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Resumen— Los algoritmos de inteligencia artificial
habitualmente fallan cuando la distribucion de los datos
se desvia de la utilizada durante el entrenamiento. Esta
vulnerabilidad puede ser corregida post-entrenamiento,
pero la misma puede requerir una etapa de ajuste
computacionalmente pesada y/o una gran necesidad de
nuevos datos. En este contexto, la teoria de causalidad
suele ser un excelente paradigma para diferenciar los
mecanismos propensos a variaciones de los invariantes.
Esto permitiria hacer un ajuste solamente sobre
el modelo variable, reduciendo la complejidad del
problema. Sin embargo, este paradigma esta muy
poco estudiado en lo referido a problemas inversos,
principalmente porque estos problemas son por
definicion anticausales. En este trabajo se analiza
el desempeiio y limitaciones de algoritmos basicos
en problemas inversos que cumplan el requisito de
aprender de forma anticausal. En particular, se estudian
estos algoritmos en el contexto de reconstruccion de
imagenes en tomografia optoacistica.

Palabras clave: problemas inversos; modelos guiados por
la fisica; teoria de causalidad; tomografia optoacustica

Abstract— Artificial intelligence algorithms commonly
exhibit poor performance when deployed on data
whose distribution deviates from the one utilized during
the training phase. While this vulnerability can be
addressed post-training, doing so may necessitate a
computationally intensive fine-tuning process and/or
require a significant acquisition of new data. In this
context, causality theory presents an excellent paradigm
for distinguishing variation-prone mechanisms from
invariant ones. This distinction would permit fitting
the model exclusively to the variable components,
thereby reducing the complexity of the overall problem.
However, this paradigm remains under-explored in
relation to inverse problems, primarily because such
problems are, by their very definition, anticausal.
This work undertakes an analysis of the performance
and inherent limitations of fundamental algorithms
in inverse problems that satisfy the criteria for
anticausal learning. Specifically, these algorithms are
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investigated within the context of image reconstruction
in optoacoustic tomography.

Keywords: inverse problems; physics-guided models;
causality theory; optoacoustic tomography

I. INTRODUCCION

Los problemas inversos constituyen una clase particular
de tareas cuyo propdsito es inferir causas desconocidas a
partir de efectos observados [1f]. Se clasifican como tareas
anticausales porque las mismas buscan estimar causas a
partir de efectos, una direccién opuesta al proceso de ge-
neracién de las variables. Se presentan de manera natural
en numerosos contextos cientificos y de ingenieria, entre
ellos la reconstruccién de imagenes, la exploracién geofisica
y el diagnéstico médico. Ejemplos cldsicos van desde la
reconstruccién de imagenes de alta resolucidon a partir de
mediciones degradadas en diagndstico por imagenes [2]] has-
ta la recuperacion de estructuras subterraneas mediante datos
sismicos [3]]. Estas tareas suelen ser mal condicionadas, es
decir, su soluciéon puede no ser tnica o extremadamente
sensible al ruido en las mediciones, lo que hace imprescin-
dible la incorporacién de conocimiento fisico previo para
caracterizar al problema. Se denominan entonces modelos
guiados por la fisica.

La tomografia optoactstica (TOA) es un método de
obtencién de imdgenes médicas mediante el uso del efecto
optoacustico. Un pulso de luz que incide en el tejido
bioldgico blando se esparcird por el mismo y una parte serd
absorbida por moléculas presentes en la muestra bioldgica,
conocidas como croméforos. La energia del croméforo
excitado se convierte luego en calor, que en el marco de
un proceso isocdrico, termina generando un aumento de
presion [4]. Esto se detecta a través de distintos arreglos de
sensores de ultrasonido, generando los llamados sinogramas:
representaciones graficas de las sefiales acusticas en funcion
del tiempo medidas por cada detector. La gran cantidad
de configuraciones diferentes de medicién en esta tarea,
asi como la presencia de incertidumbres o el conocimiento
parcial de los pardmetros, pueden dar lugar a algoritmos
de reconstruccion especificamente disefiados para una con-
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figuracion particular que podria no ser la que se utilizara
en una situacién practica final, sufriendo un cambio en la
distribucién de los datos [J5].

El Principio de Mecanismos Causales Independientes es
una hipdtesis heuristica proveniente de la teoria de cau-
salidad [6]. Este principio postula que el proceso causal
generativo de las variables de un sistema se compone de
moédulos auténomos que no se informan ni influyen entre
si. En un problema de TOA, esto se traduce en entrenar
por separado un modelo para la fuente (representados por
imdgenes) y otro para el proceso de medicidn de sinogramas
a partir de su fuente (problema directo). Una variacion
en la configuraciéon experimental solo afectaria al segundo
modelo, el cudl podria ser corregido con un proceso de adap-
tacion de dominio (7] o aprendizaje por transferencia [8]]. E1
hecho de corregir solo una parte del modelo, podria aliviar
potencialmente el costo computacional y la gran necesidad
de datos del nuevo entorno. Este tipo de aprendizaje podria
incluso ayudar a definir algoritmos invariantes a cambios de
entorno [3[], [9], [10].

El presente trabajo se centra en el estudio de algoritmos
basicos de aprendizaje anticausal en el marco de los pro-
blemas inversos y su aplicacion especifica a la tomografia
optoactistica. Con ello, se busca realizar una prueba de
concepto para evaluar la viabilidad y el potencial de la
convergencia de estos campos de estudio.

II. CONCEPTOS BASICOS

A. Problemas Inversos

A pesar de su generalidad, los problemas inversos siguen
un marco matematico bastante unificado. El objetivo es
recuperar una muestra desconocida y € R% distribuida a
partir de p(y), suponiendo acceso a mediciones x € R y
asumiendo un modelo de la forma:

X=AY)+V (D)
donde X, Y son variables aleatorias representativas de x
Yy yV ~ N(,%,) es un ruido aleatorio gaussiano
independiente de Y. En otras palabras, el modelo define
la relacién X|y—, ~ N(A(y),X,). El predictor éptimo
en términos de minimizar el error cuadrdtico medio es
E[Y|X = z], el cual se busca estimar:

E[Y|X =z] = argmin E[(f(X)—Y)?
f:Rdz Ry

(@)

Observacion 1: Muchas aplicaciones practicas pue-
den aproximarse con un modelo lineal no invertible,
A(y) = A -y donde A es una matriz de dimensién
dy < d,. Esta matriz A suele estar fuertemente mal con-
dicionada, lo que vuelve escencial diferentes estrategias
de regularizacién para aproximar su inversién. En este
trabajo se tiene en cuenta esta hipétesis, entonces se
obtiene el siguiente modelo directo de (I):

r=Ay+v 3)
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B. Fuera de Distribucion

En aplicaciones de sensado es razonable suponer que la
distribucion de los datos puede cambiar porque las condi-
ciones de adquisicion y los factores experimentales rara vez
son idénticos entre mediciones. Por ejemplo, en imagenes
de TOA, la posiciéon del sensor, la velocidad del sonido o
incluso pequefias variaciones en la muestra pueden alterar
la relacion entre la fuente imagen original) y la observacion
x (sinograma).

Sea p®(z, y) la distribucién de los datos, denotamos e € £
a las posibles variaciones que puede sufrir. La cuestion
clave a abordar es la representacién de los entornos en el
contexto de un problema inverso. Un ejemplo paradigmético
de problema inverso en ingenieria involucra un escenario
en el cual y representa una variable fisica a sensar, y z
corresponde a su medicién indirecta. Si se supone que las
posibles variaciones se deben a cambios en las condiciones
experimentales donde se lleva a cabo el sensado, es razona-
ble suponer que la distribucién p(y) permanece fija mientras
que el componente dependiente del entorno queda capturado
por p®(zly).

En la teoria de la causalidad, este tipo de problema se
conoce como aprendizaje anticausal, dado que la meta es
predecir la causa a partir del efecto. En estos problemas,
el enfoque recomendado a seguir es el que se describe a
continuacion [6]:

Observacion 2: p®(xz|y) representa el mecanismo
causal que genera X a partir de Y, y es independiente
de la distribucién de la causa, p(y). Por otro lado,
pe(ylx) es sensible al cambio en la distribucién de
p(y). Por lo tanto, en términos generales, al estimar
p¢(y|z) conviene modelar p°(z|y) y p(y) por separado
y luego construir p©(y|x) usando la regla de Bayes.

En este contexto, se estudian diversas técnicas para
estimar E[Y|X = z], con el objetivo de desacoplar el
modelado de p(z|y) de p(y), aprovechando el conocimiento
de la distribucién X|y—, ~ N(Ay,%,). La estimacién se
efectuard en dos etapas:

1. Modelo directo: estimar los pardmetros (A,%,) a
partir de un conjunto de datos aleatorio {(X;,Y;)}™ ;.
En este trabajo, para el modelo directo se supondra:
1) una matriz de covarianza esférica para el ruido
¥, = 02 -1, donde o2 es la estimacion empirica de
la varianza; y 2) la matriz A serd determinada con la
metodologia estdndar de TOA (la cudl serd explicada
a continuacién).

2. Componente invariante: desarrollar un procedimien-
to capaz de realizar este modelado desacoplado de
p(z|y) (conocido en este paso) y p(y) (desconocido),
sin comprometer significativamente el rendimiento en
comparacién con los métodos cldsicos (disefiados para
un Unico entorno). En esta etapa se utiliza un conjunto
de datos simple de objetivos {Y;}? ;. Nos enfoca-
remos en algoritmos no neuronales, con el fin de
compararlos con métodos cldsicos como la proyeccion
lineal inversa (LBP, por sus siglas en inglés).
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C. Tomografia Optoacistica

Es bien sabido que, tras la excitacién de una muestra
biolGgica por un pulso electromagnético d(t), la presién
actistica p(r,t) en la posiciéon r € R? y tiempo ¢ satisface
la ecuacion diferencial [[11]]:

8—2—u2v2 (r,t)=0 (4)
atQ s pir, -
con las condiciones iniciales:
0
p(r,0) = po(r), a—f(no) =0 5)

donde py(r) es la presion optoacustica inicial y vy representa
la velocidad del sonido en el medio, el cual se supone
homogéneo y sin absorcién actstica. Bajo la hipdtesis
usual de confinamiento térmico y actstico [12]], es decir,
cuando la duracién del pulso ldser es lo suficientemente
corta como para que se pueda despreciar la conduccién de
calor y la propagacion acustica hacia regiones vecinas de
la zona iluminada, la presién inducida inicialmente po(r) es
proporcional a la densidad de energia dptica total absorbida.
Usando la formalizacién de la funcién de Green, la presion
recibida por un detector puntual ideal en la posicién rg
puede escribirse como:

ventajas de este enfoque es que cualquier efecto lineal en
el sistema puede ser considerado facilmente (por ejemplo,
la respuesta espacial y temporal de los sensores) [19]]. Una
vez establecida la formulacién discreta, el problema inverso
se reduce al problema algebraico de invertir (3). La matriz
A puede escribirse como la multiplicacién de dos matrices
A°% A3, donde A? representa la funcién de respuesta del
sistema de imagen para un sensor puntual ideal y A°* es
la forma matricial de un operador de derivada temporal. La
matriz A® se define como [20]]:

s 1 AV d(tk,I‘j7I‘dl)

Afi = — 7
I A2 A2 Jrq; — 7

: lra;—r;|
0 en otro caso

d(tk,rj,ra1) = ®)
donde At es el paso temporal en el que se muestrean las
sefiales pg(rq,t). No es dificil ver que constituye una
discretizacion del integrando en (6)), mientras que indica
el instante de tiempo en que el efecto de la presion inicial en
la posicion r; es capturado por el sensor rq;. En el caso de
un detector de tamafio finito, la respuesta impulsiva espacial
del sensor se tiene en cuenta dividiendo el drea del sensor en
elementos superficiales (tratados como detectores puntuales)
que luego se suman [20], [21].

1 0 0 (t—|rq —r|/vs)
mutva) = gz [, 0T o
)

El objetivo del problema inverso en TOA es reconstruir
po(r) a partir del sinograma p4(rq,t) medido en varias
posiciones rq, que tipicamente se encuentran sobre una
superficie S que contiene el volumen de interés [13].

Varios enfoques, como los algoritmos de retroproyeccion
[14]], [[15], son de los mas populares y utilizados en el
problema de reconstrucciéon de imagenes en TOA. Dichos
métodos proporcionan férmulas de reconstruccion en forma
cerrada en términos de las sefiales detectadas sobre la
superficie de deteccién. Sin embargo, estos métodos suponen
que los detectores son puntuales, sin limitaciones de ancho
de banda y con respuesta angular isotrpica [[16]. En la
practica, los transductores tienen tamafio finito, ancho de
banda limitado y su respuesta espacial no es constante [[17]].
Ademas, las sefiales detectadas son ruidosas. Estas desvia-
ciones del escenario ideal supuesto por las férmulas exactas
de reconstruccion pueden generar artefactos e imdgenes
distorsionadas.

Un enfoque diferente pero relacionado al problema de
reconstruccién estd dado por los algoritmos basados en
matrices [[18]. En esta técnica, la solucién directa de (6)
se discretiza. Como resultado, se obtiene la ecuacion ma-
tricial (3) que se usa para resolver el problema inverso,
donde z es un vector columna que representa las presiones
medidas en un conjunto de posiciones de detectores rq;
(I =1...Ny) y en instantes de tiempo t; (kK = 1...Ny);
1y es un vector columna que representa los valores de la
presién acustica inicial, y que tipicamente se denomina la
imagen de referencia; y A es la matriz del modelo. El
j-ésimo elemento (j = 1...N) en y contiene el valor
promedio de la presién inicial dentro de un elemento de
volumen de tamafio AV en la posicién r;. Una de las
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Observacion 3: Es razonable suponer que, en una
aplicacioén real, la matriz del modelo no se conoce
completamente. En este trabajo, consideraremos que
la diferencia entre ambas reside en la incertidumbre de
la posicién del sensor y de la velocidad del sonido al
calcularla.

I11.

Nos enfocamos en modelos que definen una funcién de
aproximacién 7(x) basada en los pardmetros (A,02) y un
conjunto de datos objetivo {Y;}? ;. Estos modelos buscan
abordar los desafios de los problemas inversos aprovechan-
do representaciones anticausales desacopladas y estrategias
computacionales eficientes.

MODELOS ANTICAUSALES

A. Proyeccion Lineal Inversa (LBP)

El problema de inversién puede formularse usando un cri-
terio cuadratico combinado con un término de regularizacién
de Tikhonov:

" . 2 2

grx(z) = min [[Ay — zf|” + Ally| ©)

y€ERYY

donde A > 0 es un pardmetro de regularizaciéon que
mejora la estabilidad del problema inverso, el cual suele ser
mal condicionado. Ademds, este término de regularizacién
mitiga los efectos del ruido en las sefiales medidas. La solu-
cién al problema regularizado de Tikhonov puede derivarse
analiticamente como [22]:

imx(z) = (ATA+ M)t ATz (10)

Sin embargo, calcular esta inversa puede ser compu-
tacionalmente costoso, particularmente en problemas a gran
escala. Para abordar esto, una simplificaciéon comin es
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considerar valores grandes de A. En el régimen asintdti-
co cuando A — oo, la solucién de Tikhonov se vuelve
proporcional al operador adjunto ik (x) o< Alw, y esta
aproximacién conduce a una solucién computacionalmente
eficiente conocida como proyeccion lineal inversa (LBP)
[23]):

gipp(z) = AT

Y

La solucién LBP proporciona un método sencillo y
computacionalmente econémico para obtener una recons-
truccion inicial de la imagen. Sin embargo, es importante
notar que las reconstrucciones basadas en LBP suelen exhi-
bir limitaciones y artefactos, particularmente en escenarios
de visién limitada [24]. A pesar de estas desventajas, LBP
sigue siendo ampliamente utilizada debido a su simplicidad
y facilidad de implementacion. Cabe destacar que esta apro-
ximacién depende unicamente de la matriz A, independiente
de o2 y del conjunto de datos.

B. Estimacion Monte Carlo

El célculo de E[Y|X = x] mediante la descomposicién
causal p(z,y) = p(y)p(x|y) para este modelo puede escri-
birse como:

E[Y|X =] = / p(zly)p(y)
Ry p(x)
Ty —1
_ f]Rdy ye*%(ﬂc—Ay) 3, (x—Ay)p(y)dy
o TR e Ay

Una estimacién Monte Carlo puede realizarse de manera
directa como:

dy (12)

13)

Zn 1 yiefé(wayi)Tz;l(wayi)
1=
S e 3= Au) TS (e—Ay)
1=

C. Modelo de Mezcla Gaussiana (GMM)

El enfoque propuesto consiste en aprender p(y) median-
te un Modelo de Mezcla Gaussiana (GMM) entrenado a
través del algoritmo de Expectativa-Maximizacién (EM) con
m gaussianas diagonales. Para integrar este modelo con
X|Y =y, se emplea un marco de andlisis de factores.

El GMM supone la existencia de una variable mezcladora
categérica K ~ Cat(wy, -+ ,wy,) cuyo vinculo con el resto
de las variables estd definido por la cadena de Markov
K — Y — X (donde las flechas definen la relacion de
causalidad supuesta). Es decir, el modelo supone por un
lado la distribucion YK = k ~ N(ug, Ag) (con Ay una
matriz diagonal) y por el otro X|Y =y ~ N (Ay, o2 - 1).

El algoritmo EM entrena {ws, s, Ax}y, a partir de
un conjunto de datos {Y;}? ;. Tras el entrenamiento, la
inferencia puede realizarse con el siguiente lema.

Imc(x) =

Lema 1: En el modelo descrito anteriormente, la
esperanza condicional puede calcularse como:

EY|X =2] =Y P(K =k|X =2)E[Y|X =z, K =k
= (14)
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donde
EY|X =2,K = k] (15)
= i+ AAT (021 + AMAT) ™ (2 — Apg)
y

“No (Apg, 021+ AN AT
P(K = K| X = 1) = L:Jnk/\/'(ukcr + AN AT)
St wi Na (Ap, 031+ AN AT)
(16)
con N (i, %) la densidad de probabilidad asociada a
una distribucién normal de media p y covarianza ¥
evaluada en z.

La demostracién puede verse en el Apéndice Dentro
de este marco, definimos el estimador jomm (z) = E[Y|X =
], calculado usando el Lema

D. Formula de Tweedie

El operador de esperanza condicional es una herramienta
fundamental en numerosos campos que dependen del an4li-
sis estadistico. Existen diversas identidades derivadas que
establecen relaciones entre la esperanza condicional y otras
cantidades estadisticas, como la varianza condicional. Entre
estas, una de las identidades mds relevantes es la férmula
de Tweedie [25], que proporciona un método para calcular
la esperanza condicional a través de la medida marginal.
En este contexto, la formula de Tweedie se formaliza en el
siguiente lema.

Lema 2: La esperanza condicional E[Y|X = z]
satisface la siguiente identidad:

A-BY|X =z]=x+02 9(z) a17)

donde 9(x) = V,logp(z) denota la funcién score,
con V, representando el gradiente respecto de z. La
funcién score también puede expresarse como:
—,_,;%m—AYnT

P(x) =V, 1logE [e (18)

La demostracion se encuentra en el Apéndice |B| En este
contexto, definimos la aproximacién de Tweedie como:

frw(x) = ATz 4+ oﬁAT ~p(x) (19)

Dentro de este marco, la funcién de Tweedie puede verse
como una generalizacién de LBP (I1), donde la desviacién
respecto de la formulacion estdndar de LBP estd gobernada
por el pardmetro o2, estimado en el modelo directo. La apro-
ximacién de la funcién score, sin embargo, sigue siendo un
problema abierto. Nosotros utilizaremos una aproximacién
de Taylor de primer orden de la siguiente manera:

— 52z le—Ay||? T T AT T 4T
e 2% zl—ﬁ(x x—2y Atz 4y A" Ay)
v

1 i(xTx —2y" ATz + Tr(AT Ayy™))

557 (20)

donde Tr(-) es la fraza de la matriz. La aproximacién de la
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funcidén score se da entonces por:

V.E {e‘ziﬁ'“’“‘y'z}

Y(z) = S W 2
£ [e sazlle—AY] }
—5z(z — AE[Y])
1 — 5 (aTe — 2E[Y]T ATz + Tr(AT AE[Y Y T))

1)
Definimos la funcién de aproximacién de Taylor como:

Jray () =
(ATz — AT AE[Y])
1— 55 (¢Tz — 2E[Y]T ATz + Tr(ATAE[Y Y 7))
(22)

ATz —

Cuando 02 — 0, esta aproximacién converge a la solucién
LBP jray(7) = fipp(v) = ATx, pero, por el contrario,
cuando 03 — 00, la aproximacién se vuelve constante
gray(r) = ATAE[Y]. En este contexto, o2 sirve como
medida de la calidad de la matriz A: si el ruido es pequefio,
la reconstruccién se basa principalmente en A; si el ruido
es significativo, la reconstruccién también incorpora infor-
maci6n del conjunto de datos a través de E[Y] y E[YY ]

(estimados de forma empirica).

IV. RESULTADOS EXPERIMENTALES

Los siguientes ejemplos se realizaron en una aplicacién
de TOA, donde z es el sinograma e y la imagen original.
Utilizamos un conjunto de entrenamiento de 5652 imagenes
{y:}2552. Dicho conjunto estd conformado por datos sintéti-
cos generados a partir de imagenes de vasculatura retiniana
obtenidas de bases de datos publicas [26[]-[30]]. Tanto la
matriz A como la naturaleza del ruido aditivo se conoceran
parcialmente. Las incertidumbres en la posicién del sensor
y la velocidad del sonido en la matriz A son del 0,5%.
Las imégenes son creadas con ruido blanco gaussiano de
varianza aleatoria, elegida para que el valor de la SNR del
sinograma varfe uniformemente entre 20 dB y 80 dB (02
serd estimado empiricamente y se considerard fijo).

Por dltimo, se aplica aumento de datos para incrementar
el conjunto de entrenamiento a 50000 muestras utilizando
datos sintéticos generados por el modelo de difusién pre-
sentado en [31].

A. Estimacion Monte-Carlo

El primer experimento utiliza la estimacién Monte-Carlo
Imc (). Los resultados fueron interesantes: aproximadamen-
te el 70% de las estimaciones resultaron ser solo ruido,
mientras que el 30% restante tuvo un desempefio muy
bueno. Los resultados exitosos se muestran en la Fig. [I] Al
aplicar aumento de datos en este experimento, los resultados
fueron desalentadores: ninguna de las reconstrucciones fue
exitosa, observdndose ruido en todos los casos. Se concluye
entonces que este método es muy sensible a la falta de
muestras en un entorno del punto de inferencia. El espacio
imagen posee una complejidad inherente tal, que la cantidad
de las muestras con las que se cuenta no alcanza para hacer
converger a la ley de los grandes ndmeros.
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B. Modelo de Mezcla de Gaussianas

El segundo experimento utiliza el GMM previamente
descrito Jomm(x) con m = 100. Una verificacién inicial
de la calidad de aprendizaje del GMM es usarlo como
método generativo. Sin aumento de datos, las imdgenes
generadas fueron muy ruidosas y presentaban pocas venas.
Sin embargo, con aumento de datos, el desempefio fue
satisfactorio. Los ejemplos se presentan en la Fig.|2l Aunque
las imédgenes generadas parecen razonables, el desempefio
del GMM en reconstruccién de imédgenes no fue satisfac-
toria, produciendo salidas ruidosas como puede verse en la
segunda fila de la Fig. 3

Un andlisis de los pardmetros optimizados revela que
las gaussianas exhiben covarianzas relativamente estrechas.
Este resultado implica que la regién del espacio latente
correctamente caracterizada se concentra principalmente en
torno a las m medias de las gaussianas. Este fenémeno
podria atribuirse a que el aumento de datos sesgé el proceso
de aprendizaje hacia las muestras reales disponibles. Es
plausible que la estrategia de aumento de datos empleada no
sea la mas adecuada para la estimacion anticausal propuesta,
considerando, ademds, su efecto perjudicial previamente
observado en la evaluaciéon mediante Monte Carlo. No
obstante, dado que el algoritmo no lograba converger a los
patrones esperados sin la aplicaciéon del aumento de datos,
se infiere una doble limitacién: por un lado, el nimero
de muestras disponibles es insuficiente para el nimero
de gaussianas utilizadas (justificando el uso del aumento
de datos); por otro lado, la complejidad intrinseca de las
imagenes impide una reduccién del tamafio del conjunto
de datos. En esencia, nos enfrentamos a un compromiso
metodolégico o una limitacién fundamental del conjunto de
datos.

C. Formula de Tweedie

El tercer experimento utiliza la aproximacién de Taylor
de la férmula de Tweedie Jray(z). La Fig. [3| compara
el desempefio de este método con la aproximaciéon LBP,
mostrando resultados similares. En la Fig. se puede
observar el desempefio de gray(z) en funcién de 0?, para
diferentes métricas populares: Indice de Similitud Estructu-
ral (SSIM), Correlacion de Pearson (PC), Error Cuadratico
Medio (RMSE) y Relacién Sefial-Ruido de Pico (PSNR) [5].
Mientras que SSIM, RMSE y PSNR son 6ptimos cuando
012} = 0 (aproximaciéon LBP), en términos de PC existe una
destacable ventaja al usar la aproximacién de Taylor.

V. CONCLUSIONES Y TRABAJOS FUTUROS

En el presente trabajo se propuso y se evalué una me-
todologia para la resolucion de problemas inversos desde
una perspectiva anticausal, la cual facilita la adaptacién a
posteriores cambios en la distribucién de los datos (cambios
de entorno). Se exploraron métodos bdasicos, incluyendo
LBP, Monte Carlo, GMM y Tweedie. Si bien LBP demostrd
ser el método mds consistentemente robusto, fue superado en
rendimiento en escenarios especificos. El método de Monte
Carlo mostré la capacidad de alcanzar una alta precision en
regiones puntuales del espacio de solucién, y el estimador
de Tweedie evidencié mejoras significativas con respecto a
métrica PC.
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Figura 1: Ejemplos de las imdgenes reconstruidas con Monte-Carlo para los casos donde el método funciona. La primera
fila muestra la imagen original y la segunda la reconstruccién Monte-Carlo.

Figura 3: Ejemplos de imégenes reconstruidas. La primera fila muestra la imagen original, la segunda la reconstruccién
LBP, la tercera GMM (algoritmo EM) entrenada con aumento de datos, y la cuarta utilizando aproximacién de Taylor de

la formula de Tweedie.

La descomposicién anticausal p(z|y) — p(y), presenta
muchas potencialidades una vez aprendidas, pero evidencia
un aumento en la dificultad de dicho aprendizaje. Mientras
que todos los métodos utilizaron el mismo modelado de
p(x|y) (caracterizados por A 'y 02), los de mejor desempefio
fueron LBP (el cudl evita modelar p(y)) y el estimador
Tweedie (solamente modela los momentos E[Y] y E[YYT]),
dando a entender que la dificultad estd en el aprendizaje del
espacio de las imdgenes. Esto se corrobora al analizar el
pobre desempefio del aumento de datos utilizado, el cual
ya habia demostrado buen desempefio en configuraciones
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estandar [31]. Es evidente entonces que la complejidad de
aprendizaje en el espacio de las imagenes es superior al del
espacio de sinogramas.

El andlisis aqui presentado establece una base inicial en
esta drea de estudio, dejando un amplio espectro para la
investigacion futura. Una linea de exploracién pendiente
consiste en optimizar la aproximacién de Tweedie para ga-
rantizar una utilizacién mads eficiente de los datos, superan-
do la informacién provista dnicamente por los momentos
estadisticos. Adicionalmente, seria de gran relevancia incor-
porar una métrica de desempeifio que esté directamente aco-
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Figura 4: Figuras de mérito (SSIM, PC, RMSE y PSNR) en funcién de o2 usando la aproximacién de Taylor.

plada con la adaptacién efectiva al entorno (trascendiendo la
mera potencialidad tedrica) para asi cuantificar su beneficio
real. Finalmente, resulta crucial investigar la adaptacién de
este enfoque anticausal a arquitecturas avanzadas, como las
redes neuronales o los modelos difusivos. Este esfuerzo
implicarfa no solo la modelizacién del problema directo,
sino también la incorporacion explicita de la identidad de
Bayes, como se demostré en trabajos previos (por ejemplo,
(T3)). Sin embargo, la definicién de la estrategia de imple-
mentacién ptima requiere exploracién adicional.
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APENDICE A
DEMOSTRACION DEL LEMA[1]

Mientras que (T4) es una identidad estdndar, las identida-
des (13) y requieren un andlisis de factores. Es sencillo
notar que la distribucién de X|K = k es normal debido a
las hipétesis del modelo. Su media y la covarianza pueden
calcularse como:

EIX|K =k =E[EX|V]K =K =A-m  (23)

cov(X|K =k) =E[cov(X|Y)|K = k] + cov (E[X|Y]|K = k)
=0, T+ A A, AT
24

De este modo, (I6) puede obtenerse mediante la regla
de Bayes. Con esta técnica es fécil hallar la distribucién
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conjunta:

X NN A,U/k ,
Y K=k He
(25)
La ecuaciéon (I3) se prueba utilizando propiedades de
variables normales multivariadas [32].

0'12,1 —+ AAkAT ANy
AR AT Ak

APENDICE B
DEMOSTRACION DEL LEMA [

La funcion score se define como ¢(x) = V,logp(z).
Por un lado, puede escribirse intercambiando el orden de
diferenciacion e integracién como:

Vep(z) 1
Y(x =7=7/ p(y)Vap(zly)dy (26
D= 0@ T @) Jew POV

En nuestro modelo X |Y =y ~ N (Ay, 021), el gradiente

puede calcularse como:

Ay —x
Vap(zly) = ygigp(wly) (27)
y la funcién score es
1 Ay —x
o) = = | o 2 p(aly)ay
_ A~E[Y\X2: z]—x 28)
O-’U

De esta manera, (I7) se demuestra resolviendo (28). Por
otro lado, la densidad de probabilidad p(x) en este modelo
puede escribirse como:

1 — iy [lz— Ay

— / py)e =2 dy

(2mo2)2 JrYy

_ 1 i E{e%lguszﬁ]
(2mo2)

Por lo tanto, la funcién score también puede expresarse
como

p(z) =
(29)

¥(z) = Vg logE [ei‘i?f'mAY“T (30)

Finalmente, el lema queda demostrado.
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