1, . . . , sM ) such that, si ∈ Z implies si = 0; si ∈

Z + 1/2 implies si = 1/2 and si �= ±s j mod Z for i �= j , and combining Propositions 5.1 and
5.3, we obtain a homomorphism of Lie algebras

ϕ̂
[ �m]
�s =

M⊕
i=1

ϕ[mi ]
si

: D̂N
o −→ g[ �m] := ⊕M

i=1g
[mi ], (5.12)

where

g[m] =
{

ĝ�
[m]
∞ if s /∈ Z/2,

c[m]
∞ if s = 0 or s = 1/2.

(5.13)

We can prove the following Proposition in the same way as Proposition (5.1).

Proposition 5.5: The homomorphism ϕ̂
[ �m]
�s extends to a surjective homomorphism of Lie algebras,

which is denoted again by ϕ̂
[ �m]
�s

ϕ̂
[ �m]
�s =

M⊕
i=1

ϕ̂[mi ]
si

: (D̂N
θ,x )O −→ g[ �m].

VI. REALIZATION OF QUASIFINITE HIGHEST WEIGHT MODULES OF D̂N
θ,x

Let g[m] as (5.13). The proof of the following proposition is standard. We will use the notation
introduced in Sec. II.

Proposition 6.1: The g[m]-module L(g[m], λ) is quasifinite if and only if all but finitely many

of the ∗h(i)
k are zero, where ∗ represents a, or c depending on whether g[m] is ĝ�

[m]
∞ , or c[m]

∞ , (cf.
Ref. 5).

Given �m = (m1, . . . mM ) ∈ ZM
�0, take a quasifinite λi ∈ (g[mi ])∗0 for each i = 1, . . . , M and let

L(g[mi ], λi ) be the corresponding irreducible g[mi ]-module. Let �λ = (λ1, . . . , λM ). Then the tensor

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



063507-15 QHWM of a symplectic type subalgebra J. Math. Phys. 52, 063507 (2011)

product

L
(
g[ �m], �λ

)
=

M⊗
i=1

L
(
g[mi ], λi

)
(6.1)

is an ir-reducible g[ �m]-module, with g[ �m] =
M⊕

i=1

g[mi ]. The module L(g[ �m], �λ) can be regarded as

a D̂N
θ,x - module via the homomorphism ϕ

[ �m]
�s and will be denoted by L [ �m]

�s (�λ). We shall need the
following Proposition:

Proposition 6.2: Let V be a quasifinite D̂N
θ,x -module. Then the action of D̂N

θ,x on V naturally

extends to the action of (D̂N
θ,x )Ok on V for any k �= 0.

Proof: Replace B = ad D2 − k2 by

B = ad

[(
D + k + 1

2

)
Ei,i +

(
D + k + 1

2
− k

)
E j, j

]
+ ad

[(
−D − k + 1

2

)
EN+1− j ,N+1− j

+
(

−D − k + 1

2
+ k

)
EN+1−i ,N+1−i

]
,

in the proof of Proposition 4.3 in Ref. 7. The rest of proof remains the same. �
Theorem 6.3: Let V be a quasifinite g[ �m]-module, which is regarded as a D̂N

θ,x -module via

the homomorphism ϕ
[ �m]
�s . Then any D̂N

θ,x -submodule of V is also a g[ �m]-submodule. In particular,

the D̂N
θ,x -module L [ �m]

�s (�λ) are irreducible if �s = (s1, . . . , sM ) is such that, si ∈ Z implies si = 0;
si ∈ Z + 1/2 implies si = 1/2 and si �= ±s j mod Z for i �= j .

Proof: Let U be a D̂N
θ,x -submodule of V . U is a quasifinite D̂N

θ,x -module as well, hence by

Proposition 6.2, it can be extended to (D̂N
θ,x )Ok for any k �= 0. By Proposition 5.5, the map ϕ

[ �m]
�s :

(D̂N
θ,x )Ok −→ (g[ �m])k is surjective for any k �= 0. Thus U is invariant with respect to all members

of the principal gradation of (g[ �m])k with k �= 0. Since g[ �m] coincides with its derived algebra, this
proves the theorem. �

Now, we will show that in fact all the quasifinite D̂N
θ,x -modules can be realized as some L [ �m]

�s (�λ),
for �m ∈ ZM

≥0 and �s ∈ CM such that si − s j /∈ Z if i �= j and si + s j /∈ Z for all i, j . For simplicity
we will consider the case M = 1. But first we will calculate the generating series 
m,s,λ,i of the
highest weight and central charge c of the D̂N

θ,x -module L [m]
s (λ).

Let s /∈ Z/2. Using formula (5.6), the fact that

λ(exp(x D)Dei,i + exp(−x D)DeN+1−i,N+1−i ), (6.2)

with i = 1, . . . , [ N
2 ] + δN ,odd and (2.4) we have that


m, s, λ, i (x) = d

dx

∑
l∈Z

m∑
r=0

(
aλ

(r )
(l−1)N+i

r !
(−x)r ex(l−s) −

aλ
(r )
l N−i+1

r !
xr e−x(l−s)

)

+ d

dx

m∑
r=0

ηr (x, s − 1
2 )cr

sinh x
2

− d

dx

(
cosh

(
x
2

)
c0

sinh x
2

)
. (6.3)
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Introduce the polynomials

agt (x) =
m∑

r=0

ah(r )
t

xr

r !
.

Then


m, s, λ, i (x) − 
m, s, λ, i+1(x) = d

dx

∑
l∈Z

(
ex(l−s− 1

2 ) ag(l−1)N+i (−x)

+ e−x(l−s+ 1
2 ) agl N−i (x)

)
, (6.4)

(
d

dx
+ 1

2

)
e

−x
2 
m, s, λ, 1(x) −

(
d

dx
− 1

2

)
e

x
2 
m, s, λ, 1(−x) =

−
(

d2

dx2
− 1

4

)∑
l∈Z

m∑
r=0

(
ah(r )

(l−1)N + δl,1cr

)
ηr

(
x,−l + s + 1

2

)
− cosh

( x

2

)
c0, (6.5)

and if N is even we also have


m, s, λ, N
2

(x) − 
m, s, λ, N
2

(−x) = d

dx

∑
l∈Z

m∑
r=0

ah(r )

(l− 1
2 )N

ηr (x, s − l) . (6.6)

Now consider s = 1/2. Recall that by Remark 5.4 (a), in this case we have that the embedding
ϕ̂[m]

s : D̂N
θ,x −→ c[m]

∞ is actually the embedding given by (5.5)–(5.7) composed with T −1, where T
was introduced in the proof of Proposition 5.3. Using this, (6.2) and (2.6) we have that


m, 1
2 , λ, i (x) = d

dx

∑
l≥1

m∑
r=0

(
cλ

(r )
(l−1)N+i

r !
(−x)r e(l− 1

2 )x −
cλ

(r )
l N−i+1

r !
xr e(−l+ 1

2 )x

)

+ d

dx

m∑
r=0

ηr (x, 0) cr

sinh x
2

− d

dx

(
cosh

(
x
2

)
c0

sinh x
2

)
. (6.7)

Introduce the polynomials

cgt (x) =
m∑

r=0

ch(r )
t

xr

r !
.

Then


m, 1
2 , λ, i (x) − 
m, 1

2 , λ, i+1(x) = d

dx

∑
l≥1

(
e(l− 1

2 )x cg(l−1)N+i (−x)

+ e(−l+ 1
2 )x cgl N−i (x)

)
, (6.8)

(
d

dx
+ 1

2

)
e

−x
2 
m, 1

2 , λ, 1(x) −
(

d

dx
− 1

2

)
e

x
2 
m, 1

2 , λ, 1(−x) =

−
(

d2

dx2
− 1

4

)∑
l≥1

m∑
r=0

(
ch(r )

(l−1)N + δl,1cr

)
ηr (x, 1 − l)

− cosh
( x

2

)
c0, (6.9)
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and if N is even we also have


m, 1
2 , λ, N

2
(x) − 
m, 1

2 , λ, N
2

(−x) = d

dx

∑
l≥1

m∑
r=0

ch(r )

(l− 1
2 )N

ηr

(
x,

1

2
− l

)
. (6.10)

Finally, consider s = 0. Recall that by Remark 5.4 (a), in this case we have that the embedding
ϕ̂

[m]
0 : D̂N

θ,x −→ c[m]
∞ is actually the embedding given by (5.5)–(5.7) composed with T −1, where T

was introduced in the proof of Proposition 5.3. Using this, (6.2) and (2.6) we have that


m, 0, λ, i (x) = d

dx

∑
l≥1

m∑
r=0

(
cλ

(r )
(l−1)N+i

r !
xr elx −

cλ
(r )
l N−i+1

r !
(−x)r e−lx

)

+ d

dx

m∑
r=0

ηr
(
x, 1

2

)
cr

sinh x
2

− d

dx

(
cosh

(
x
2

)
c0

sinh x
2

)
. (6.11)

Introduce the polynomials

cgt (x) =
m∑

r=0

ch(r )
t

xr

r !
.

Then


m, 0, λ, i (x) − 
m, 0, λ, i+1(x) = d

dx

∑
l≥1

(
elx cg(l−1)N+i (x)

+ e−lx cgl N−i (−x)
)
, (6.12)

(
d

dx
+ 1

2

)
e

−x
2 
m, 0, λ, 1(x) −

(
d

dx
− 1

2

)
e

x
2 
m, 0, λ, 1(−x) =

−
(

d2

dx2
− 1

4

)∑
l≥1

m∑
r=0

(
ch(r )

(l−1)N + δl,1cr

)
ηr

(
x, l − 1

2

)

− cosh
( x

2

)
c0, (6.13)

and if N is even we also have


m, 0, λ, N
2

(x) − 
m, 0, λ, N
2

(−x) = d

dx

∑
l≥1

m∑
r=0

ch(r )

(l− 1
2 )N

ηr (x, l) . (6.14)

Now we can realize the irreducible quasifinite high weigh D̂N
θ,x−module. Take an irreducible

quasifinite weight D̂N
θ,x−module V with central charge c and generating series 
i (x) such that(

d2

dx2
− 1

4

)
G1(x) =

(
d

dx
− 1

2

)
e− x

2 
1(x) +
(

d

dx
− 1

2

)
e

x
2 
1(−x)

is an even quasipolynomial,

Fi (x) = 
i (x) − 
i+1(x)

for i = 1, . . . , [ N
2 ] − δN ,even, are quasipolynomials, and when N is even we also have that

F N
2

(x) =

 N

2
(x) − 
 N

2
(−x)

2
is an odd quasipolynomial. We may write

Fi (x) =
∑
s∈C

pi,s(x)esx (6.15)
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with pi,s(x) polynomials,

G1(x) =
∑
s∈C

ms∑
j=0

as, j η j (x, s) (6.16)

and

F N
2

(x) =
∑
s∈C

m̃s∑
j=0

bs, j η j (x, s), (6.17)

where as, j , bs, j ∈ C and as, j �= 0, bs, j �= 0 for only finitely many s ∈ C.

Remark 6.4: Since, by definition of ηr , we have that ηr (x,−s) = (−1)rηr (x, s), to avoid
ambiguities in the expression of G1(x) and F N

2
above, we will choose the parameter s following

these rules: when s ∈ Z, we require s ≤ 0; when s ∈ 1
2 + Z,we require s ≤ 1

2 ; when s /∈ Z/2,

we require that Im s > 0 if Im s �= 0, or s − [s] < 1
2 if s ∈ R, where Im s denotes the imaginary

part of s and again [s] denote the closest integer to s, which is not larger than s. Decompose
the set {s ∈ C : as, j �= 0 for some j}⋃{s ∈ C : bs, j �= 0 for some j}⋃{s ∈ C : pi,s(x) �= 0} into a
disjoint union of classes under the equivalence condition: s ∼ ṡ if and only if s = ±ṡ (modZ). Pick
a representative s in an equivalence class S such that s = 0 if the equivalence class is in Z, and s = 1

2
if the equivalence class is in Z + 1

2 . Let S = {s, s − k1, s − k2, . . .} be such an equivalence class and
take m = maxs∈S{ms, m̃s, deg pi,s}. Put k0 = 0. It is easy to see that if s = 0 or s = 1

2 , then ki ∈ N.

We will associate with each S the g[m]−module L [m]
S (λS) in the following way.

• If s /∈ Z/2, set

ah(r )
(k j −1)N + δ1,k j cr = 1

4
a−k j +s+ 1

2 ,r , c0 = − a 1
2 ,0, (6.18)

ah(r )
k j N−i =

(
d

dx

)r

pi,−k j +s(0), (6.19)

ah(r )
(k j −1)N+i = (−1)r

(
d

dx

)r

pi,k j −s(0), (6.20)

and if N is even

ah(r )

(k j − 1
2 )N

= 2b−k j +s, r (6.21)

for r = 0 · · · m and j = 0, 1, 2, . . . .

We associate with S the ĝl
[m]
∞ −module L [m]

S (λS) with central charges

cr =
∑

i

∑
k j

(
ah(r )

(k j −1)N+i +a h(r )
k j N−i

)
+
∑

k j

(
ah(r )

(k j −1)N + δN ,even
ah(r )

(k j − 1
2 )N

)
(6.22)

and labels

λ
(r )
j =

∑
(k j −1)N+i≥ j

a h̃(r )
(k j −1)N+i +

∑
k j N−i≥ j

a h̃(r )
k j N−i

+ δN ,even
∑

(k j − 1
2 )N≥ j

a h̃(r )

(k j − 1
2 )N

+
∑

(k j −1)N≥ j

a h̃(r )
(k j −1)N , (6.23)

where ah̃(r )
k = ah(r )

k − crδk,0.

• If s = 0, set

ch(r )
k j N − δk j , 0cr = ak j + 1

2 , r , c0 = − a 1
2 ,0, (6.24)
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ch(r )
k j N+i =

(
d

dx

)r

pi ,k j +1, (6.25)

ch(r )
(k j +1)N−i = (−1)r

(
d

dx

)r

pi ,−k j −1(0), (6.26)

and if N is even

d h(r )

(k j + 1
2 )N

= 2bk j +1, r (6.27)

for r = 0 · · · m and j = 0, 1, 2 . . . .

We associate with S the c[m]
∞ −module L [m]

S (λS) with central charges

cr =
∑

i

∑
k j

(
ch(r )

k j N+i +c h(r )
(k j +1)N−i

)
+
∑

k j

(
δN ,even

ch(r )

(k j + 1
2 )N

+ ch(r )
k j N

)
(6.28)

and labels

λ
(r )
j =

∑
k j N+i≥ j

ch(r )
k j N+i +

∑
(k j +1)N−i≥ j

ch(r )
(k j +1)N−i +

∑
k j N≥ j

ch(r )
k j N

+ δN ,even
∑

(k j + 1
2 )N≥ j

ch(r )

(k j + 1
2 )N

. (6.29)

• If s = 1
2 ,

ch(r )
k j N + δ0,k j cr = ak j , r , c0 = −a− 1

2 ,0, (6.30)

ch(r )
k j N+i = (−1)r

(
d

dx

)r

pi, k j + 1
2
(0), (6.31)

ch(r )

(k j +1)N−i
=
(

d

dx

)r

pi,−k j − 1
2
(0), (6.32)

and if N is even

ch(r )

(k j + 1
2 )N

= 2b−k j + 1
2 , r (6.33)

for r = 0 · · · m and j = 0, 1, . . . .

We associate with S the c[m]
∞ −module L [m]

S (λS) with central charges

cr =
∑

i

∑
k j

(
ch(r )

k j N+i +c h(r )
(k j +1)N−i

)
+
∑

k j

(
δN ,even

ch(r )

(k j + 1
2 )N

+ ch(r )
k j N

)
(6.34)

and labels

λ
(r )
j =

∑
k j N+i≥ j

ch(r )
k j N+i +

∑
(k j +1)N−i≥ j

ch(r )
(k j +1)N−i +

∑
k j N≥ j

ch(r )
k j N

+ δN ,even
∑

(k j + 1
2 )N≥ j

ch(r )

(k j + 1
2 )N

. (6.35)

Denote by {s1, s2, . . . , sM } a set of representatives of equivalence classes in the set {s ∈ C : as, j �=
0 for some j}⋃{s ∈ C : bs, j �= 0 for some j}⋃{s ∈ C : pi,s(x) �= 0}. By theorem 6.3, the D̂N

θ,x -

module L [ �m]
�s (�λ) is irreducible for �s = (s1, s2, . . . , sM ) such that si ∈ Z implies si = 0, si ∈ Z + 1

2

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



063507-20 V. B. Meinardi and C. Boyallian J. Math. Phys. 52, 063507 (2011)

implies si = 1
2 , and si �= ±s j modZ for i �= j. We have


 �m,�s,�λ(x) =
∑

i


mi ,si ,λi (x) and c =
∑

i

c0(i).

By theorem 4.2 and summarizing the above we have proved the following:

Theorem 6.5: Let V be an irreducible quasifinite highest weight D̂N
θ,x -module with central

charge c and generating series 
i (x) such that(
d2

dx2
− 1

4

)
G1(x) =

(
d

dx
− 1

2

)
e− x

2 
1(x) −
(

d

dx
− 1

2

)
e

x
2 
1(−x)

is an even quasipolynomial,

Fk(x) = 
k(x) − 
k+1(x)

for k = 1, . . . , [ N
2 ] − δN ,even, are quasipolynomials, and if N is even

F N
2

(x) =

 N

2
(x) − 
 N

2
(−x)

2

is an odd quasipolynomial. Then V is isomorphic to the tensor product of all the modules L [m]
s (λS)

for different equivalence classes S.
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