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Abstract
We present a spectral method to study three-body fragmentation processes. The basis set
explicitly includes continuum asymptotic boundary conditions, and it is built upon generalized
Sturmian functions. These functions are eigenvectors of a two-body problem where the
magnitude of a potential is assumed as the eigenvalue. Comparison with a simple solvable
analytical model demonstrates that our approach rapidly converges to the exact results, with
basis sizes much smaller than other previous calculations. Preliminary calculations of H
ionization by electron impact in the L = 0 approximation suggest that these convergence
properties also apply to long-range Coulomb problems.

(Some figures in this article are in colour only in the electronic version)

In the last few years it has been stated that the three-body
continuum problem has been solved [1]. This assertion is
motivated by the fact that a theoretical quantum mechanical
recipe has been found, and that its results are numerically
convergent and agree with the available experimental data
and other calculations. Of course, there are approximations
which depend on the specific physical hypotheses and practical
details of the method [2]. In this communication we introduce
an alternative recipe, based on spectral expansions, presenting
some important advantages when compared with other well-
established techniques.

The theoretical methods developed to deal with ionizing
collisions and, in general, with three-body systems, differ not
only in the way the solution of the problem is reached, but also
fundamentally in how these methods deal with the asymptotic
conditions. Breakup and fragmentation problems require an
adequate description of continuum states and their asymptotes.
The converged close-coupling (CCC) [3] and the R-matrix [4]
approaches use pseudo-states to describe the continuum. They
set the asymptotic conditions in regions where two particles
are close to each other, while the third one is far away. This
type of channel expansion produces unphysical oscillations
in the differential cross sections which are inherent to the

method and cannot be removed unless an infinite number of
basis elements is used [5, 6]. The exterior complex scaling
(ECS) proposes an alternative way of working. It solves
the problem on a numerical grid of coordinates, and fixes
the boundary conditions in the fragmentation region where
all the particles are far from each other (which is known as �0).
The procedure involves an external rotation of the coordinates
in the complex plane. Since the scattered wavefunction must
have pure outgoing behaviour in the asymptotic region, the
rotated wavefunction must have a decreasing exponential one.
For sufficiently large rotations, the exponential decay reaches
zero and then the wavefunction can be numerically enforced
to be zero on the border of each coordinate grid. Although this
is only valid in the �0 region, imposing this condition on the
complete border of the grid produces cross sections which are
in remarkably good agreement with experimental data for a
variety of processes. The ECS has been implemented using a
discretization of the two-dimensional Schrödinger equation,
by finite differences on a grid, using numerical basis sets
such as B-splines, or a combination of numerical and spectral
methods within the discrete variable representation approach
[7]. Even though there are basis sets involved in the ECS, they
are of purely numerical nature and do not have any information
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about the physics of the problem being studied, i.e. they do
not diagonalize any of the interactions between the particles.

Beyond these physical considerations, some practical
difficulties arise when solving the three-body continuum. A
significant amount of computational resources are necessary
to solve this problem. Progress in this field has been
closely associated with the spectacular developments in
parallel supercomputers. The advances of time-independent
computational approaches such as the ECS [7], or CCC [3, 8]
among others, rely on the capability to compute enormous
amounts of integrals or to manage giant matrix systems.
However, their extension to systems involving more than three
particles faces huge challenges. No complete calculation
within these time-independent methods has been reported for
processes involving four particles such as the double ionization
of helium by electron impact (e,3e). This is not due to the fact
that the method itself cannot be extended to more particles,
but because it is nowadays impossible to implement these
approaches with the available computers [9]. Therefore, the
theories have to be combined with time-dependent techniques
[4, 10]. In any case, these methods are only available to those
who have access to extremely large computer clusters.

In this work we address both these physical aspects as well
as computational issues of previous theories. We propose a
spectral method within a time-independent scheme with the
potential of the ECS but requiring a considerably smaller
amount of computational resources. Our assumption is that
convergence rates can be substantially improved if the basis
functions incorporate the physics of the problem, allowing the
reduction of the computational resources needed and possibly
opening the possibility of dealing with more complex systems.
In the present communication we introduce an alternative
method to solve the three-body problem in fragmentation
processes. The asymptotic conditions are treated in a similar
way to the ECS, but a Sturmian representation incorporating
some of the physics of the problem is used.

Let us consider a system of two lights and a heavy
particle. The three-body Schrödinger equation is [H −
E]�+ = [T + V − E]�+ = 0, where T is the kinetic energy
operator and V = V1 + V2 + V12 is the usual addition of
two-body interacting potentials. The wavefunction �+ for
a fragmentation process is written as a sum of the initial state
�0 (such that [T + V1 + V2 − E]�0 = 0), and the scattered
wave �+

sc, solution of

[E − T − V1 − V2]�+
sc = V12�0. (1)

The scattered wave �+
sc is then a solution of a

non-homogeneous second-order multivariable differential
equation, with a source term given by V12�0, and with
outgoing asymptotic conditions. For brevity, we restrict our
analysis to an S-wave (L = 0) case, to avoid the long,
well-known angular momenta algebra, although the use of
the method for non-zero angular momenta is straightforward.
At this point, we choose to expand �+

sc in a configuration
interaction basis, i.e. �+

sc(r1, r2) = ∑
ν cνφν(r1,r2) with

φν(r1,r2) = AS

S+
na

(r1)

r1

S+
nb

(r2)

r2
ν = {na, nb} (2)

where the operator AS takes care of the proper symmetrization
of the wavefunctions. The main contribution of this
communication is to choose these S+

n (r) functions as
generalized Sturmians. They are solutions of a two-body
Schrödinger equation

[Ti + Vi − Ei]S
+
n (ri) = −βnV̄iS

+
n (ri) i = 1, 2 (3)

where βn (and not the energy) is considered the eigenvalue.
This eigenvalue is the magnitude of a generating potential V̄i

such that for long distances [Ti +Vi −Ei]S+
n (ri) = 0. It is easy

to see that they constitute a basis set with orthogonality and
closure relations given by (i = 1, 2)∫

S+
n′ V̄iS

+
n dri = δn′n,

∑
n

S+
n′(ri)V̄i(ri)S

+
n (r ′

i ) = δ(ri − r ′
i ),

respectively. One should choose positive energies Ei for the
fragmentation problem in (3). This Sturmian equation is
then solved in such a way that S+

n (r) has outgoing behaviour
for all n, and diagonalizes the interaction potential Vi. Thus,
the Sturmians S+

n (r) have a ‘built-in’ non-zero flux for large
distances, which is a condition of the fragmentation processes.
Of course, the result is a set of complex eigenvalues βn

that, together with the interaction V̄i , introduce a complex
short-range potential that generates this outgoing flux. The
introduction of the asymptotic behaviour at the basis level
avoids the exterior rotation of the coordinates into the complex
plane, such as in the ECS approach. Although in principle
arbitrary, the selection of V̄i is dictated by the physical features
of the full interaction V under study. Calculation of the basis
set is performed by an expansion on Laguerre polynomials [11]
or fully numerical on a radial grid [12]. The spatial extension
of the basis is controlled by a coordinate scaling parameter λ

in the Laguerre method [11], whereas the basis is computed
in a box of a predefined radial size rc in the grid one [13].
Other asymptotic conditions like incoming or standing-wave
boundary conditions can be equally developed.

Replacing the CI expansion in the scattering equation (1),
and projecting into the basis elements, the following linear
system has to be solved:

[H − (E − E1 − E2)S]Ψ+
sc = F,

where H is the matrix representation of the Hamiltonian in the
basis φν(r1, r2), [H]νν ′ = 〈φν |H | φν ′ 〉, while [S]νν ′ = 〈φν |φν ′ 〉
is the overlap matrix, F represents the source V12�0 projected
into the basis set and Ψ+

sc is the vector of coefficients cν that
completely determines the solution of the problem. It should
be noted that the selection of the basis energies E1 and E2 is
also arbitrary and can be different from the physical energies
Ea and Eb. In addition, the Sturmian functions diagonalize
the kinetic energy and the interaction potentials Vi . Therefore,
only the interaction potential V 12 and the generating potential
V̄i remain in the computation of [H]νν ′ , which substantially
simplifies the evaluation of the matrix elements.

We can now proceed further and set up an analytically
solvable three-body fragmentation problem which can be used
to test our proposal. To this end we recall that the formal
solution of equation (1) can be expressed in terms of the full
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Figure 1. Comparison of the first-order exact wavefunction with
calculations using the generalized Sturmian basis.

Green function G+ = [H −E]−1, as �+
sc = G+V12�0. We can

make use of the free Green function to write the solution up to
first order as �+

sc = �0 + �(1)+
sc = �0 + G+

0V12�0, with

[E − T ]�(1)+
sc = V12�0. (4)

Since the analytic form of the free Green function is known
[14], it is possible to obtain exact, closed form expressions for
the solution �(1)+

sc of equation (4), for certain classes of inter-
particle potentials V12 and initial channel wavefunctions �0.
One of such interactions is a product of exponential potentials
V12 ∝ exp(−ar1 − br2). This particular choice enables us to
compute first the scattered function �+

sc as a series in terms of

Hankel functions of the hyper-radius ρ =
√

r2
1 + r2

2 and Jacobi
polynomials of the hyper-angle tan α = r2/r1. Finally, the
scattering amplitude f (α) and the single differential cross
section (dσ/dε = |f (α)|2/(kakb)) in terms of the energy
sharing parameter

(
ε = Eb/Ea = k2

b

/
k2
a

)
can be extracted

from the asymptotic behaviour of the wavefunction [22].
This analytic model is a generalization of the one proposed
in [15].

The first problem to analyse corresponds to the case where
a constant value of 0.1 a.u. for �0 is considered in equation
(4), to be able to compare with the results of the ECS approach
[15]. In figure 1 we plot the scattered wavefunction against
the exact results, for r1 = r2 and a total energy E = 24
eV. We make use of a basis of 30 Sturmians for each light
particle, with an extension up to rc = 50 a.u. with the grid
method, while using 90 Sturmian functions with λ = 1.5 with
the Laguerre expansion. In both calculations the generating
potential is V̄i = e−0.3ri . We find it convenient to choose
E1 = E2 = E. Our results show an excellent agreement for
both real and imaginary parts of the wavefunction compared
to the analytic values, and also with previous calculations of
Rescigno and co-workers [15].

We can compare the average efficiency of our method
by computing the density of wavefunction basis per atomic
unit, db = N/V, where N is the total basis size and V is the
volume of the configuration space where the solution of the
three-body problem is accurately described by the basis set.
For the numerical Sturmian method, we have V = r2

c , and

Figure 2. Real part of the first-order scattering wavefunction
computed with the generalized Sturmian basis (below), for an
incident energy of 24 eV. The vector field (above) represents the flux
of the wavefunction as a function of r1 and r2. The breakup channel
is seen clearly as a maximum of the flux around the line r1 ≈ r2.

for example, the density db for the calculations of figure 1 is
0.38 a.u.−1. With the Laguerre expansion the corresponding
db is 0.48 a.u.−1 for λ = 1.5. This can be compared to
db = 25 a.u.−1 for time-dependent methods [16], and to
db ∼ 2 a.u.−1 for ECS [17] or db ∼ 1.29 a.u.−1 [18] for
similar problems. It is clear that our method requires less
basis elements than all previous models.

Let us now turn to a more realistic fragmentation problem.
We consider a light particle colliding with a two-body
bound system, interacting with exponential potentials Vi =
3 exp(−ri), which supports only a bound state with energy
Ei = 11.2 eV. We also assume the product of exponential
potentials for the V12 interaction. The initial state �0 is
the symmetrized product of the bound state and the l = 0
continuum partial wave that represents the incoming particle.
In figure 2 we show the absolute value of our solution as
a function of radial coordinates, as well as the numerical
computation of the flux of the wavefunction, j = �(

�+
sc∇�+

sc

)
.

We can clearly see that the general aspect of the function
corresponds to a hyper-spherical wave depending on the hyper-
radius ρ. The flux shows that the wavefunction has outgoing
behaviour and that its maximum intensity is observed mostly
in the region where r1 ≈ r2, which corresponds to the breakup
channel.

We also compute the differential cross section dσ/dε with
both Sturmian bases. The comparison of our calculations
against the exact results is shown in figure 3. We evaluate
the cross section at different values of the hyper-radius ρ. In
both methods, convergence to the exact values is achieved for
increasing ρ. Small oscillations around the exact value are
observed with both methods. They originate in the fact that
outgoing waves are enforced on r1 and r2 when actually the
outgoing behaviour should be expected on the hyper-radius.
However, their magnitude decreases when ρ is increased. In
addition, these oscillations concentrate on the borders of the
configuration space where r1 ≈ 0, and r2 is large, or vice
versa. In these regions, the asymptotic conditions where one
particle is far from the other two (�1 and �2 regions) would be
more adequate. However, the outgoing conditions imposed to
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Figure 3. Single differential breakup cross section in terms of the energy sharing ε = Eb/Ea = k2
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a . The problem solved includes
short-range exponential interactions Vi = 3 exp(−ri), i = 1, 2, while V12 = exp (−r1 − r2). Top row: SDCS as a function of ρ for both
methods, the Laguerre basis uses λ = 2.5 and N = 90 basis functions per particle, while the numerical grid calculation extends up to rc =
50 a.u. with a one-particle basis size of N = 30. Bottom row: SDCS for different basis sizes for both methods. Cross sections are computed
at ρ = 30 a.u.

both coordinates work equally but at the expense of requiring
more basis functions. The symmetry observed on the cross
section arises naturally from the method, due to the proper
boundary conditions included in the basis for both scattered
particles.

Finally, we extended our calculation to the much more
realistic Temkin–Poet problem, which models the ionization
of one-electron atom by electronic impact, keeping only total
angular momentum L = 0. This is a prototypical test for
collision calculations, where the methods are faced with the
long-range features of the Coulomb problems, but set aside
the cumbersome angular momenta algebra. In figure 4 we
present calculations of the single differential cross section of
the singlet state for 54.4 eV impact energy. Computations were
performed with the grid method for the Sturmian basis, with
150 Sturmians and rmax = 100 a.u. Our basis diagonalizes the
kinetic energy and some of the interaction potentials, reducing
the size of the calculation and enabling us to solve this problem
accurately with a single desktop PC.

Our result shows a good agreement with the benchmark
calculations of ECS [19] and FDM [20], and with time-
dependent calculations of Pindzola et al [21]. Cross sections
are symmetric (which is not the case with CCC calculations,
and therefore are not included in the comparison). Tiny
oscillations can be attributed to the ‘small’ asymptotic hyper-
radius ρ = 80 a.u. where the cross sections are obtained,
and to the fact that asymptotic conditions are imposed on the
{r1, r2} space and not on the hype-radial coordinate, which
should be the case. We recall that the results of ECS shown
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E
1
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0

0.05
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0.25
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S/
(k

1k 2) 
 (

πa
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Figure 4. Single differential cross section (SDCS) for singlet
ionization in the Temkin–Poet model, in terms of the energy of one
of the particles. The impact energy is 54.5 eV. Solid thin black line:
SDCS with the present method computed at ρ = 50 a.u., dashed
black line: the present method at ρ = 80 a.u., black circles:
extrapolation of the present results for ρ → ∞, dot–dashed red line:
SDCS obtained with ECS [19] or FDM [20], dotted blue line:
time-dependent calculations [21].

in figure 4 were obtained with ρ = 200 a.u., whereas FDM
needs ρ = 240 a.u. The figure shows that already for ρ =
80 a.u. our cross section has the proper shape and magnitude,
putting in evidence the efficiency of our method. We have also
computed the extrapolation for ρ → ∞, which well agrees
with ECS and FDM results. Differences with these theories
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arise for (a) small energies of one of the ejected electrons,
where the ECS and FDM also interpolate the cross sections
and (b) E1 = E2 = E/2, where our results should be extended
for larger distances.

In summary, we devised a method to deal with three-body
fragmentation problems based on the use of Sturmian functions
equipped with the appropriated asymptotic conditions. The
problem is solved including the boundary condition of the
�0 region. We would like to stress the fact that these
Sturmian functions diagonalize completely the kinetic energy
as well as the interaction potentials. This means that the
continuum breakup eigenstate of a given total energy E is
represented by a spectral expansion in the magnitude of
the potential V̄i , and therefore, the continuum itself is not
discretized as in previous methods. Then, only the inter-
particle interaction potential remains to be solved by the
basis. Both grid and Laguerre Sturmian methods provide an
accurate description of the process and are similarly efficient;
their practical implementation presents differences in the way
the potentials and boundary conditions are considered. We
demonstrated in this communication that physically converged
cross sections are obtained within this Sturmian theory, using a
small number of basis functions and with fewer resources than
those reported by the ECS or FDM. Moreover, our technique
is also efficient in solving the Temkin–Poet model where long-
ranged interactions are included. These encouraging results
lead us to explore further the method for complete collisional
ionizing problems.
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