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Representations of a symplectic type subalgebra of WY
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In this paper we classify the irreducible quasifinite highest weight modules over
the symplectic type Lie subalgebra of the Lie algebra of all regular differential
operators on circle that kill constants. We also realize them in terms of the repre-
sentations theory of the complex Lie algebra g€!"! of infinite matrices with a finite
number of non-zero diagonals with entries in the algebra of truncated polynomials
and the corresponding subalgebras of type C. © 2011 American Institute of Physics.
[doi:10.1063/1.3596180]

I. INTRODUCTION

The study of representations of the Lie algebra W, (the universal central extension of the Lie
algebra of differential operators on the circle) was initiated in Ref. 7, where a characterization of its
irreducible quasifinite highest weight representations was given. These modules were constructed
in terms of irreducible highest weight representations of the Lie algebra of infinite matrices and the
unitary ones were described. This analysis was continued in the framework of vertex algebra theory
for the Wi oo alg,<3br214'8 and for its matrix version.> The case of orthogonal subalgebras of W,
was studied in Ref. 9. The symplectic subalgebra of W, was considered in Ref. 1 in relation to
number theory.

In Ref. 6 a similar study was carried out for the Lie subalgebras W, , of Wi o, where W, ,,
(p € C[x]) is the central extension of the Lie algebra D p(¢9,) of differential operators on the circle
that are a multiple of p(¢9,). The most important of these subalgebras is Wo, = W , that is obtained
by taking p(x). In this paper, Kac and Liberati also give some general results on the characterization
of quasifinite representations of any Z-graded Lie algebra. In the present paper we classify all
irreducible quasifinite highest weight modules of the symplectic type D)]X ¢» subalgebra of the Lie
algebra of all regular differential operators on circle that kill constants, given by the minus fixed
points of the anti-involution 6 related to those introduced in Ref. 10.

The paper is organized as follows: In Sec. II we present some standard facts of representations
of é\ﬂoo and the subalgebra of type C. In Sec. III we introduce the subalgebra DY, and we study
its structure of parabolic subalgebras. In Sec. IV a characterization of quasifinite highest weight

modules of D)]X o 1s given. In Sec. V we establish the interplay between Di\{ ggﬁoo and its subalgebra

of type C. Finally, in Sec. VI we give the realization of quasifinite highest weight modules of D)’X 0

IIl. LIE ALGEBRAS g™ AND c/™

Denote by R,, = C[u]/(u™*"), the quotient algebra of the polynomial algebra C [u] by the ideal
generated by u™!'(m € Z>o). Let 1 be the identity element in R,,. Denote by g¢U"l the complex
Lie algebra of all infinite matrices (a;;);, jez With only finitely many nonzero diagonals with entries
in R,,. Denote by E; ; the infinite matrix with 1 at (i, j)-entry and O elsewhere. There is a natural
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automorphism v of g¢!! given by

v(E; ;) = Eiy1 41 (2.1)

Let the weight of E; ; be j — i. This defines the principal Z-gradation g¢'™ = @z (gﬁlo’gl)j.

Denote by é\ﬁggl = gt" & R, the central extension of g¢! given by the following two-cocycle
with values in R,,:

C(A, B) =Ti([J, Al B), (2.2)

where J =), E;;. The Z-gradation of the Lie algebra g™ extends to é@ggl by putting the
weight of R, to be 0. In particular we have the triangular decomposition

~[m] - [m] —~[m] - [m]
glo = (gfoo )_ ® (gﬁoo )0 ® (gﬂoo >+, (2.3)

where

(ee2)), =€ (st'),  ana () = (stl))y @ Ro

jeN J
. ~ [m]\*
Given A € (gﬁoo ) , we let,
0

ci = au'),
W = A Ej ),
D=2 — N +8500 (2.4)
where j € Zandi =0, ...,m.Let L((@L’zl, A) be the irreducible highest weight g@gl-module with

highest weight 1. The ")\_(l-i) are called the labels and c; are the central charges of L(ﬂggl, A).

Consider the vector space R, [?, 11, and take the R,,-basis v; = t~/, i € Z. Now consider the
following C-bilinear form on R, [, 1

C(um Vi, M”Uj) = u"’(—u”)&-,l_j . (25)
Denote by ¢! the Lie subalgebra of g€, which preserves the bilinear form C(, ). We have
el = (i) jez € g€l aiju) = (=1 ar_j1i(-u)).

Denote by ¢ = ¢l! @ R,, the central extension of ¢ given by the restriction of the two-cocycle

(2.2), defined in g€, This subalgebra inherits from gAE[o'Z] the principal Z-gradation and the trian-
gular decomposition, (see Refs. 5 and 9 for notation)

) = @jea(cll); = (el @ (o @ ().

In particular when m = 0, we have the usual Lie subalgebra of gf,, denoted by cx.
Given A € (c™)¥, denote by L(c™; ) the irreducible highest weight module over ¢! with

o0

highest weight A. For each A € (cI™)%, we let
ci = Au'),
9 = Ejj— (—u) Er_j1j),

Chg-i) — C)”;i) _ c‘)\(i)

14
b =<2 4 ¢; (i even), (2.6)
where j e Nandi =0,...,m. The ”)\(ji) are called the labels and c; are the “central charges of

L(cm, 2.
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lll. THE SUBALGEBRA ’D/gx AND ITS STRUCTURE OF PARABOLIC SUBALGEBRAS

Let N be apositive integer. Denote by DY, the associative algebra of all regular matrix differential
operators on C* of the form

E = ex(1)3f + e 1(1)3 " + -+ + eo(t),
where
ei(t) € MatyC[z, t7']

and denote by DV the corresponding Lie algebra. Here and further we denote by MatyR the
associative algebra of all N x N matrices over an algebra R.

Set D = 19,. The elements t*D™e; j (k € Z, m € Zxy, i, j € {1...N}) form a basis of DV.
Here and further ¢; ; is the standard basis of MatyC.

We have the following two-cocycle on DV, (cf. Ref. 3)

t(AB) Y f(mgm+r) if r=-s>0
V(" f(D)A,t°g(D)B) = —r<m=—1 (3.1)
0 otherwise,

wherer, s € Z, f, g € Clw], A, B € MatyC and tr is the usual trace.
Let

ﬁ:DN@CC,

denote the central extension of DV by a one-dimensional center C C corresponding to the two-cocycle
Y. The bracket in DV is given by

(1" F(D)A, £ g(D)B] = " (f(D +$)3(D)AB — f(D)g(D +r)BA)

+ ¥ (¢ f(D)A,1'g(D)B) C. (3.2)

Define the weight wt on DN by

wtt f(Dye; ; =kN +i—j, wtC=0. (3.3)
This gives us the principal Z-gradation 0f5W :
DY = (P DV),. (3.4)
JEZ

Consider the following Lie subalgebra of DV
DY =DVDI.

Denote by WX the central extension of DY by CC corresponding to the restriction of the
two-cocycle V. -
Thus, W2 inherits the principal gradation of DV, namely,

JEZ
Consider
6(* f(D)De; ;) = —t* f(—=D — k)De, ;,

the anti-involution corresponding to those that defines the symplectic type conformal subalgebra
in gcyx (cf. Ref. 10 p. 56). This anti-involution does not preserve the principal gradation of
DV . However, it is conjugated by the automorphism a(tkf(D)De,;j) = tkf(D)Dei,NH_j, to the
following anti-involution

0(t* f(D)De; ;) = —t* f(—=D — k)Den 1 n+1-i, 3.5)
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where k € Z. Observe that this coincides with Bloch’s anti-involution for N=1 (cf. Ref. 1).
We denote by DN the Lie subalgebra of DY consisting of minus 6-fixed points.
Here and further we denote Dy = D —I— . A set of generators of this subalgebra is

{“ (f(DODeins1-j + [(=D)Dejnri-i) : k€ Z, f €Clxl, 1<i<j<N)
together with the generators in the opposite diagonal
(t*f(DODe;yi1—i - keZ, feClx]even, 1<i<N}.

We denote again by v the restriction of the two-cocycle in (3.1) to Dé\fx. Denote by Dé\fx
the central extension of Dé‘f .. by the one dimensional center CC corresponding to the two-cocycle

above.Thus, 5& inherits the principal gradation of WY namely,

Dé\{x = @(Dé\,,x )]

JjeZ

Recall that a parabolic subalgebra P of Z;g’: isasubalgebra® = @, P;, where P; = (5\6’;{){ )j
if j > 0, and P; # 0 for some j < 0.
Given a € (Df}fx),l, with a # 0, define P? = @,ez ’P where 73” (Dé\fx)j if j >0, and

recursively

JEZ

Py =3 Lo lla, (DY ol (DY ol .1 and P, =[P4, P*],

for j > 0.
Here and further, we denote by

1 ifniseven

S = 3.6
even 0 otherwise, (36

for any n € N. Similarly for §, o3q. Also we denote by [s] the closest integer to s, which is not
larger than s.

Remark 3.1:

(a) We have that the following properties are satisfied by 75;’\2 :

(Py) (59@)0 is commutative,
(Py)ifa e (Dé\{x)_j (j > 0) and [a, (Dé\fx)l] =0, thena = 0.

Observe that (P;) is immediate from the definition of (5&)0. (P,) follows by computing the
bracket

0= [a Deq-H q + DeN-H—q N—q]

witha € (Dy.,)— pigeN1<qg=<[5]- 8N even, under the following considerations:
oIf j =kN, k € Z.g, let g be such that 1 < g < [§] — év.even:
oIf j=kN+r ke Z.g,withl <r <N — land suppose that 1 < r < [5] — 8y even then

q is chosen in
N-—-r+1 r—1
{ZSCIST}UH: 5 i|—51v,even§61§r}7

and if [%] —déy.even <r < N — 1,q is running in

N — 1 —1
{25615%}U{156]5I:rTi|+5N,even}U{CI=N—V+1}-

(b) By Lemmas 2.1 and 2.2 in Ref. 6 we have that for any parabolic subalgebra P of De o
P_ix # 0, implies P_x1; # 0 and P¢ is the minimal subalgebra containing a.
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Following Ref. 6 we call a parabolic subalgebra Prnon-degenerate if ‘P_; has finite codimension
in (Dg{x)_ j, forall j > 0, and an element a € (Dé\{x)_l non-degenerate if P* is non-degenerate.

Let P be a parabolic subalgebra of ZS-QN\X Using (3.3) and observing that for each positive integer
J there exists a positive integer k suchthat j = kN +r =(k+ )N — (N —r)with0 <r < N — 1,
we can describe P_; as follows:

P_j= {fk<fi(D—k)€i,i+r + fi(—=D_p)ent1-r—i, N+l—i> : fi € Iij and

. _N+1—r:|
l<i<|—— }
2

U [t_(k+1)(gi(D—(k+l)) €i,i—N+r + 8i(—=D—g+1) €2n+1-i—r, N+1—i)

[2N —r + 1 }
2 9

:g,-eL‘;jand N-r+1<ic<

where Iij and Lj. are subspaces of wC[w]. Let us take i such that 1 <i < [W] , filw) € Iij,
and g;(w) € C[w]. Computing the bracket

[ (ADes i+ fi=Dodensr-iog vo1-i):
gi(Do)De; ; + gi(—=Do)Den i, N-H—i]
for j = Nk with N > 2, we see that Iij satisfies

AL S 1L, 3.7

where A; = {gi(w)w — gi(w —k)(w — k) : gi(w) € C[w]}.For j = Nk+r with N > 1, r #0,
as above, we see that I' ; satisfies (3.7) for A, = {gi(w — k) (w + k) : gi(w) € Clw]}.

Now take/ suchthat N —r +1 <[ < [%] , g1(w) € Clw], and f;(w) € L[_j. Computing
the bracket

[f_(k+l)(ﬁ(D(k+1))€z,17N+r+f1(—Df(k+1))€21v+1717r,N+171),
81(Do)De; 1 + gi(=Do)Den i1, N+1—l]
for j = Nk +r with N > 1, r # 0 we see that L’_j satisfies
ALl c L, (3.8)

where Alj ={g(w—Gk+Dw-—-(+1)): g(w) e Clw]}.
Thus we have proved the following result:

Lemma 3.2:

(a) Iij andLl_i are ideals for all j € N where j = kN +r withO<r < N—1land 1 <i <
[N+2l—r]’ 1'5 I < [2Nzl—r].

(b) Iflij # 0, and Llj # 0 then they have finite codimension in C[w].

Proof: The proof is analogous to that of Lemma 3.5 in Ref. 6. m|

Now we have the following important proposition:
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Proposition 3.3:
(a) Any non-zero element d € (Dé\{x)_l

d= Z Jfi(Do)De; iv1 + fi(—Do)Den i ny1-i

i=1
+ 8n,even f(Do)Dey vy +17'h(D_)Dey,1 € (Dy,)-1,

where fi(w), f(w), and h(w) are non-zero polynomials with f and h even, is non-degenerate.
(b) Letd € (Dé\fx),l as in (a). Then

(DY s = (DY ). d]
= Span{gk (D)D (D) (exs1k41 — ex) +
8k (=D) D (—D) (en—k.N—k — eN+1-kN+1-k) :
N
k= 1,..., |:—i| — 5N,even andl € Z)o}

2
)

r € Zxo, even andg € Clw] is odd}

ol

Ubx.even] e(DXDYD (eg.y — ey,

U {r@-0D@' + (=D = Dyers +n=D-D(D — 1)

+ (—D)l) en.n 1l € Zxg, even integer andh € Clw] is even],

where gi(D) = fu(D)D + fn_x(=D)D withk =1, ...,[%] — 8n.even and g(D) = f(D)D.

—

Proof: Letd € (Dé\{x)_l, as in (a), since each f;(w), f(w), and A(w) is a non-zero polynomial
Lﬁ’j and Iij #0forl <i <N — landforall j > 1. So, by lemma 3.2 (b), part (a) follows. Finally,

part (b) follows by computing the commutator [a, d] witha = (Do) D ey 41 + (—Do)' D eny1-r.n—k
with k = 1...[%]—8Nyeven;a =8N,6VCH(DO)rD€%+1,% and a =t(D1)mDelyN with [, r, m €
Zso and r, m even integers. O

Remark 3.4: In Ref. 11 Proposition 3.3 (a) and (b) are not correct. There exists parabolic
subalgebra p? of DY for N > 1, such that pj{ # 0 forsome j < 0, but p? =0forj «0,d € (DY)_,
(cf. Ref. 3. Remark 2.2). For example

d = f(Do)Dey » + f(—=Do)Den_1.n, f € Clwl].

It should be restated as Proposition 3.3 (a) above with the corresponding adjustment. The remaining
results in Ref. 11 are valid since we always considered non-degenerate elements for the proof of the

main theorem.Summarizing, we have that the following properties are satisfied by DQ{X :

(Py) (l;é\z_ )o 1S commutative,
(Py)ifa € (D),)-; (j > 0)and [a, (D) )11 =0, thena = 0,

(P3) if P is non-degenerate parabolic subalgebra of Dé\fx, then there exists a non-degenerate
element a such that P¢ C P.

Observe that (P3) follows from Proposition 3.3 (a) and the fact that P is non-degenerate.
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IV. CHARACTERIZATION OF QUASIFINITE HIGHEST WEIGHT MODULES OF D/ﬁ

Now, we begin our study of quasifinite representations over DN Consider g = @ czg; any
Z-graded Lie algebraover C,andletg, = ®;-0g9,. A g-module V is called Z-gradedif V. = ®jcz V;
and g;V; C Viyj. A Z -graded g-module V is called guasifinite if dim V; < oo for all j.

Given A € g5, a highest weight module with weight X is a Z-graded g-module V (g, A) generated
by a highest weight vector v, € V(g, 1)o which satisfies

hvy, = A(h)v,. (k€ go), g+v, =0. 4.1)

A non-zero vector v € V (g, A) is called singular if g, v = 0.
The Verma module over g is defined as usual:

M(g. 1) = U(9) Qugooa) Cr (4.2)

where C, is the one-dimensional (go @ g+ )-module given by & +— A(h) if h € go, g+ — 0, and the
action of g is induced by the left multiplication in /(g). Here and further Z/(g) stands for the universal
enveloping algebra of the Lie algebra g. Any highest weight module V (g, A) is a quotient module of
M(g, 1). The irreducible module L(g, A) is the quotient of M (g, A) by the maximal proper graded
submodule.

Consider a parabolic subalgebra P = @ ;czP; of g and let A € g be such that A|g~p P} = 0.
Then the (go @ g+ )-module C, extends to a P-module by letting P; act as 0 for j < 0, and we may
construct the highest weight module

M(gv Pr )") = u(g) ®U(77) C)u

called the generalized Verma module. Clearly all these highest weight modules are graded.

From now on we will consider g = Dévx and A € (D )o- By Theorem 2.5 in Ref. 6 we
have,

Theorem 4.1: Since 75;”: satisfies (Py), (P»), and (P3) the following conditions on A € (@)*
are equivalent:

(a) M(Dgx, A) contains a singular vector av, € M(Dé\,’x;)\),l, where a € (Dé\{x),l is non-
degenerate ; - A
(b)  There exists a non-degenerate element a € (Dé\fx)*l, such that )»([(Dé\{x)l, al) =0;

(c) L(DG o A) IS quasifinite;
(d) There exists a non-degenerate element a € (De )1, such that L(De > ) is the irreducible
quotient of a generalized Verma module M (DQ o P4 A).

We shall write M (A) and L(}) in place of M (Da .»A)and L(De +» A) if no ambiguity arises.
A functional A € (D '1)o is described by its labels

Ais = =3((Do) D ey + (=Do) Dewiiwsii)

withl € Zxp, i =1... [%] + 3y 0dd and the central charge ¢ = A(C). We shall consider the gen-
erating series

) N
Ai(.x)z T All 1= 1[5i| +8N,Odd' (43)
120
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Recall that a quasipolynomial is a linear combination of functions of the form p(x)e®*, where
p(x)is apolynomial and @ € C, and an even quasipolynomial (odd quasipolynomial) is a quasipoly-
nomial that is a solution of a non-trivial linear differential equation with constant coefficients
p(9;) = 0, where p(x) is an even polynomial (respectively, odd polynomial). -

One has the following characterization of quasifinite highest weight modules over Dé\f .

Theorem 4.2: A @-module L()\) is quasifinite if and only if

Giw=(L - Detaw- (L 1+ etacn
dx 2 dx 2

with G(x) an even quasipolynomial,
Ap(x) = Ags1(x) = Fi(x)

fork =1,...,[¥] — n.even, where each Fi(x) is a quasipolynomial, and

A%(x) - Ag(—x)
2 9

Fy(x) = 8y.even (

where Fyx (x) is an odd quasipolynomial.

Proof: From Proposition 3.3 (c) and Theorem 4.1 part (b), we have that L(A) is quasifinite if
only if there exists (monic) polynomials gi(x), g(x), and h(x) with g(x) odd polynomial, & (x) even
polynomial and k = 1:--[4] — Sn even, such that

A (cosh(D — 1/2)h(D — 1/2)(D — 1)De; ;—

cosh(D + 1/2)h(D 4 1/2)(D + 1)Dey y) = 0 4.4)

A (gk(D)De” [exs1 ka1 — €xk]

+ gi(—=D)De™? [en—kn—k — ent1-k.N+1-k]) =0 4.5)

with k = 1, ey [%] — 8N,€VCI17 and

Sy even : (g(D)D cosh(x D) [e%’% — e%lgﬂ]) —0. (4.6)

Using (4.3) together with the identities

f(D)exD — f i (€XD), p(D)ex(D-H) — exp(D)exD — exp i EXD,
dx

dx
X d d X
el’(a)f(x)=l7(a—1)e S(x)
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and the fact that g is an odd polynomial and 4 is an even polynomial, conditions (4.4)—(4.6) can be
rewritten as follows:

0 =4 (cosh(D — 1/2)h(D — 1/2)(D — 1)De; -

cosh(D + 1/2)k(D + 1/2)(D + 1)Dey )

e
2D
% ) ( n %) DD
D e

1 d a1
— () (L DY o (o512 e D-172) _
2 (dx) < x? 4) (€ e e

(ex(D+l/2) 4 e—x(D+l/2))

1 d a1
_ = e -~ = —x/2¢ ,xD _ ,—xD
=3 h(dx) (dx2 4) A (e (e""ei, 1 —e "Tenn)

_ex/Z(exD

eN,N)

—xD
eny —e Pery))

1 d d 1
=—h|l— A - = —x/2 D xD D —xD
5 (dx) ((dx 2)6 (De*“ey1 + De ey N)

d 1
— (E + E) e*(DePey y + De_XD€1,1)>

1 d d 1\ _« d 1\ .
= —El’l (E) ((E—§>C -A](.X)— (E-FE)GZA](—X)) (47)

0 =1 (g(D)De"” [exr1hr1 — €]

+ gi(—=D)De ™ [en—kn—k — eNt1-k N+1-k])

=A d D
= dx e’ [ek+1,k+l - ek,k]

d _
+ g (E) De P [eka,ka — €N+1k,1v+1k]>

d —X
A (gk (dx) [DePers1hr1 + De ™ Pey_k n—]

d
— 8k (dx) [De ey + DCXDeN+lk,N+1k]>

d
—8k (d_) (Apy1(x) = Ap(x)) . (4.8)
X
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and,

0=A (g(D)D cosh(x D) [e%% — e%JrL%H])

d d
=A 8 a E COSh(XD) [E%,% —6%_‘_1,%_“]
1 d d . x
= E)\ <g (E) (E) (e De%% —e D€g+1,%+1+

_ d\ Av(x) = Ax(=x) 19
=—8 (E) 2 . 4.9

Thus, L(}) is quasifinite if and only if there exist polynomials g;(x), g(x), and h(x) with g(x)
odd polynomial, i(x) even polynomial and k = 1---[4] — 8y even, such that

0=h d d 1 “IA a1 A 4.10
= <E><<E_§)e l(x)—<a+§)e 1(—X)>, (4.10)

d
0=g (d_> (Agy1(x) — Ar(x)), (4.11)

X

d\ Ax(x)— Ax(—x)

0= — 2 2 . 4.12
g ( dx) 3 (4.12)
Therefore, Gi(x) = (2= — 1) e 2 A (x) — (& + 1) e2Aj(—x) is an even quasipolynomial,
Fi(x) = App1(x) — Ag(x) are quasipolynomials, and F% = (Ag(x) — A%(—x)) /2 is an odd
quasipolynomial. m|

Remark 4.3: 1t is easy to see that this result coincides with the case N = 1 developed in Ref. 2.

V. INTERPLAY BETWEEN ’15;’?,( AND THE INFINITE RANK CLASSICAL LIE ALGEBRAS
OF TYPE AAND C

Let O denotes the algebra of all holomorphic functions on C with the topology of uniform
convergence on compact sets. We consider the vector space (DY )© spanned by the differential
operators (of infinite order) of the form ¢* f(D)De; j» where f € O. The bracket in DY extends
to (DY)®. The principal gradation extends as well (DM)° = @, 5 (DY)P, where t* f(D)De; ; €
(DY ),0 ifl=kN +i— jand f € O. Similarly, we obtain the gradation for the central extension

—0
(DY) . In the same way, we define a completion (Dg{x)o of Dg{x consisting of all differential
operators of the form

{t* (f(DYDeij + f(=Di)Deysi-jnsi-i) tk€Z, 1<i<j<N,feO)
and on the opposite diagonal,

{tkf(Dk)De,', Nil—i :keZ, 1<i<N, feOeven}.
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Then the two-cocycle ¥ on ’Dé\{ . extends to a two-cocycle on (Dg{ X)O. Let @E)O =
(Dé\{ X)O P CC be the corresponding central extension. In this case one obtains the gradation
—_ —0
(D) )° = Pz (DY,)F by restriction of the gradation of (DY) .

Given s € C, we have, (cf. (3.2) in Ref. 3), the embedding ¢, : DY — g (respectively,
@5 1 (D)0 — gelm) given by

o™ ( fi(D)De; ;) = Z il +s+uw)y(—l+s+uwEq_tyN-it1,IN—j+1
leZ

which is an homomorphism of Lie algebras. Restricting these homomorphisms of Lie algebras to
D}, we obtain a family of homomorphism of Lie algebras ¢, : D), — g€l! (respectively, to
(D )°,¢s + (DY )° — g£l)), namely,

[m]( (fl(Dk)Del Jj +ft( Dk)DeN-H Jj, N+1— 1)) =

—Z[ ( I+ = +s+u>( I+5s+wWEq tyN—i+1,IN—j+1

leZ

k
+fi (l —375— M) (=l +s+u)Eg_r—1yn+j, (ll)N+ij|

=~ . (=1 + s’ +ut!
= Z [f( ! ( l+ >t ) iy Eq—ton—i+1,IN-j+1
~ !

r=0 le

e k (=l +su" +ut!
+ (=1 £ <l -3~ s> Eq—k—D)N+j, a-=DN+i | » (5.1

r!

where 1 <i < j < N and f*) denote the rth derivative of, f and similarly, in the other set of
generators

o™ (t* (DY) De; y41-i) =

= Z fi < l + +s5+ M) (=l +s +WEqiyN—i+1,a-DN+i
leZ

. (—l +S)Mr _I_urJrl
= Z Z £ < l+ + ) Eq—yN-i+1,a—1)N+i> (5.2)

r!
r=0 leZ

where as above, 1| <i < N, fisevenand f ) denote the rth derivative of f. Foreach s € C and
ke Z,set

k
Is[rz]—{fe(’):f(r)<n+§+s>=0 and
k
f<r>(—n—§—s)=0, foralln € Z, andallr:O,...,m}

and
Asl"il = {f € O: fisevenand

k
Ak <n+§+s> =0, forallneZ, andallr=0,...,m}.
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Let
1M =@ | (fDODers + f(=DOD ensr-jniii) £ e 1l and
keZ
1<i<j<N|@@ | rwoveyii: rely}.
keZ
We clearly have
ker !l = jiml, (5.3)

Fix s = (s1,...,5y) € (CM,sughthatsi —s; ¢ Zifi # jands; +s; ¢ Z foralli, j. Also fix
m=(my,...,my) €LY Let gfl) = @1, g€l and consider the homomorphism

o EB@“”“ (D),)” — gt!Z

Proposition 5.1: Given s and m as above we have the following exact sequence of Lie algebras:

[n]
0 — J — (DY ) L5 gl 0,

M
where Jg['ﬁ] = ﬂJ}ime.
i=1

Proof: For simplicity we prove this in the case M = 1. By the assumptions above we have that
m=meZLsoands =s ¢ Z/2. The general case is similar. It is clear that ker p!™) = J!™. For the
surjectivity we recall the following well known fact: for every discrete sequence of points in C and
a non-negative integer ¢ there exists f(w) € O having the prescribed Values of its first ¢ derivatives
at these points. Since s ¢ Z/2 the sequences {—I + + s}hez and {I — 5 — s};cz are disjoint, then
the Proposition follows. m|

Now we want to extend the homomorphism ¢, : Dy, — g (respectively, ¢, : (Dy,)° —

g¢"1) to ahomomorphism between the central extensions of the corresponding Lie algebras. Observe
that these homomorphisms preserve the principal gradation.
Introduce the following functions, (cf. Ref. 9)

et (_1)1‘@—/”

i
mi ) = (f) = (€Zinel. (5:4)
J!

The functions n;(x, u) satisfy
nj(—x, ) = n;(x, 1), 0, —p) = (=1)n;(x, w),  nolx, u) = cosh(ux).

We have the following.

Proposition 5.2: The homomorphism @™ lifts to a Lie algebra homomorphism @™ of the
corresponding central extensions as follows:

Ny, = ey, i #0, (5.5)
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oM (ePDej; + e PDenii—in+1-i)

hi(s — 1 — cosh (£
= ‘Ps[m](eXDD eii+ePD €N+17i,N+17i) - i <<COS ((S Z)x) o (2)>

dx sinh(%)

T SR (5.6)

inh( X
P smh(2)

and

gric) = 1. (5.7)

Proof: Straightforward using formulas (6) in Ref. 3 and the explicit formulas for ¢! given in

s

(5.1) and (5.2). 0

The homomorphism ¢[™ is defined for any s € C. However, for s € Z/2, it is no longer
surjective. These cases are described by the following Propositions.

Proposition 5.3: Fors = 0and s = % we have the following exact sequence of Lie algebras:

ol
0— JI" — (D) )° — C — 0,
where C >~ Eggl.

Proof: First consider s = 1/2. The homomorphism ¢!™ : DY — ¢¢I"! introduced in Sec. VI
in Ref. 3 is surjective. Recall that we defined in DY the anti-involution 6 given in (3.5). It is easy to
see that it transfers, via the ¢[™, to an anti-involution w : g€ — g¢l™ ag follows:

o — (1/2 4 " HE; ;) =
(=) — (172 + n)(=w)} " NE_; 1) fork > 1, (5.8)

wherei =nN +q+¢q; j=mN +qgwithl <g,§ <N.

Therefore, the Lie algebra of —6-fixed points in DY, namely, Dé\fx, maps surjectively to the
Lie algebra of —w fixed points in g¢!"l. Then it is enough to show that w is conjugated by an
automorphism T of g€ to the anti-involution defining ¢,

For this define
Tu" Eijy1)=m+1/2) u™ E; 11,
Tw Ejjy)=@"" —@m+1/2)u')Ei;jyy for 0<l<m—1,

Tu" Eit,;) = m (=) Eit1,,

-
u—m-—1/2)

wherei +1=mN +¢q,i =nN +gwith1 < g,§ < N.Itis astraightforward verification that this
extends to an automorphism of the associative algebra g€/ that conjugates w to the anti-involution
defining Coo.

Now, consider the case s = 0. In this case, The homomorphism ¢} : DY — g¢!! introduced
in Sec. VI in Ref. 3 is no longer surjective. However, it is surjective if we restrict (p([)m] : DN —
g™, where g™l is the subalgebra of g¢!" generated by {Esn—it1,sn—j+1 1 i #1,...N and j #

T Eijri) = (—u) Eiyy; for 0<l<m-—1, (5.9)

1,..., N} with entries in R,,. We will call such homomorphism also go([)m]. Now, as above the
anti-involution 6 in (3.5) transfers to gl as follows:
wo( — @ + Du' "D E;) = (=) = (n + (=) DE_y11-j—n+1-1, (5.10)
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fork > 1, wherei = nN +¢q; j =mN + g with1 < g, g < N. As above, it is enough to show that
wy is conjugated by an isomorphism 7 : gl — g¢"] to the anti-involution defining ¢!
One should take T = 7 o T', where 7 is the natural projection of g™ onto g¢!"! and T’ is the
automorphism of g defined by
T'u™ Eiip1) = —(m+ 1) ()" Eii1,

T'w Eijp)=D'@™ —@m+Du)Ejjyy for 0<l<m-—1,

T/ m E = — (- m E i
(u i+1,i) n+1) (—u) i+1,
1
T'u' Ejy1 ;)= ———(—u) Ejyy; for 0<l<m-—1, (5.11)
' u—m+1) '
wherei +1=mN + q;i =nN + g with 1 < g < N. Finishing the proof. O
Remark 5.4:

(@) For s =0 and s = 1/2, in view of the proposition above, by an abuse of notation we will
denote again ¢!™! the surjective homomorphism Dy , onto ¢! given by the old ¢! composed
with the isomorphism C =~ 1.

(b) Fors € Z/2 the image of D}, under the homomorphism ¢!™ is v¥ (&), where v was defined
in(2.1)ands =sifs € Zands =5 — 1/2if s € Z + 1/2. Therefore, we will only consider
s = 0, 1/2 throughout the paper.

Given m = (my,...my) € Zgo and § = (s1,..., 5y) such that, s; € Z implies 5; =0; s; €
Z + 1/2 implies s; = 1/2 and 5; # £s; mod Z for i # j, and combining Propositions 5.1 and
5.3, we obtain a homomorphism of Lie algebras

Si

M
a[;m] — @(p[mi] . D(z)v s g[m] - @lgtilg[m,-]’ (5.12)
i=1

where
- [m] .
14 if s¢Z/2,
g™ = 8t ¢/ (5.13)
cml - if s=0 or s=1/2.
We can prove the following Proposition in the same way as Proposition (5.1).

Proposition 5.5: The homomorphism (’ﬁ[E';'] extends to a surjective homomorphism of Lie algebras,

which is denoted again by @é’m

M
i 1. (TN \O 7
g :@@:"].(DO,X) —
i=1

V1. REALIZATION OF QUASIFINITE HIGHEST WEIGHT MODULES OF ’1;;,’?,(

Let g1 as (5.13). The proof of the following proposition is standard. We will use the notation
introduced in Sec. II.

Proposition 6.1: The g'"\-module L(g"™, 1) is quasifinite if and only if all but finitely many
[m]

of the *h,(f) are zero, where x represents a, or ¢ depending on whether g1 is (g;\ﬁoo , or cm (cf.
Ref. 5).

Givenm = (my, ...my) € Zgo’ take a quasifinite A; € (gi"™1)} foreachi =1, ..., M and let
L(g"™1, ;) be the corresponding irreducible g!”!-module. Let A= (A1, ..., Ay). Then the tensor
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product

M

L(a".7) = @)L (", 1) ©.1)

i=1

M

is an ir-reducible g"-module, with g™l = EBg[m’]. The module L(g", %) can be regarded as
i=1

a DN - module via the homomorphism (p[m] and will be denoted by Lg’"](X). We shall need the

followmg Proposition:

Proposition 6.2: Let V be a quasifinite Dé\{x-module. Then the action of Dé\{x on V naturally
extends to the action of (Dé\f x),? on'V foranyk # 0.

Proof: Replace B = ad D* — k* by

k+1 k+1
peaaf(0+55Y) b (04 5 1) 5,

k+1
+ad [( D — T) Enyi—j Nt1—j

k+1
+ ( D — — +k> EN+1—i,N+l—i:| ,
in the proof of Proposition 4.3 in Ref. 7. The rest of proof remains the same. O

Theorem 6.3: Let V be a quasifinite g"-module, which is regarded as a Zig\’;-module via
the homomorphtsm <p[m] Then any Di‘i—submodule of V is also a g[’m-submodule. In particular,
the Dg{x—module Lg”]()n) are irreducible if 5§ = (sy, ..., sy) is such that, s; € Z implies s; = 0;
s; € Z 4+ 1/2 implies s; = 1/2 and s; # +s; mod Z fori # j.

Proof: Let U be a D/g’;—submodule of V. U is a quasifinite Zil)v:-module as well, hence by
Proposition 6.2, it can be extended to (5"’\ ),? for any k # 0. By Proposition 5.5, the map ga['ﬁ !

(D )k —> (g™ is surjective for any k # 0. Thus U is invariant with respect to all members

of the principal gradation of (gi™), with k = 0. Since g™ coincides with its derived algebra, this
proves the theorem. O

Now, we will show that in fact all the quasifinite @—modules can be realized as some L%’h](i),
form € ZY and 5 € CM such thats; —s; ¢ Z if i # j and s; +s5; ¢ Z for all i, j. For simplicity
we will consider the case M = 1. But ﬁrst/ye will calculate the generating series A, s, ; of the
highest weight and central charge ¢ of the D}’ -module LI™I(2).

Let s ¢ Z/2. Using formula (5.6), the fact that
Aexp(xD)De; ; + exp(—xD)Deny1-i N+1-i)s (6.2)

withi =1,...,[¥]+ aN,Odd and (2.4) we have that

m ay (r) a)h(r)
(Z 1)N+ - IN—i+1 —x(l—
Apson,i(X) = ZZ S(—x) et — — L yre=x(=9)

Y ez o

d <~ s =3¢, d [cosh(3)co

— _— [ —=]. 6.3
+dx§ sinh 5 dx sinh 5 (6.3)
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Introduce the polynomials

m

a N X
g =3 h’

r=0
Then

d
Bt @) = A1) = == 3 (€077 g pii(—n)

leZ
+ e D g m)), (6.4)
L D) e B0 — (2 = 2 €3 Bppnr(—) =
dx 2 e m, s, h, 1\X dx 2 e m,s, A, 1 X) =
“ 1
(- ) (o) (vt 4 )
1eZ r=0
X
— cosh (5) o, (6.5)
and if N is even we also have
Apos i 8 = Ay s n (= x)—deZ“hg> Ly I @es = D). (6.6)
leZ r=0

Now consider s = 1/2. Recall that by Remark 5.4 (a), in this case we have that the embedding
ptml Dg{ . — c™ is actually the embedding given by (5.5)—(5.7) composed with T-!, where T
was introduced in the proof of Proposition 5.3. Using this, (6.2) and (2.6) we have that

m ) (r) (r) ]
(- 1)N+l ro(=Hx _ lN i+l r(—1+3)x
D o e e

=1 r=0
d o (x,00¢, d (cosh(3)co
- — . 6.7
dx rX: sinh 5 dx ( sinh 3 67
Introduce the polynomials
¢ e anX
8i(x) = X(; hy T

Then

d
Ay 15, = By 1 () = Ix Z (6(17%))‘ “gu-nn+i(—x)

>1

D gy ). (6.8)

2 m
B (% N 411) ZZ ("hg)_mv + 51,1Cr) N (x,1—=10)

I>1 r=0

— cosh (%) co, (6.9)
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and if N is even we also have
d ZZ () 1
m7%’}\’%(—x): E o h(l I)N ( 5—1) (610)

Finally, consider s = 0. Recall that by Remark 5.4 (a), in this case we have that the embedding

DN o — cl™l is actually the embedding given by (5.5)—(5.7) composed with 7!, where T
Was introduced in the proof of Proposition 5.3. Using this, (6.2) and (2.6) we have that

L)‘Elr 1)N+ C)‘g\; 1
Ap0,5.1(x) = ZZ Sl — I (e

A[rn]

>1 r=0
d e (x,Ye,  d [cosh(%)c
+—Zn(.—2)—— cosh (3)co ). 6.11)
dx sinh £ dx sinh £
r=0 2 2
Introduce the polynomials
m xr
c _ cp(nNt
gi(x) = goj h'=
Then
Am,0,2,i(X) = Ao, i41(x) = iZ(elx 8u-1N+i(x)
m,0, A, i m,0,\, i+ dx - (I—=1)N+i
+e™ Cgv—i(-x)). (6.12)

L D) e Aot = (= = 1) et Bpoa(—) =
dx ) e m,0,xr, 1{X X ) e m,0,A, 1 X) =

1
(i ),>lz(hg)w+8”c’) i (x0-3)

r=0

— cosh (%) co, (6.13)

and if N is even we also have

m

Ay, x) = A, w(—x) = ZZ Ch((;) Ly @ D). (6.14)

>1 r=0

Now we can realize the irreducible quasifinite high weigh @—module. Take an irreducible

quasifinite weight @—module V with central charge ¢ and generating series A;(x) such that

d? 1 d 1 o d 1 x
(- 3) o= (G —3) e mm+ (- 3)fai

is an even quasipolynomial,

Fi(x) = Ai(x) = Ajy1(x)

fori =1,...,[¥] — én.even, are quasipolynomials, and when N is even we also have that
Av(x)— Av(—x)
Fﬂ (x) — 2 2
2 2
is an odd quasipolynomial. We may write
Fi(x) =) pis(x)e™ (6.15)
seC
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with p; ;(x) polynomials,

Gi(x) =) ac;ni(x,s) (6.16)
seC j=0
and
Fy(x) =) Y byjnx,s), (6.17)
seC j=0

where a; j, by ; € C and a, ; # 0, by ; # 0 for only finitely many s € C.

Remark 6.4: Since, by definition of n,, we have that n,(x, —s) = (—1)"n,(x, s), to avoid
ambiguities in the expression of G(x) and F i above, we will choose the parameter s following
these rules: when s € Z, we require s < 0; when s € % + Z,we require s < 1. when s ¢ 7)/2,
we require that Ims > 0 if Ims # 0, or s — [s] < % if s € R, where Ims denotes the imaginary
part of s and again [s] denote the closest integer to s, which is not larger than s. Decompose
theset{s € C : a,,; # 0 for some j} [ J{s € C : by ; # 0 for some j} | J{s € C : p;(x) # O} intoa
disjoint union of classes under the equivalence condition: s ~ § if and only if s = 45 (modZ). Pick
arepresentative s in an equivalence class S such that s = 0 if the equivalence classisin Z, and s = %
if the equivalence class is in Z + % LetS ={s,s — ki, s — kp, ...} be such an equivalence class and
take m = max,cg{my, ny, deg p; ;}. Put kg = 0. It is easy to see thatif s = Qor s = %, then k; € N.

We will associate with each S the gl"!—module LY"!(1s) in the following way.
olfs ¢ 7Z/2, set

-y O = LAy d e 0= —app, 6.18)
, d
ahf(/)zv_i = (E) Di—k;+s(0), (6.19)
ap NEAY
h(k/—l)N+i =(-1) d_x pi,k_;fs(o)v (6.20)
and if N iseven
ay (r)
h(kﬁ%)N = 2b_k/+s,, (6.21)

forr =0---mand j =0,1,2,....
We associate with S the é\lgzl —module L[Sm](kg) with central charges

) ) ) )
Cr = Z Z (uh(;j—l)Nﬂ' +¢ hkr,'N—i) + Z (uh(;j—l)N + dn.even ah(rk,v—%)N) (6.22)
and labels
) =) ()
W= 3 Mot D M
(kj—)N+i> kjN—i>j
+ dn.even Z aﬁ((?j,%),v + Z “EEZ;A)N, (6.23)
(kj—3)N=zj ) ki=DNzj

where “ﬁg) = ”hff) — ¢80
oIfs =0, set

cg,(r) _ —
hi/n = 8k.06r = a1 0 o= —al, (6.24)
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d r
c,(r) Y )
b nsi = ( dx) Pi k415 (6.25)
“niy) — (LY 2
U+N—i = (=1 I Pi —k;—1(0), (6.26)
and if N is even
dy () _
he iy = 2okt (6.27)

forr =0---mand j =0,1,2....
We associate with S the cgg]—module L[Sm](ks) with central charges

= Z Z (Chz-)NJri +° hEZiH)N_i) + Z <5N,even Ch&)jJr%)N + chg),\,> (6.28)
ik k;
and labels
(r) cy,(r) cy,(r) cy,(r)
)‘j = Z hka+i + Z h(k,erl)Nfi + Z hk,N
kjN+i=j kj+DN—izj kN> j
cy,(r)
+ dn.even Z h(k,»+%)1v' (6.29)
(kj+3)N=j
olfs = %,
th(:,)N + 50,/{_,- Cr =ak;,r, Co=—A_1o (6.30)
W = 1y (L) 0) (6.31)
kiN+i = dx Pi, k1Y) .
d r
c,(r) _
h(k/+1)N,i - (E) p[, —kf—%(o)v (632)
and if N is even
cy,(r) _
Py = 20-tebr (6.33)

forr =0---mand j =0,1,....
We associate with S the cg’g’]—module Lgm](ks) with central charges

cy,(r) c 1. (r) cy,(r) cy,(r)
= Z; ( hk,N+i + h(ijrl)Nfi) + ; (‘SNaeVGH h(kf+%)1v + hk,»N) (6.34)
and labels
r) _ cp,(r) c,(r) cp,(r)
LD DR SYVE S S ) S Y
kjN+i>j kj+1)N—i>j kiN>j
+ dn.even Z "h((rk)ﬂr%)N. (6.35)
(kj+3)N=j
Denote by {s1, 52, ..., sy} a set of representatives of equivalence classes in the set {s € C : aujé
0 for some j} [ {s € C : by,; # 0 for some j} | {s € C : p;s(x) # 0}. By theorem 6.3, the D}’ -
module L%m](X) is irreducible for 5§ = (sy, 52, ..., s3r) such that s; € Z implies s; =0, 5; € Z + %
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implies s; = %, and s; # £s; modZ for i # j. We have
Agisi) =" Ap s (x) and =) coli).

1

By theorem 4.2 and summarizing the above we have proved the following:

Theorem 6.5: Let V be an irreducible quasifinite highest weight Dé\”x-module with central
charge ¢ and generating series A;(x) such that

d? 1 d 1\ _: d 1\ .
(de 1) 0= (G 3) = (G - 3) o

is an even quasipolynomial,
Fi(x) = Ap(x) — Agqr(x)
fork =1,...,[¥] — én.even, are quasipolynomials, and if N is even
A%(x) — A%(—x)
2

is an odd quasipolynomial. Then V is isomorphic to the tensor product of all the modules LL’"](AS)
for different equivalence classes S.

F%(x):

'S, Bloch, J. Algebra 182, 476 (1996).

2C. Boyallian and J. Liberati, J. Math. Phys. 44(5), 2192 (2003).

3¢C. Boyallian, V. Kac, J. Liberati, and C. Yan, J. Math. Phys. 39, 2910 (1998).

4E. Frenkel, V. Kac, A. Radul, and W. Wang, Commun. Math. Phys. 170, 337 (1995).
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