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Critical behavior of repulsively interacting particles adsorbed on

disordered triangular lattices
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A simple model for amorphous solids, consisting of a triangular lattice with a fraction of

attenuated bonds randomly distributed (which simulate the presence of defects in the surface),

is used here to find out, by using grand canonical Monte Carlo simulations, how the adsorption

thermodynamics of repulsively interacting monomers is modified with respect to the same process

in the regular lattice. The degree of disorder of the surface is tunable by selecting the values of (1)

the fraction of attenuated bonds r (0 r r r 1) and (2) the attenuation factor r (0 r r r 1),

where r is defined as the ratio between the value of the lateral interaction associated to an

attenuated bond and that corresponding to a regular bond. Adsorption isotherm and differential

heat of adsorption calculations have been carried out showing and interpreting the effects of the

disorder. A rich variety of behavior has been observed for different values of r and r, varying

between two limit cases: bond-diluted lattices (r = 0 and r a 0) and regular lattices (r = 1 and

any value of r). In addition, the critical behavior of the system was studied, showing that the

order–disorder phase transition observed for the regular lattice survives, though with

modifications, above a critical curve (r–r–temperature).

I. Introduction

For a very long time in the history of the studies of hetero-

geneous adsorbents, the adsorptive energy distribution was

considered as the only important characteristic to be known in

order to describe the behavior of adsorbed particles, and much

effort was dedicated to the development of methods for

its determination from experimental adsorption data.1–4

However, most real solids surfaces present a combination of

two types of heterogeneity:5–7 (1) energetic heterogeneity,

manifested through the variation of adsorption energy from

one site to another, and (2) geometric heterogeneity, associated

with the existence of irregularities in the lattice of adsorbing

sites, whose effects on adsorption are manifested through

adsorbate–adsorbate interactions. These heterogeneities may

produce a complex spatial dependence of the solid–gas inter-

action potential, which can be denoted as adsorption energy

topography.

The description of thermodynamic phenomena taking place

on a substrate which presents the inherent complexity of

geometric heterogeneities, is a challenging topic in modern

surface science.5,8,9 In this context, the amorphous solids10 can

be considered as the prototype of systems with quenched

geometrical disorder and have been the object of many studies

in the field of magnetism. Based on simple ‘‘site-diluted’’ or

‘‘bond-diluted’’ models like the Ising, Heisenberg and Potts

models, the effect of the disorder on the nature of the phase

transitions and their universality have been discussed and are

still posing open problems.11–14 As it is well known,15,16 the

lattice-gas model is isomorphic to the Ising model in a

magnetic field, and one can apply the results known for the

latter to analyze the adsorption thermodynamics of monomers

on a lattice of sites. Despite this result, the main studies in

magnetism have been developed in absence of an external field

and, consequently, are not directly related to the adsorption

problem. Due to this fact, and to the potential applications, it

is of interest and of value to inquire how a geometric disorder

influences the main thermodynamic properties of adsorbed

particles.

In a previous article,17 Quintana et al. studied the thermo-

dynamics of adsorption of repulsively interacting monomers

on disordered triangular lattices. Inspired by the problem of

adsorption on amorphous solids, disorder was introduced by

randomly deleting a fraction of bonds, representing inter-

actions between particles adsorbed at nearest-neighbor (NN)

sites. Thermodynamic quantities like adsorption isotherm,

differential heat of adsorption and configurational entropy

of the adlayer were obtained by Monte Carlo simulations and

their behavior discussed. The results showed that as the

fraction of diluted bonds increases, the order–disorder phase

transitions observed for the ordered lattice at y = 1/3 and

at y = 2/3 survive up to a critical disorder value, which is of

the order of 10�3. In other words, the presence of a very small

quantity of defects (diluted bonds) break down the order of

the low-temperature phases.

In this paper, we extend the model in ref. 17 transforming

the diluted bonds, leading to null interactions between

particles adsorbed at NN sites, into attenuated bonds, associated

to a NN interaction rw, where r is the attenuation factor

(0 r r r 1), and w is the lateral coupling associated to a

regular bond. Now, the degree of disorder of the surface is

tunable by selecting the values of (1) the fraction of attenuated

bonds r (0 r r r 1) and (2) the attenuation factor r. In this

framework, and by using grand canonical Monte Carlo
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simulations, a detailed (r–r–temperature) phase diagram was

obtained, showing that regular lattices and bond-diluted

lattices17 appear as particular cases of the present model,

along with a rich variety of intermediate states, where the

phase transition observed for the regular lattice survives.

II. Lattice–gas model and Monte Carlo simulation

scheme

The surface of amorphous solids cannot be adequately

described by a regular lattice of adsorbing sites. One of

the main characteristics of such surfaces is the existence of

irregularities in the lattice of adsorbing sites, like variable

distance among neighboring sites, whose effects on adsorption

are manifested through adsorbate–adsorbate interactions. In

this line of thinking, a simplified statistical model for amorphous

solids is presented in the following paragraphs.

We consider a triangular lattice (connectivity z = 6) with

M = L � L sites, m = 3M bonds, and periodic boundary

conditions. The surface is built on the basis of two elements:

sites and bonds. A site represents an adsorptive potential

minimum, where particles from a gas phase will be allocated

upon adsorption (only one particle is allowed at each site),

while a bond represents the adsorbate–adsorbate interaction18

between two particles adsorbed at the connected sites. Each

bond can be either a regular bond, associated to a NN

interaction w, or an attenuated bond, associated to a NN

interaction rw, where the attenuation factor r varies between

0 and 1. Attenuated and regular bonds are randomly distributed

with concentration r and 1 � r, respectively. In this way, the

degree of disorder of the surface is tunable by selecting the

values of (1) the fraction of attenuated bonds r and (2)

the attenuation factor r. In the extreme cases where r = 0

(and r a 0) and r = 1 (and any value of r), the ‘‘disordered

lattice’’ reduces to the well-known bond-diluted and regular

lattices, respectively.

If the lattice is exposed to a gas phase of particles at

temperature T and chemical potential m, particles will adsorb
in such a way that an equilibrium mean coverage, y, is

achieved. The hamiltonian of the system can be written as

H ¼ w
X
hi;ji

bijcicj � ðei � mÞ
X
i

ci; ð1Þ

where the sum in the first term is taken over all NN pairs of

sites, ck’s are site-occupation numbers (= 0 if site k is empty,

= 1 if occupied), bij’s are bond-occupation numbers (= 1 if

the bond connecting sites i and j is a regular bond, = r if the

bond connecting sites i and j is an attenuated bond) and ei is
the adsorption energy at site i. In the case of an homogeneous

surface of sites, as the one to be considered here, all ei are the
same and we can take them as equal to zero without loss of

generality.

The problem has been studied by grand canonical MC

simulations using a typical adsorption–desorption algorithm.21

The procedure is as follows. Once the values of the temperature T

and the chemical potential m are set, a site is randomly selected

and its coordinates are established. Then, an attempt is made

to interchange its occupancy state with probability given by

the Metropolis rule:22 P = min{1, exp(�DH/kBT)}, where kB

is the Boltzmann constant and DH is the difference between

the Hamiltonians of the final and initial states. A Monte Carlo

step (MCS) is achieved when M sites have been tested to

change its occupancy state. Typically, the equilibrium

state can be well reproduced after discarding the first

n0 = 5 � 105 MCS. Then, the next n = 5 � 105 MCS are

used to compute averages.

Thermodynamic quantities, such as mean coverage, y, and
configurational energy, U, are obtained by simple averages

over n configurations

y = hNi/M; U = hHi � mhNi, (2)

where the brackets denote averages over statistically uncorrelated

configurations.

In our Monte Carlo simulations, we varied the value of m
and monitored the density y. Apart from the isotherms

(y vs. m) and the configurational energy, other quantities are

calculated such as the differential heat of adsorption qd which

can be obtained from the simulation as:23

qd ¼ �
@U

@hNi : ð3Þ

The ordered states in the adsorbed phase can be well described

by decomposing the original lattice into three interpenetrating

sublattices a = 1, 2, 3. The ð
ffiffiffi
3
p
�

ffiffiffi
3
p
Þ ordered state24

corresponds to one sublattice filled and the other two empty.

In the ð
ffiffiffi
3
p
�

ffiffiffi
3
p
Þ� state one sublattice is empty and the other

two filled. In terms of the sublattice coverage

ya ¼
3

M

X
i2a

ci; ð4Þ

we can define the order parameter C of the system as

C ¼ 4ffiffiffi
6
p

X
a

C2
a

 !1=2

ð5Þ

where Ca = [ya � (yb+yg)/2]dabg/2 and the d takes the

value 1 for a cyclic permutation of subindexes (1, 2, 3) and

the value 0 otherwise.

Given that our system is disordered, it is important to stress

that all the above calculations are repeated over 100 replicas of

the system for each fixed pair of values (r, r) and all thermo-

dynamical quantities are finally averaged over them.

III. Results and discussion

Computational simulations have been developed for triangular

lattices with L = 96 and periodic boundary conditions. With

this size of the lattice we verified that finite size effects, which

affect the isotherms in the case of repulsive interactions at

much smaller sizes, are negligible. Care had to be taken

in order to select the precise size which would allow the

formation of the ordered phases.

We consider in the first place the behavior of the completely

ordered system (r = 0 or r = 1 and any value of r). Fig. 1
shows the adsorption isotherm (a) and the differential heat of

adsorption (b) for different values of w/kBT and the behavior

of the order parameter (c) for a fixed value of w/kBT. These

results, which have been previously reported in ref. 17, are
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included here in order to help the reader understand the basic

phenomenology.

In the limit w/kBT - 0, the coverage grows monotonically

with chemical potential and the corresponding isotherm is of

Langmuir type (solid line in the figure). For higher values

of w/kBT, such that w/kBT is above the critical value wc/kBT=

2.985,25 three regimes appear in the isotherms. This behavior

can be interpreted as follows: (i) for 0 o y o 1/3, the adatoms

do not interact with each other and the adsorption sites are

filled until a ð
ffiffiffi
3
p
�

ffiffiffi
3
p
Þ ordered phase is formed on them; (ii)

for 1/3 o y o 2/3, the filling continues up to a ð
ffiffiffi
3
p
�

ffiffiffi
3
p
Þ�

structure appears on the lattice; and (iii) for 2/3 o y o 1, the

surface is totally covered.

The plateaus in the adsorption isotherms, which are clearly

associated to different structural rearrangements of the adsorbate

molecules, are accompanied by characteristic signals in the

differential heat of adsorption. In fact, a plateau in the

adsorption isotherm appears as a step in the differential heat

of adsorption. Thus, the regimes described in Fig. 1(a) can be

reinterpreted by analyzing the differential heat of adsorption

[Fig. 1(b)]: from y = 0 to y = 1/3 the particles are adsorbed

avoiding nearest-neighbor interactions, which gives qd = 0;

from y = 1/3 to y = 2/3, each incoming particle is allocated

on the lattice with three occupied nearest-neighbor sites in the

plane and qd =3w. Finally, from y=2/3 to y=1, to adsorb a

new monomer it is necessary to occupy an empty site on

the ð
ffiffiffi
3
p
�

ffiffiffi
3
p
Þ� structure, this process involves an energy

variation of qd = 6w.

It is also important to test the stability of the order

parameter in terms of the lattice dimensions. Fig. 1(c) shows

simultaneously the variation of coverage and C as a function

of m/kBT for a fixed value of w/kBT = 6, where C E 1 over a

wide range of values of m spanning the two coverage plateaus

at y= 1/3 and y= 2/3. In fact, when the system is disordered,

all sublattices are equivalents and the order parameter is

minimum. However, when a configuration of the local phase

appears at low temperature [as is the case in Fig. 1(c)], this is

allocated on a sublattice. Let us suppose that this configuration

lies on the sublattice a = 1 (see eqn (4) and (5)). Then, the

coverage ya is maximum (ya = 1) and the coverage of the rest

of the sublattices is zero or minimum. Consequently, C is also

maximum.

As some of the bonds are randomly attenuated in the lattice,

this becomes disordered with r 4 0 and r o 1. Adsorption

isotherm and differential heat of adsorption for w/kBT = 6

and different values of r and r are shown in Fig. 2(a) and (b),

respectively. It can be observed that for increasing values

Fig. 1 (a) Adsorption isotherm for r = 0 and different values of

w/kBT as indicated. (b) Same as part (a) for differential heat of

adsorption. (c) Adsorption isotherm (solid circles) and order

parameter C (empty circles) for a regular triangular lattice (r = 0)

at a fixed interaction strength (w/kBT = 6). As discussed in the text,

the results in Fig. 1 have been previously reported in ref. 17.

Fig. 2 Adsorption isotherm (a) and differential heat of adsorption

(b), for triangular lattices with w/kBT = 6 and different degrees of

disorder as indicated.
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of r and r, the plateaus in the adsorption isotherm and the

corresponding steps in the differential heat of adsorption are

gradually smeared out. An interesting phenomenon occurs for

r = 0 (diluted bonds) and values of r larger than r E 0.5.

For this disorder degree, the differential heat of adsorption

presents six steps (seven plateaus) at characteristic concen-

trations. This situation can be explained as follows: each

incoming particle is adsorbed in such a way that it does not

have any NN occupied site. This occurs until all possible sites

with this characteristic are filled. Then, a first plateau in qd is

formed where qd = 0. Taking into account that the substrate is

a bond-diluted lattice, the remaining empty sites can be

divided in six groups according to the number of bonds

that they have. Thus, upon increasing the reduced chemical

potential each one of those groups will be sequentially filled.

As a consequence, after the saturation of all sites of each

group a plateau is formed in qd. The value of this quantity in

each plateau is qd = nw, where n is the connectivity of each

kind of site. In addition, the particle-vacancy symmetry is lost.

This symmetry breaking can be explained by taking into

account the fact that, due to repulsive interactions, sites

attached to attenuated bonds will be filled preferentially as

the coverage increases.

The above results suggest the existence of a critical degree of

disorder (rc and rc), below which the order–disorder phase

transition observed for the ordered lattice will survive. In what

follows we explore in more details this possibility and work

out a way of estimating these critical values and the extent to

which the critical temperature is affected by the degree of

disorder.

The effect of the disorder on the order parameter is studied

in Fig. 3, where C is plotted versus m/kBT for w/kBT = 6,

r = 0.25 and different values of r ranging between 0 and 1. It

can be seen that all curves are contained between the two limit

ones: the one corresponding to r = 1 (regular lattice), where

the order parameter indicates the existence of the order–

disorder phase transition at y = 1/3 and y = 2/3, and the

one corresponding to r = 0 (bond-diluted lattice), where the

disorder destroys the phase transition and the order parameter

is practically zero over the whole range of chemical potential.

The curves for intermediate values of r vary continuously

between the two limit cases.

On the basis of the behavior of the curves in Fig. 3, and in

order to quantify the disorder degree in the adsorbate for

different values of r and r, a new order parameter will be

defined by the following procedure:

� One of the two possible phases is selected. In this case, we

restrict the analysis to the low-coverage phase.

� Given fixed values of r, r and w/kBT, and the corres-

pondingC(m/kBT) curve, the area A1/3 is measured (see Fig. 4).

A1/3 represents the area under the C(m/kBT) curve in the range

of chemical potential where the low-coverage phase is

formed (ml/kBT � mc/kBT). As it is shown in Fig. 4, (ml/kBT)
corresponds to a point in the low-chemical-potential region

where C = 0, and mc/kBT corresponds to the value of the

chemical potential at which C has a local minimum in the

region of intermediate chemical potential. Thus,

A1=3 ¼
Z mc=kBT

ml=kBT
Cðm=kBTÞdðm=kBTÞ: ð6Þ

� Finally, the new order parameter d1/3 is calculated as

d1=3 ¼
A1=3

A
r¼0
1=3

; ð7Þ

where Ar = 0
1/3 represents the value of A1/3 for the regular lattice,

and consequently, d1/3 varies between 0 and 1.

The order parameter d2/3, characterizing the high-coverage

phase transition, is defined in a similar way. In this case, A2/3 is

calculated in the range (mc/kBT � mr/kBT), see Fig. 4. As an

illustrative example, Fig. 5(a) [(b)] shows d1/3 [d2/3] as a

function of r for w/kBT = 8, r = 0.15 and y = 1/3 [y = 2/3].

Clearly, the curves exhibit the typical behavior corresponding

to an order parameter, which reinforces the idea that the phase

transition survives up to a certain critical degree of disorder. In

the following, d1/3 and d2/3 will be used to study the critical

behavior of the present model.

Now, the variation of d2/3 with r for different values of r and

a fixed value of w/kBT = 3.5 is represented in Fig. 6(a). For

each curve, a critical value of r (rc) is obtained from the

position of the inflexion point. Thus, the ordered phase is

separated from the disordered state by a order–disorder phase

transition occurring at a critical rc.

Fig. 3 Order parameter C versus chemical potential for w/kBT = 6,

r = 0.25 and different values of r as indicated.

Fig. 4 Typical curve of the order parameter C versus coverage

showing the different quantities used to build the order parameter

d (see the corresponding text).
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Repeating the procedure of Fig. 6(a) for different values of r
between 0 and 1, the phase diagram of Fig. 6(b) is obtained. Solid

symbols on the critical line have been obtained from the position

of the inflexion point of the curves in part (a): circle, r = 0.15;

square, r = 0.25; triangle, r = 0.50; and diamond, r = 0.70.

The extreme points of the critical curve can be calculated in

an analytical way. In fact, for r = 0 (regular lattice), the

behavior of the system is well-known: if w/kBT Z 2.985,25 the

phase transition occurs for all values of r; and the phase

transition does not take place for w/kBT o 2.985. On the

other hand, in the limit r = 1, the system corresponds to a

regular lattice with homogeneous lateral interactions equal to

rw/kBT. In this case, the value of rc is obtained from the

condition rcw/kBT = 2.985.25

To conclude with the analysis of the results presented in

Fig. 6(b), we briefly analyze the behavior of the system for

r E 0 and r = 0. As studied in ref. 17, the phase transition

survives up to a critical value of r, which is of the order of

10�3. The dashed line in Fig. 6(a) indicates that this region of

the phase diagram, where r E 0 and r E 0, has already been

studied following the scheme of ref. 17.

The study of Fig. 6 was repeated for a wide range of values

of w/kBT. In this way, a detailed (r–r–w/kBT) phase diagram

was obtained for the low-coverage phase (Fig. 7) and the

high-coverage phase (Fig. 8). As discussed in Fig. 6, the region

below the critical curves (line-symbol curves in Fig. 7 and 8)

corresponds to the no phase-transition region, and the region

above the critical curves corresponds to the phase-transition

region. Several conclusions can be extracted from Fig. 7 and 8.

(i) The particle-vacancy symmetry is lost. It is therefore

clear that critical parameters are different at the two phase

transitions located at y = 1/3 and at y = 2/3, the latter being

more sensitive to the degree of disorder. The reason for this

behavior can be traced down to the particularities of the

geometry of each ordered phase. At y = 1/3 the ordered

phase consists of a configuration where any central filled site is

surrounded by an hexagon with six empty sites at the corners.

If just one bond between a filled and an empty site is

attenuated, no new configurations arise with the same or lower

Fig. 5 (a) Order parameter d as a function of r for y = 1/3,

w/kBT = 8 and r = 0.15. (b) As in part (a) for y = 2/3.

Fig. 6 Analysis at the high coverage transition, y= 2/3: (a) variation

of the order parameter d with r for w/kBT= 3.5 and different values of

r as indicated; (b) phase diagram, in the (r–r) space, for a disordered

triangular lattice at y=2/3 and a fixed interaction strength (w/kBT=3.5).

Solid symbols on the critical line have been obtained from the position

of the inflexion point of the curves in part (a): circle, r = 0.15; square,

r = 0.25; triangle, r = 0.50; and diamond, r = 0.70.

Fig. 7 Phase diagram (in the r–r–w/kBT parameter space) corres-

ponding to repulsive monomers adsorbed on disordered triangular

lattices at 1/3 coverage. Line-plus-symbol curves correspond to critical

lines that separate the phase-transition and no phase transition regions.
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energy. At y = 2/3, on the contrary, the ordered phase is

characterized by the fact that any central empty site is

surrounded by an hexagon with six filled sites at the corners.

If just one bond between a filled and an empty site is

attenuated (a radial bond in an hexagon) there are several

new configurations with lower energy, namely those where the

eliminated bond is transformed into one of the sides of an

hexagon of filled sites. The system will try to evolve toward

one of the new configurations passing through a huge number

of intermediary partially disordered states.

(ii) According to the discussion of Fig. 6(b), the critical

curves for r = 0 and r = 1 show a marked step in w/kBT =

2.985, which corresponds to the critical interaction for the

regular lattice.

(iii) As w/kBT is increased, the low- and high-coverage

phases exhibit two well-differentiated behaviors. At y = 1/3,

the overall effect of w/kBT is to decrease the critical r vs. r
curves for all r. On the other hand, for the high-coverage

phase, the (r–r) curves tend to a limit curve as w/kBT is

increased. The limit curve was obtained for w/kBT = 30, with

an effort reaching almost the limits of our computational

capabilities (data do not shown here for clarity).

The results in (iii) indicate that an analysis of the delicate

balance between the lateral interaction energy and the degree of

disorder (r and r) allows to interpret the critical behavior of the

system. Thus, for the low-coverage phase, the effects of the

disorder can be ‘‘compensated’’ by an appropriate w/kBT, such

that the phase transition survives. On the contrary, there exists a

wide region of r and r where the high-coverage phase disappears,

independently of the value of w/kBT. These findings reinforce the

arguments in point (i), i.e. the high-coverage phase is more

sensitive to the degree of disorder than the low-coverage phase.

IV. Conclusions

In the present work, we have addressed the critical properties

of repulsively interacting particles adsorbed on disordered

triangular lattices. The results were obtained by using grand

canonical Monte Carlo simulations.

Disorder was introduced by a simple model where each

bond (which represents the adsorbate–adsorbate interaction

between two particles adsorbed at the connected sites) can be

either a regular bond, associated to a NN interaction w, or an

attenuated bond, associated to a NN interaction rw (0r rr 1).

Attenuated and regular bonds were randomly distributed with a

concentration r and 1 � r (0 r r r 1).

Thermodynamic quantities like adsorption isotherm and

differential heat of adsorption were calculated and their

behavior discussed. In addition, we have introduced an order

parameter, d, which is particularly useful for describing

adsorption on disordered systems at critical regime. This

parameter is well behaved and computationally convenient.

Taking advantage of its definition, a complete (r–r–w/kBT)
phase diagram of the studied system was obtained.

In the limit of r = 1 (regular lattice), two order–disorder

phase transitions exist at y = 1/3 and at y = 2/3 when w/kBT

is above the critical value wc/kBT = 2.985 and all thermo-

dynamic quantities show a particle-vacancy symmetry around

y = 1/2. As the degree of disorder increases, the critical

behavior of the system is characterized by the following

properties:

(1) The particle-vacancy symmetry is lost and, consequently,

the critical parameters are different at the two phase

transitions located at y = 1/3 and at y = 2/3. This symmetry

breaking can be explained by taking into account the fact that,

due to repulsive interactions, sites attached to attenuated

bonds will be filled preferentially as the coverage increases.

(2) Even though the presence of defects affects the formation

of ordered structures in the adlayer, the phase transition

survives up to a certain critical degree of disorder rc. In the

limit of r = 0, which corresponds to the case reported in

ref. 17, this critical value is of the order of 10�3 (a very small

quantity of defects break down the order of the low-temperature

phases). The results obtained here show that the value of rc
increases significantly as r is increased.

(3) As w/kBT is increased, the low- and high-coverage

phases exhibit two well-differentiated behaviors. At y = 1/3,

the overall effect of w/kBT is to decrease the critical r vs. r
curves for all r (or to diminish the area of the no

phase-transition region). On the other hand, for the high-

coverage phase, the (r-r) curves tend to a limit curve as w/kBT

is increased. Thus, for the low-coverage phase, the effects of

the disorder can be ‘‘compensated’’ by an appropriate w/kBT,

such that the phase transition survives. On the contrary, there

exists a wide region of r and r where the high-coverage phase

disappears, independently of the value of w/kBT. These

findings indicate that the high-coverage phase is more sensitive

to the degree of disorder than the low-coverage phase.

Future efforts will be directed to (a) include attractive

interactions between the adparticles and (b) develop an

exhaustive study on critical exponents and universality.
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