

ABSTRACT BOOK

AAFE 2024

LVI REUNIÓN ANUAL DE LA ASOCIACIÓN ARGENTINA DE FARMACOLOGÍA EXPERIMENTAL

23-24 de octubre de 2024

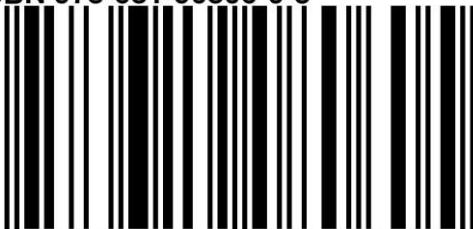
UNIVERSIDAD NACIONAL DEL SUR

Bahía Blanca, Argentina

Asociación Argentina de Farmacología Experimental

Abstract book AAFE 2024. - Primera a ed - Bahía Blanca : Asociación Argentina de Farmacología Experimental - AAFE, 2024.

Libro digital, PDF


Archivo Digital: descarga y online

ISBN 978-631-90806-0-5

1. Farmacología. I. Título

CDD 615

ISBN 978-631-90806-0-5

9 78631 080605

A standard 1D barcode representing the ISBN 978-631-90806-0-5. The barcode is composed of vertical black lines of varying widths on a white background. Below the barcode, the ISBN number is printed in a bold, black, sans-serif font.

RESÚMENES/ABSTRACTS

Poster Session S3 - Tuesday 24th October 8:30-10:00

Antimicrobial/Antiparasitic/Antiviral Agents

Chairs: Juan J. Martinez Medina and Santiago Zugbi

71. SWINE FECES AS A SOURCE OF RESIDUAL AMOXICILLIN AND OXYTETRACYCLINE CONCENTRATIONS IN RUNOFF WATER

Joaquín Mozo^{1,2*}, Julieta Decundo^{1,3}, Guadalupe Martínez^{1,3}, Susana Dieguez^{1,4}, Alejandro Soraci^{1,3}, Denisa Pérez Gaudio^{1,3}

¹Lab. de Toxicología, Depto. de Fisiopatología, Centro de Investigación Veterinaria de Tandil, FCV-UNCPBA, Tandil, Argentina, ²Dept. de Producción Animal, FCV-UNCPBA, Tandil, Argentina, ³Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina, ⁴Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), La Plata, Argentina.

In intensive pig farming, the irrational use of antibiotics has diminished their effectiveness and fostered the emergence and spread of antibiotic-resistant strains. Since these antibiotics are not completely metabolized, they can be released into the environment through animal waste, resulting in detectable levels in manure, soil, and both groundwater and surface waters. Nevertheless, thorough monitoring is still lacking. This study aimed to investigate the presence of residual amoxicillin (AMOXI) and oxytetracycline (OTC) which transfer from pig feces to runoff water.

Fecal samples (100 g) from untreated pigs were fortified by triplicate with AMOXI and OTC, considering therapeutic doses and bioavailability (20 mg/kg and 36% and 40 mg/kg and 6%, respectively) to simulate real levels. The excreta were left outdoors on a sloped area with natural vegetation for 30 days. Runoff water samples were collected after precipitation events using passive collectors placed downslope. Analytical studies were conducted using HPLC-UV at the Toxicology Laboratory, Department of Physiopathology, CIVETAN.

Five precipitation events occurred during the assay period on days 4, 8, 9, 11, and 21. For AMOXI, average residual concentrations (0.06 µg/ml) were observed from day 4 to 11, with the highest (0.10 µg/ml) on day 9. For OTC, residuals (0.13 µg/ml) were detected from the first rainfall through day 21, with peaks (0.14 µg/ml) on days 8, 9, and 11. Although AMOXI concentrations appear lower than those of OTC, it is important to consider the different initial fortification doses; when adjusted for these differences, AMOXI levels are 2.36 times greater than those of OTC.

Notably, AMOXI was present in higher proportions over a shorter period, while OTC persisted longer, being detected in the last rainfall sample. In conclusion, both antibiotics were found in runoff water, indicating potential risks to ecosystems and public health, emphasizing the need for systematic monitoring.