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Resumen— Los algoritmos de inteligencia artificial
habitualmente fallan cuando la distribución de los datos
se desvı́a de la utilizada durante el entrenamiento. Esta
vulnerabilidad puede ser corregida post-entrenamiento,
pero la misma puede requerir una etapa de ajuste
computacionalmente pesada y/o una gran necesidad de
nuevos datos. En este contexto, la teorı́a de causalidad
suele ser un excelente paradigma para diferenciar los
mecanismos propensos a variaciones de los invariantes.
Esto permitirı́a hacer un ajuste solamente sobre
el modelo variable, reduciendo la complejidad del
problema. Sin embargo, este paradigma está muy
poco estudiado en lo referido a problemas inversos,
principalmente porque estos problemas son por
definición anticausales. En este trabajo se analiza
el desempeño y limitaciones de algoritmos básicos
en problemas inversos que cumplan el requisito de
aprender de forma anticausal. En particular, se estudian
estos algoritmos en el contexto de reconstrucción de
imágenes en tomografı́a optoacústica.

Palabras clave: problemas inversos; modelos guiados por
la fı́sica; teorı́a de causalidad; tomografı́a optoacústica

Abstract— Artificial intelligence algorithms commonly
exhibit poor performance when deployed on data
whose distribution deviates from the one utilized during
the training phase. While this vulnerability can be
addressed post-training, doing so may necessitate a
computationally intensive fine-tuning process and/or
require a significant acquisition of new data. In this
context, causality theory presents an excellent paradigm
for distinguishing variation-prone mechanisms from
invariant ones. This distinction would permit fitting
the model exclusively to the variable components,
thereby reducing the complexity of the overall problem.
However, this paradigm remains under-explored in
relation to inverse problems, primarily because such
problems are, by their very definition, anticausal.
This work undertakes an analysis of the performance
and inherent limitations of fundamental algorithms
in inverse problems that satisfy the criteria for
anticausal learning. Specifically, these algorithms are

investigated within the context of image reconstruction
in optoacoustic tomography.

Keywords: inverse problems; physics-guided models;
causality theory; optoacoustic tomography

I. INTRODUCCIÓN

Los problemas inversos constituyen una clase particular
de tareas cuyo propósito es inferir causas desconocidas a
partir de efectos observados [1]. Se clasifican como tareas
anticausales porque las mismas buscan estimar causas a
partir de efectos, una dirección opuesta al proceso de ge-
neración de las variables. Se presentan de manera natural
en numerosos contextos cientı́ficos y de ingenierı́a, entre
ellos la reconstrucción de imágenes, la exploración geofı́sica
y el diagnóstico médico. Ejemplos clásicos van desde la
reconstrucción de imágenes de alta resolución a partir de
mediciones degradadas en diagnóstico por imágenes [2] has-
ta la recuperación de estructuras subterráneas mediante datos
sı́smicos [3]. Estas tareas suelen ser mal condicionadas, es
decir, su solución puede no ser única o extremadamente
sensible al ruido en las mediciones, lo que hace imprescin-
dible la incorporación de conocimiento fı́sico previo para
caracterizar al problema. Se denominan entonces modelos
guiados por la fı́sica.

La tomografı́a optoacústica (TOA) es un método de
obtención de imágenes médicas mediante el uso del efecto
optoacústico. Un pulso de luz que incide en el tejido
biológico blando se esparcirá por el mismo y una parte será
absorbida por moléculas presentes en la muestra biológica,
conocidas como cromóforos. La energı́a del cromóforo
excitado se convierte luego en calor, que en el marco de
un proceso isocórico, termina generando un aumento de
presión [4]. Esto se detecta a través de distintos arreglos de
sensores de ultrasonido, generando los llamados sinogramas:
representaciones gráficas de las señales acústicas en función
del tiempo medidas por cada detector. La gran cantidad
de configuraciones diferentes de medición en esta tarea,
ası́ como la presencia de incertidumbres o el conocimiento
parcial de los parámetros, pueden dar lugar a algoritmos
de reconstrucción especı́ficamente diseñados para una con-
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figuración particular que podrı́a no ser la que se utilizará
en una situación práctica final, sufriendo un cambio en la
distribución de los datos [5].

El Principio de Mecanismos Causales Independientes es
una hipótesis heurı́stica proveniente de la teorı́a de cau-
salidad [6]. Este principio postula que el proceso causal
generativo de las variables de un sistema se compone de
módulos autónomos que no se informan ni influyen entre
sı́. En un problema de TOA, esto se traduce en entrenar
por separado un modelo para la fuente (representados por
imágenes) y otro para el proceso de medición de sinogramas
a partir de su fuente (problema directo). Una variación
en la configuración experimental solo afectarı́a al segundo
modelo, el cuál podrı́a ser corregido con un proceso de adap-
tación de dominio [7] o aprendizaje por transferencia [8]. El
hecho de corregir solo una parte del modelo, podrı́a aliviar
potencialmente el costo computacional y la gran necesidad
de datos del nuevo entorno. Este tipo de aprendizaje podrı́a
incluso ayudar a definir algoritmos invariantes a cambios de
entorno [5], [9], [10].

El presente trabajo se centra en el estudio de algoritmos
básicos de aprendizaje anticausal en el marco de los pro-
blemas inversos y su aplicación especı́fica a la tomografı́a
optoacústica. Con ello, se busca realizar una prueba de
concepto para evaluar la viabilidad y el potencial de la
convergencia de estos campos de estudio.

II. CONCEPTOS BÁSICOS

A. Problemas Inversos

A pesar de su generalidad, los problemas inversos siguen
un marco matemático bastante unificado. El objetivo es
recuperar una muestra desconocida y ∈ Rdy distribuida a
partir de p(y), suponiendo acceso a mediciones x ∈ Rdx y
asumiendo un modelo de la forma:

X = A(Y ) + V (1)

donde X , Y son variables aleatorias representativas de x
y y, y V ∼ N (0,Σv) es un ruido aleatorio gaussiano
independiente de Y . En otras palabras, el modelo define
la relación X|Y=y ∼ N (A(y),Σv). El predictor óptimo
en términos de minimizar el error cuadrático medio es
E[Y |X = x], el cual se busca estimar:

E[Y |X = x] = argmin
f :Rdx→Rdy

E[(f(X)− Y )2] (2)

Observación 1: Muchas aplicaciones prácticas pue-
den aproximarse con un modelo lineal no invertible,
A(y) = A · y donde A es una matriz de dimensión
dx×dy . Esta matriz A suele estar fuertemente mal con-
dicionada, lo que vuelve escencial diferentes estrategias
de regularización para aproximar su inversión. En este
trabajo se tiene en cuenta esta hipótesis, entonces se
obtiene el siguiente modelo directo de (1):

x = Ay + v (3)

B. Fuera de Distribución

En aplicaciones de sensado es razonable suponer que la
distribución de los datos puede cambiar porque las condi-
ciones de adquisición y los factores experimentales rara vez
son idénticos entre mediciones. Por ejemplo, en imágenes
de TOA, la posición del sensor, la velocidad del sonido o
incluso pequeñas variaciones en la muestra pueden alterar
la relación entre la fuente imagen original) y la observación
x (sinograma).

Sea pe(x, y) la distribución de los datos, denotamos e ∈ E
a las posibles variaciones que puede sufrir. La cuestión
clave a abordar es la representación de los entornos en el
contexto de un problema inverso. Un ejemplo paradigmático
de problema inverso en ingenierı́a involucra un escenario
en el cual y representa una variable fı́sica a sensar, y x
corresponde a su medición indirecta. Si se supone que las
posibles variaciones se deben a cambios en las condiciones
experimentales donde se lleva a cabo el sensado, es razona-
ble suponer que la distribución p(y) permanece fija mientras
que el componente dependiente del entorno queda capturado
por pe(x|y).

En la teorı́a de la causalidad, este tipo de problema se
conoce como aprendizaje anticausal, dado que la meta es
predecir la causa a partir del efecto. En estos problemas,
el enfoque recomendado a seguir es el que se describe a
continuación [6]:

Observación 2: pe(x|y) representa el mecanismo
causal que genera X a partir de Y , y es independiente
de la distribución de la causa, p(y). Por otro lado,
pe(y|x) es sensible al cambio en la distribución de
p(y). Por lo tanto, en términos generales, al estimar
pe(y|x) conviene modelar pe(x|y) y p(y) por separado
y luego construir pe(y|x) usando la regla de Bayes.

En este contexto, se estudian diversas técnicas para
estimar E[Y |X = x], con el objetivo de desacoplar el
modelado de p(x|y) de p(y), aprovechando el conocimiento
de la distribución X|Y=y ∼ N (Ay,Σv). La estimación se
efectuará en dos etapas:

1. Modelo directo: estimar los parámetros (A,Σv) a
partir de un conjunto de datos aleatorio {(Xi, Yi)}ni=1.
En este trabajo, para el modelo directo se supondrá:
1) una matriz de covarianza esférica para el ruido
Σv = σ2

v · I, donde σ2
v es la estimación empı́rica de

la varianza; y 2) la matriz A será determinada con la
metodologı́a estándar de TOA (la cuál será explicada
a continuación).

2. Componente invariante: desarrollar un procedimien-
to capaz de realizar este modelado desacoplado de
p(x|y) (conocido en este paso) y p(y) (desconocido),
sin comprometer significativamente el rendimiento en
comparación con los métodos clásicos (diseñados para
un único entorno). En esta etapa se utiliza un conjunto
de datos simple de objetivos {Yi}ni=1. Nos enfoca-
remos en algoritmos no neuronales, con el fin de
compararlos con métodos clásicos como la proyección
lineal inversa (LBP, por sus siglas en inglés).
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C. Tomografı́a Optoacústica

Es bien sabido que, tras la excitación de una muestra
biológica por un pulso electromagnético δ(t), la presión
acústica p(r, t) en la posición r ∈ R3 y tiempo t satisface
la ecuación diferencial [11]:(

∂2

∂t2
− v2s ∇2

)
p(r, t) = 0 (4)

con las condiciones iniciales:

p(r, 0) = p0(r) ,
∂p

∂t
(r, 0) = 0 (5)

donde p0(r) es la presión optoacústica inicial y vs representa
la velocidad del sonido en el medio, el cual se supone
homogéneo y sin absorción acústica. Bajo la hipótesis
usual de confinamiento térmico y acústico [12], es decir,
cuando la duración del pulso láser es lo suficientemente
corta como para que se pueda despreciar la conducción de
calor y la propagación acústica hacia regiones vecinas de
la zona iluminada, la presión inducida inicialmente p0(r) es
proporcional a la densidad de energı́a óptica total absorbida.
Usando la formalización de la función de Green, la presión
recibida por un detector puntual ideal en la posición rd
puede escribirse como:

pd(rd, t) =
1

4π v2s

∂

∂t

∫∫∫
V

p0(r)
δ (t− |rd − r|/vs)

|rd − r|
dr

(6)
El objetivo del problema inverso en TOA es reconstruir

p0(r) a partir del sinograma pd(rd, t) medido en varias
posiciones rd, que tı́picamente se encuentran sobre una
superficie S que contiene el volumen de interés [13].

Varios enfoques, como los algoritmos de retroproyección
[14], [15], son de los más populares y utilizados en el
problema de reconstrucción de imágenes en TOA. Dichos
métodos proporcionan fórmulas de reconstrucción en forma
cerrada en términos de las señales detectadas sobre la
superficie de detección. Sin embargo, estos métodos suponen
que los detectores son puntuales, sin limitaciones de ancho
de banda y con respuesta angular isotrópica [16]. En la
práctica, los transductores tienen tamaño finito, ancho de
banda limitado y su respuesta espacial no es constante [17].
Además, las señales detectadas son ruidosas. Estas desvia-
ciones del escenario ideal supuesto por las fórmulas exactas
de reconstrucción pueden generar artefactos e imágenes
distorsionadas.

Un enfoque diferente pero relacionado al problema de
reconstrucción está dado por los algoritmos basados en
matrices [18]. En esta técnica, la solución directa de (6)
se discretiza. Como resultado, se obtiene la ecuación ma-
tricial (3) que se usa para resolver el problema inverso,
donde x es un vector columna que representa las presiones
medidas en un conjunto de posiciones de detectores rdl

(l = 1 . . . Nd) y en instantes de tiempo tk (k = 1 . . . Nt);
y es un vector columna que representa los valores de la
presión acústica inicial, y que tı́picamente se denomina la
imagen de referencia; y A es la matriz del modelo. El
j-ésimo elemento (j = 1 . . . N ) en y contiene el valor
promedio de la presión inicial dentro de un elemento de
volumen de tamaño ∆V en la posición rj . Una de las

ventajas de este enfoque es que cualquier efecto lineal en
el sistema puede ser considerado fácilmente (por ejemplo,
la respuesta espacial y temporal de los sensores) [19]. Una
vez establecida la formulación discreta, el problema inverso
se reduce al problema algebraico de invertir (3). La matriz
A puede escribirse como la multiplicación de dos matrices
AoaAs, donde As representa la función de respuesta del
sistema de imagen para un sensor puntual ideal y Aoa es
la forma matricial de un operador de derivada temporal. La
matriz As se define como [20]:

As
lkj =

1

4πv2s

∆V

∆t2
d(tk, rj , rdl)

|rdl − rj |
(7)

d(tk, rj , rdl) =

{
1 si |tk − |rdl−rj |

vs
| < ∆t/2

0 en otro caso
(8)

donde ∆t es el paso temporal en el que se muestrean las
señales pd(rd, t). No es difı́cil ver que (7) constituye una
discretización del integrando en (6), mientras que (8) indica
el instante de tiempo en que el efecto de la presión inicial en
la posición rj es capturado por el sensor rdl. En el caso de
un detector de tamaño finito, la respuesta impulsiva espacial
del sensor se tiene en cuenta dividiendo el área del sensor en
elementos superficiales (tratados como detectores puntuales)
que luego se suman [20], [21].

Observación 3: Es razonable suponer que, en una
aplicación real, la matriz del modelo no se conoce
completamente. En este trabajo, consideraremos que
la diferencia entre ambas reside en la incertidumbre de
la posición del sensor y de la velocidad del sonido al
calcularla.

III. MODELOS ANTICAUSALES

Nos enfocamos en modelos que definen una función de
aproximación ŷ(x) basada en los parámetros (A, σ2

v) y un
conjunto de datos objetivo {Yi}ni=1. Estos modelos buscan
abordar los desafı́os de los problemas inversos aprovechan-
do representaciones anticausales desacopladas y estrategias
computacionales eficientes.

A. Proyección Lineal Inversa (LBP)

El problema de inversión puede formularse usando un cri-
terio cuadrático combinado con un término de regularización
de Tikhonov:

ŷTIK(x) = mı́n
y∈Rdy

∥Ay − x∥2 + λ∥y∥2 (9)

donde λ ≥ 0 es un parámetro de regularización que
mejora la estabilidad del problema inverso, el cual suele ser
mal condicionado. Además, este término de regularización
mitiga los efectos del ruido en las señales medidas. La solu-
ción al problema regularizado de Tikhonov puede derivarse
analı́ticamente como [22]:

ŷTIK(x) = (ATA+ λI)−1ATx (10)

Sin embargo, calcular esta inversa puede ser compu-
tacionalmente costoso, particularmente en problemas a gran
escala. Para abordar esto, una simplificación común es
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considerar valores grandes de λ. En el régimen asintóti-
co cuando λ → ∞, la solución de Tikhonov se vuelve
proporcional al operador adjunto ŷTIK(x) ∝ ATx, y esta
aproximación conduce a una solución computacionalmente
eficiente conocida como proyección lineal inversa (LBP)
[23]:

ŷLBP(x) = ATx (11)

La solución LBP proporciona un método sencillo y
computacionalmente económico para obtener una recons-
trucción inicial de la imagen. Sin embargo, es importante
notar que las reconstrucciones basadas en LBP suelen exhi-
bir limitaciones y artefactos, particularmente en escenarios
de visión limitada [24]. A pesar de estas desventajas, LBP
sigue siendo ampliamente utilizada debido a su simplicidad
y facilidad de implementación. Cabe destacar que esta apro-
ximación depende únicamente de la matriz A, independiente
de σ2

v y del conjunto de datos.

B. Estimación Monte Carlo

El cálculo de E[Y |X = x] mediante la descomposición
causal p(x, y) = p(y)p(x|y) para este modelo puede escri-
birse como:

E[Y |X = x] =

∫
Rdy

y
p(x|y)p(y)

p(x)
dy (12)

=

∫
Rdy ye

− 1
2 (x−Ay)TΣ−1

v (x−Ay)p(y)dy∫
Rdy e

− 1
2 (x−Ay)TΣ−1

v (x−Ay)p(y)dy
(13)

Una estimación Monte Carlo puede realizarse de manera
directa como:

ŷMC(x) =

∑n
i=1 yie

− 1
2 (x−Ayi)

TΣ−1
v (x−Ayi)∑n

i=1 e
− 1

2 (x−Ayi)TΣ−1
v (x−Ayi)

C. Modelo de Mezcla Gaussiana (GMM)

El enfoque propuesto consiste en aprender p(y) median-
te un Modelo de Mezcla Gaussiana (GMM) entrenado a
través del algoritmo de Expectativa-Maximización (EM) con
m gaussianas diagonales. Para integrar este modelo con
X|Y = y, se emplea un marco de análisis de factores.

El GMM supone la existencia de una variable mezcladora
categórica K ∼ Cat(ω1, · · · , ωm) cuyo vı́nculo con el resto
de las variables está definido por la cadena de Markov
K → Y → X (donde las flechas definen la relación de
causalidad supuesta). Es decir, el modelo supone por un
lado la distribución Y |K = k ∼ N (µk,Λk) (con Λk una
matriz diagonal) y por el otro X|Y = y ∼ N (Ay, σ2

v · I).
El algoritmo EM entrena {ωk, µk,Λk}mk=1 a partir de

un conjunto de datos {Yi}ni=1. Tras el entrenamiento, la
inferencia puede realizarse con el siguiente lema.

Lema 1: En el modelo descrito anteriormente, la
esperanza condicional puede calcularse como:

E[Y |X = x] =

m∑
k=1

P(K = k|X = x)E[Y |X = x,K = k]

(14)

donde

E[Y |X = x,K = k] (15)

= µk + ΛkA
T
(
σ2
vI+AΛkA

T
)−1

(x−Aµk)

y

P(K = k|X = x) =
ωk · Nx

(
Aµk, σ

2
vI+AΛkA

T
)∑m

l=1 ωl · Nx (Aµl, σ2
vI+AΛlAT )

(16)

con Nx(µ,Σ) la densidad de probabilidad asociada a
una distribución normal de media µ y covarianza Σ
evaluada en x.

La demostración puede verse en el Apéndice A. Dentro
de este marco, definimos el estimador ŷGMM(x) = E[Y |X =
x], calculado usando el Lema 1.

D. Fórmula de Tweedie

El operador de esperanza condicional es una herramienta
fundamental en numerosos campos que dependen del análi-
sis estadı́stico. Existen diversas identidades derivadas que
establecen relaciones entre la esperanza condicional y otras
cantidades estadı́sticas, como la varianza condicional. Entre
estas, una de las identidades más relevantes es la fórmula
de Tweedie [25], que proporciona un método para calcular
la esperanza condicional a través de la medida marginal.
En este contexto, la fórmula de Tweedie se formaliza en el
siguiente lema.

Lema 2: La esperanza condicional E[Y |X = x]
satisface la siguiente identidad:

A · E[Y |X = x] = x+ σ2
v · ψ(x) (17)

donde ψ(x) = ∇x log p(x) denota la función score,
con ∇x representando el gradiente respecto de x. La
función score también puede expresarse como:

ψ(x) = ∇x logE
[
e
− 1

2σ2
v
∥x−AY ∥2

]
(18)

La demostración se encuentra en el Apéndice B. En este
contexto, definimos la aproximación de Tweedie como:

ŷTW(x) = ATx+ σ2
vA

T · ψ(x) (19)

Dentro de este marco, la función de Tweedie puede verse
como una generalización de LBP (11), donde la desviación
respecto de la formulación estándar de LBP está gobernada
por el parámetro σ2

v , estimado en el modelo directo. La apro-
ximación de la función score, sin embargo, sigue siendo un
problema abierto. Nosotros utilizaremos una aproximación
de Taylor de primer orden de la siguiente manera:

e
− 1

2σ2
v
∥x−Ay∥2

≈ 1− 1

2σ2
v

(xTx− 2yTATx+ yTATAy)

= 1− 1

2σ2
v

(xTx− 2yTATx+ Tr(ATAyyT )) (20)

donde Tr(·) es la traza de la matriz. La aproximación de la
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función score se da entonces por:

ψ(x) =

∇xE
[
e
− 1

2σ2
v
∥x−AY ∥2

]
E
[
e
− 1

2σ2
v
∥x−AY ∥2

]
≈

− 1
σ2
v
(x−AE[Y ])

1− 1
2σ2

v
(xTx− 2E[Y ]TATx+ Tr(ATAE[Y Y T ])

(21)

Definimos la función de aproximación de Taylor como:

ŷTAY(x) =

ATx− (ATx−ATAE[Y ])

1− 1
2σ2

v
(xTx− 2E[Y ]TATx+ Tr(ATAE[Y Y T ])

(22)

Cuando σ2
v → 0, esta aproximación converge a la solución

LBP ŷTAY(x) = ŷLBP(x) = ATx, pero, por el contrario,
cuando σ2

v → ∞, la aproximación se vuelve constante
ŷTAY(x) = ATAE[Y ]. En este contexto, σ2

v sirve como
medida de la calidad de la matriz A: si el ruido es pequeño,
la reconstrucción se basa principalmente en A; si el ruido
es significativo, la reconstrucción también incorpora infor-
mación del conjunto de datos a través de E[Y ] y E[Y Y T ]
(estimados de forma empı́rica).

IV. RESULTADOS EXPERIMENTALES

Los siguientes ejemplos se realizaron en una aplicación
de TOA, donde x es el sinograma e y la imagen original.
Utilizamos un conjunto de entrenamiento de 5652 imágenes
{yi}5652i=1 . Dicho conjunto está conformado por datos sintéti-
cos generados a partir de imágenes de vasculatura retiniana
obtenidas de bases de datos públicas [26]–[30]. Tanto la
matriz A como la naturaleza del ruido aditivo se conocerán
parcialmente. Las incertidumbres en la posición del sensor
y la velocidad del sonido en la matriz A son del 0,5%.
Las imágenes son creadas con ruido blanco gaussiano de
varianza aleatoria, elegida para que el valor de la SNR del
sinograma varı́e uniformemente entre 20 dB y 80 dB (σ2

v

será estimado empı́ricamente y se considerará fijo).
Por último, se aplica aumento de datos para incrementar

el conjunto de entrenamiento a 50000 muestras utilizando
datos sintéticos generados por el modelo de difusión pre-
sentado en [31].

A. Estimación Monte-Carlo

El primer experimento utiliza la estimación Monte-Carlo
ŷMC(x). Los resultados fueron interesantes: aproximadamen-
te el 70% de las estimaciones resultaron ser solo ruido,
mientras que el 30% restante tuvo un desempeño muy
bueno. Los resultados exitosos se muestran en la Fig. 1. Al
aplicar aumento de datos en este experimento, los resultados
fueron desalentadores: ninguna de las reconstrucciones fue
exitosa, observándose ruido en todos los casos. Se concluye
entonces que este método es muy sensible a la falta de
muestras en un entorno del punto de inferencia. El espacio
imagen posee una complejidad inherente tal, que la cantidad
de las muestras con las que se cuenta no alcanza para hacer
converger a la ley de los grandes números.

B. Modelo de Mezcla de Gaussianas

El segundo experimento utiliza el GMM previamente
descrito ŷGMM(x) con m = 100. Una verificación inicial
de la calidad de aprendizaje del GMM es usarlo como
método generativo. Sin aumento de datos, las imágenes
generadas fueron muy ruidosas y presentaban pocas venas.
Sin embargo, con aumento de datos, el desempeño fue
satisfactorio. Los ejemplos se presentan en la Fig. 2. Aunque
las imágenes generadas parecen razonables, el desempeño
del GMM en reconstrucción de imágenes no fue satisfac-
toria, produciendo salidas ruidosas como puede verse en la
segunda fila de la Fig. 3.

Un análisis de los parámetros optimizados revela que
las gaussianas exhiben covarianzas relativamente estrechas.
Este resultado implica que la región del espacio latente
correctamente caracterizada se concentra principalmente en
torno a las m medias de las gaussianas. Este fenómeno
podrı́a atribuirse a que el aumento de datos sesgó el proceso
de aprendizaje hacia las muestras reales disponibles. Es
plausible que la estrategia de aumento de datos empleada no
sea la más adecuada para la estimación anticausal propuesta,
considerando, además, su efecto perjudicial previamente
observado en la evaluación mediante Monte Carlo. No
obstante, dado que el algoritmo no lograba converger a los
patrones esperados sin la aplicación del aumento de datos,
se infiere una doble limitación: por un lado, el número
de muestras disponibles es insuficiente para el número
de gaussianas utilizadas (justificando el uso del aumento
de datos); por otro lado, la complejidad intrı́nseca de las
imágenes impide una reducción del tamaño del conjunto
de datos. En esencia, nos enfrentamos a un compromiso
metodológico o una limitación fundamental del conjunto de
datos.

C. Fórmula de Tweedie

El tercer experimento utiliza la aproximación de Taylor
de la fórmula de Tweedie ŷTAY(x). La Fig. 3 compara
el desempeño de este método con la aproximación LBP,
mostrando resultados similares. En la Fig. 4, se puede
observar el desempeño de ŷTAY(x) en función de σ2

v para
diferentes métricas populares: Índice de Similitud Estructu-
ral (SSIM), Correlación de Pearson (PC), Error Cuadrático
Medio (RMSE) y Relación Señal-Ruido de Pico (PSNR) [5].
Mientras que SSIM, RMSE y PSNR son óptimos cuando
σ2
v = 0 (aproximación LBP), en términos de PC existe una

destacable ventaja al usar la aproximación de Taylor.

V. CONCLUSIONES Y TRABAJOS FUTUROS

En el presente trabajo se propuso y se evaluó una me-
todologı́a para la resolución de problemas inversos desde
una perspectiva anticausal, la cual facilita la adaptación a
posteriores cambios en la distribución de los datos (cambios
de entorno). Se exploraron métodos básicos, incluyendo
LBP, Monte Carlo, GMM y Tweedie. Si bien LBP demostró
ser el método más consistentemente robusto, fue superado en
rendimiento en escenarios especı́ficos. El método de Monte
Carlo mostró la capacidad de alcanzar una alta precisión en
regiones puntuales del espacio de solución, y el estimador
de Tweedie evidenció mejoras significativas con respecto a
métrica PC.
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Figura 1: Ejemplos de las imágenes reconstruidas con Monte-Carlo para los casos donde el método funciona. La primera
fila muestra la imagen original y la segunda la reconstrucción Monte-Carlo.

Figura 2: Desempeño del GMM con aumento de datos como modelo generativo.

Figura 3: Ejemplos de imágenes reconstruidas. La primera fila muestra la imagen original, la segunda la reconstrucción
LBP, la tercera GMM (algoritmo EM) entrenada con aumento de datos, y la cuarta utilizando aproximación de Taylor de
la fórmula de Tweedie.

La descomposición anticausal p(x|y) − p(y), presenta
muchas potencialidades una vez aprendidas, pero evidencia
un aumento en la dificultad de dicho aprendizaje. Mientras
que todos los métodos utilizaron el mismo modelado de
p(x|y) (caracterizados por A y σ2

v), los de mejor desempeño
fueron LBP (el cuál evita modelar p(y)) y el estimador
Tweedie (solamente modela los momentos E[Y ] y E[Y Y T ]),
dando a entender que la dificultad está en el aprendizaje del
espacio de las imágenes. Esto se corrobora al analizar el
pobre desempeño del aumento de datos utilizado, el cual
ya habı́a demostrado buen desempeño en configuraciones

estándar [31]. Es evidente entonces que la complejidad de
aprendizaje en el espacio de las imágenes es superior al del
espacio de sinogramas.

El análisis aquı́ presentado establece una base inicial en
esta área de estudio, dejando un amplio espectro para la
investigación futura. Una lı́nea de exploración pendiente
consiste en optimizar la aproximación de Tweedie para ga-
rantizar una utilización más eficiente de los datos, superan-
do la información provista únicamente por los momentos
estadı́sticos. Adicionalmente, serı́a de gran relevancia incor-
porar una métrica de desempeño que esté directamente aco-
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Figura 4: Figuras de mérito (SSIM, PC, RMSE y PSNR) en función de σ2
v usando la aproximación de Taylor.

plada con la adaptación efectiva al entorno (trascendiendo la
mera potencialidad teórica) para ası́ cuantificar su beneficio
real. Finalmente, resulta crucial investigar la adaptación de
este enfoque anticausal a arquitecturas avanzadas, como las
redes neuronales o los modelos difusivos. Este esfuerzo
implicarı́a no solo la modelización del problema directo,
sino también la incorporación explı́cita de la identidad de
Bayes, como se demostró en trabajos previos (por ejemplo,
(13)). Sin embargo, la definición de la estrategia de imple-
mentación óptima requiere exploración adicional.
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APÉNDICE A
DEMOSTRACIÓN DEL LEMA 1

Mientras que (14) es una identidad estándar, las identida-
des (15) y (16) requieren un análisis de factores. Es sencillo
notar que la distribución de X|K = k es normal debido a
las hipótesis del modelo. Su media y la covarianza pueden
calcularse como:

E[X|K = k] = E [E[X|Y ]|K = k] = A · µk (23)

cov(X|K = k) = E [cov(X|Y )|K = k] + cov (E[X|Y ]|K = k)

= σ2
v · I+A · Λk ·AT

(24)

De este modo, (16) puede obtenerse mediante la regla
de Bayes. Con esta técnica es fácil hallar la distribución

conjunta:[
X
Y

]∣∣∣∣
K=k

∼ N
([

Aµk

µk

]
,

[
σ2
vI+AΛkA

T AΛk

ΛkA
T Λk

])
(25)

La ecuación (15) se prueba utilizando propiedades de
variables normales multivariadas [32].

APÉNDICE B
DEMOSTRACIÓN DEL LEMA 2

La función score se define como ψ(x) = ∇x log p(x).
Por un lado, puede escribirse intercambiando el orden de
diferenciación e integración como:

ψ(x) =
∇xp(x)

p(x)
=

1

p(x)

∫
Rdy

p(y)∇xp(x|y)dy (26)

En nuestro modelo X|Y = y ∼ N (Ay, σ2
vI), el gradiente

puede calcularse como:

∇xp(x|y) =
Ay − x

σ2
v

p(x|y) (27)

y la función score es

ψ(x) =
1

p(x)

∫
Rdy

p(y)
Ay − x

σ2
v

p(x|y)dy

=
A · E[Y |X = x]− x

σ2
v

(28)

De esta manera, (17) se demuestra resolviendo (28). Por
otro lado, la densidad de probabilidad p(x) en este modelo
puede escribirse como:

p(x) =
1

(2πσ2
v)

dx
2

∫
Rdy

p(y)e
− 1

2σ2
v
∥x−Ay∥2

dy

=
1

(2πσ2
v)

dx
2

E
[
e
− 1

2σ2
v
∥x−AY ∥2

]
(29)

Por lo tanto, la función score también puede expresarse
como

ψ(x) = ∇x logE
[
e
− 1

2σ2
v
∥x−AY ∥2

]
(30)

Finalmente, el lema queda demostrado.
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