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A simple model for amorphous solids, consisting of a triangular lattice with a fraction of
attenuated bonds randomly distributed (which simulate the presence of defects in the surface),

is used here to find out, by using grand canonical Monte Carlo simulations, how the adsorption
thermodynamics of repulsively interacting monomers is modified with respect to the same process
in the regular lattice. The degree of disorder of the surface is tunable by selecting the values of (1)
the fraction of attenuated bonds p (0 < p < 1) and (2) the attenuation factor r (0 < r < 1),
where r is defined as the ratio between the value of the lateral interaction associated to an
attenuated bond and that corresponding to a regular bond. Adsorption isotherm and differential
heat of adsorption calculations have been carried out showing and interpreting the effects of the
disorder. A rich variety of behavior has been observed for different values of p and r, varying
between two limit cases: bond-diluted lattices (r = 0 and p # 0) and regular lattices (r = 1 and

any value of p). In addition, the critical behavior of the system was studied, showing that the
order—disorder phase transition observed for the regular lattice survives, though with

modifications, above a critical curve (p—r—temperature).

I. Introduction

For a very long time in the history of the studies of hetero-
geneous adsorbents, the adsorptive energy distribution was
considered as the only important characteristic to be known in
order to describe the behavior of adsorbed particles, and much
effort was dedicated to the development of methods for
its determination from experimental adsorption data.'™
However, most real solids surfaces present a combination of
two types of heterogeneity:>’ (1) energetic heterogeneity,
manifested through the variation of adsorption energy from
one site to another, and (2) geometric heterogeneity, associated
with the existence of irregularities in the lattice of adsorbing
sites, whose effects on adsorption are manifested through
adsorbate—adsorbate interactions. These heterogeneities may
produce a complex spatial dependence of the solid—gas inter-
action potential, which can be denoted as adsorption energy
topography.

The description of thermodynamic phenomena taking place
on a substrate which presents the inherent complexity of
geometric heterogeneities, is a challenging topic in modern
surface science.>®? In this context, the amorphous solids'® can
be considered as the prototype of systems with quenched
geometrical disorder and have been the object of many studies
in the field of magnetism. Based on simple “‘site-diluted” or
“bond-diluted”” models like the Ising, Heisenberg and Potts
models, the effect of the disorder on the nature of the phase
transitions and their universality have been discussed and are
still posing open problems.'™* As it is well known,'>!® the
lattice-gas model is isomorphic to the Ising model in a
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magnetic field, and one can apply the results known for the
latter to analyze the adsorption thermodynamics of monomers
on a lattice of sites. Despite this result, the main studies in
magnetism have been developed in absence of an external field
and, consequently, are not directly related to the adsorption
problem. Due to this fact, and to the potential applications, it
is of interest and of value to inquire how a geometric disorder
influences the main thermodynamic properties of adsorbed
particles.

In a previous article,!” Quintana er al. studied the thermo-
dynamics of adsorption of repulsively interacting monomers
on disordered triangular lattices. Inspired by the problem of
adsorption on amorphous solids, disorder was introduced by
randomly deleting a fraction of bonds, representing inter-
actions between particles adsorbed at nearest-neighbor (NN)
sites. Thermodynamic quantities like adsorption isotherm,
differential heat of adsorption and configurational entropy
of the adlayer were obtained by Monte Carlo simulations and
their behavior discussed. The results showed that as the
fraction of diluted bonds increases, the order—disorder phase
transitions observed for the ordered lattice at 6 = 1/3 and
at 0 = 2/3 survive up to a critical disorder value, which is of
the order of 107>. In other words, the presence of a very small
quantity of defects (diluted bonds) break down the order of
the low-temperature phases.

In this paper, we extend the model in ref. 17 transforming
the diluted bonds, leading to null interactions between
particles adsorbed at NN sites, into attenuated bonds, associated
to a NN interaction rw, where r is the attenuation factor
(0 < r < 1), and w is the lateral coupling associated to a
regular bond. Now, the degree of disorder of the surface is
tunable by selecting the values of (1) the fraction of attenuated
bonds p (0 < p < 1) and (2) the attenuation factor r. In this
framework, and by using grand canonical Monte Carlo
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simulations, a detailed (p—r—temperature) phase diagram was
obtained, showing that regular lattices and bond-diluted
lattices'” appear as particular cases of the present model,
along with a rich variety of intermediate states, where the
phase transition observed for the regular lattice survives.

II. Lattice—gas model and Monte Carlo simulation
scheme

The surface of amorphous solids cannot be adequately
described by a regular lattice of adsorbing sites. One of
the main characteristics of such surfaces is the existence of
irregularities in the lattice of adsorbing sites, like variable
distance among neighboring sites, whose effects on adsorption
are manifested through adsorbate—adsorbate interactions. In
this line of thinking, a simplified statistical model for amorphous
solids is presented in the following paragraphs.

We consider a triangular lattice (connectivity z = 6) with
M = L x L sites, m = 3M bonds, and periodic boundary
conditions. The surface is built on the basis of two elements:
sites and bonds. A site represents an adsorptive potential
minimum, where particles from a gas phase will be allocated
upon adsorption (only one particle is allowed at each site),
while a bond represents the adsorbate—adsorbate interaction'®
between two particles adsorbed at the connected sites. Each
bond can be either a regular bond, associated to a NN
interaction w, or an attenuated bond, associated to a NN
interaction rw, where the attenuation factor r varies between
0 and 1. Attenuated and regular bonds are randomly distributed
with concentration p and 1 — p, respectively. In this way, the
degree of disorder of the surface is tunable by selecting the
values of (1) the fraction of attenuated bonds p and (2)
the attenuation factor r. In the extreme cases where r = 0
(and p # 0) and r = 1 (and any value of p), the “disordered
lattice” reduces to the well-known bond-diluted and regular
lattices, respectively.

If the lattice is exposed to a gas phase of particles at
temperature 7 and chemical potential u, particles will adsorb
in such a way that an equilibrium mean coverage, 0, is
achieved. The hamiltonian of the system can be written as

H= Wzbi/'c[c/ — (e —p) 20[7 (1)
(i) i

where the sum in the first term is taken over all NN pairs of
sites, ¢;’s are site-occupation numbers (= 0 if site & is empty,
= 1 if occupied), b;’s are bond-occupation numbers (= 1 if
the bond connecting sites i and j is a regular bond, = r if the
bond connecting sites 7 and j is an attenuated bond) and ¢; is
the adsorption energy at site i. In the case of an homogeneous
surface of sites, as the one to be considered here, all ¢; are the
same and we can take them as equal to zero without loss of
generality.

The problem has been studied by grand canonical MC
simulations using a typical adsorption—desorption algorithm.?!
The procedure is as follows. Once the values of the temperature T
and the chemical potential u are set, a site is randomly selected
and its coordinates are established. Then, an attempt is made
to interchange its occupancy state with probability given by
the Metropolis rule:** P = min{l, exp(—AH/kgT)}, where kg

is the Boltzmann constant and AH is the difference between
the Hamiltonians of the final and initial states. A Monte Carlo
step (MCS) is achieved when M sites have been tested to
change its occupancy state. Typically, the equilibrium
state can be well reproduced after discarding the first
n = 5 x 10° MCS. Then, the next n = 5 x 10° MCS are
used to compute averages.

Thermodynamic quantities, such as mean coverage, 6, and
configurational energy, U, are obtained by simple averages
over n configurations

0 = (N)/M; U = (H) — u(N), ®)

where the brackets denote averages over statistically uncorrelated
configurations.

In our Monte Carlo simulations, we varied the value of u
and monitored the density 6. Apart from the isotherms
(6 vs. u) and the configurational energy, other quantities are
calculated such as the differential heat of adsorption ¢, which

can be obtained from the simulation as:>’

ou

Ny 3)

qa = —
The ordered states in the adsorbed phase can be well described
by decomposing the original lattice into three interpenetrating
sublattices « = 1, 2, 3. The (v/3 x v/3) ordered state®*
corresponds to one sublattice filled and the other two empty.
In the (\/3 X \/3)* state one sublattice is empty and the other
two filled. In terms of the sublattice coverage

91 :%ZC,', (4)

ico

we can define the order parameter W of the system as

4 1/2
v (xw) ®

where ¥, = [0, — (03+0,)/2]0.5,/2 and the § takes the
value 1 for a cyclic permutation of subindexes (1, 2, 3) and
the value 0 otherwise.

Given that our system is disordered, it is important to stress
that all the above calculations are repeated over 100 replicas of
the system for each fixed pair of values (p, r) and all thermo-
dynamical quantities are finally averaged over them.

III. Results and discussion

Computational simulations have been developed for triangular
lattices with L = 96 and periodic boundary conditions. With
this size of the lattice we verified that finite size effects, which
affect the isotherms in the case of repulsive interactions at
much smaller sizes, are negligible. Care had to be taken
in order to select the precise size which would allow the
formation of the ordered phases.

We consider in the first place the behavior of the completely
ordered system (p = 0 or r = 1 and any value of p). Fig. 1
shows the adsorption isotherm (a) and the differential heat of
adsorption (b) for different values of w/kgT and the behavior
of the order parameter (c) for a fixed value of w/kgT. These
results, which have been previously reported in ref. 17, are
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Fig. 1 (a) Adsorption isotherm for p = 0 and different values of
w/kgT as indicated. (b) Same as part (a) for differential heat of
adsorption. (c¢) Adsorption isotherm (solid circles) and order
parameter W (empty circles) for a regular triangular lattice (p = 0)
at a fixed interaction strength (w/kgT = 6). As discussed in the text,
the results in Fig. 1 have been previously reported in ref. 17.

included here in order to help the reader understand the basic
phenomenology.

In the limit w/kgT — 0, the coverage grows monotonically
with chemical potential and the corresponding isotherm is of
Langmuir type (solid line in the figure). For higher values
of w/kgT, such that w/kgT is above the critical value w./kgT =
2.985,% three regimes appear in the isotherms. This behavior
can be interpreted as follows: (i) for 0 < 6 < 1/3, the adatoms
do not interact with each other and the adsorption sites are
filled until a (v/3 x v/3) ordered phase is formed on them; (ii)
for 1/3 < 0 < 2/3, the filling continues up to a (v/3 x v/3)*
structure appears on the lattice; and (iii) for 2/3 < 0 < 1, the
surface is totally covered.

The plateaus in the adsorption isotherms, which are clearly
associated to different structural rearrangements of the adsorbate
molecules, are accompanied by characteristic signals in the
differential heat of adsorption. In fact, a plateau in the
adsorption isotherm appears as a step in the differential heat
of adsorption. Thus, the regimes described in Fig. 1(a) can be
reinterpreted by analyzing the differential heat of adsorption
[Fig. 1(b)]: from 0 = 0 to 0 = 1/3 the particles are adsorbed

avoiding nearest-neighbor interactions, which gives ¢; = 0;
from 0 = 1/3 to 0 = 2/3, each incoming particle is allocated
on the lattice with three occupied nearest-neighbor sites in the
plane and g; = 3w. Finally, from 6 = 2/3to 6 = 1, to adsorb a
new monomer it is necessary to occupy an empty site on
the (\/§ X \/5)* structure, this process involves an energy
variation of ¢, = 6w.

It is also important to test the stability of the order
parameter in terms of the lattice dimensions. Fig. 1(c) shows
simultaneously the variation of coverage and ¥ as a function
of u/kgT for a fixed value of w/kgT = 6, where ¥ ~ 1 over a
wide range of values of p spanning the two coverage plateaus
at 0 = 1/3 and 0 = 2/3. In fact, when the system is disordered,
all sublattices are equivalents and the order parameter is
minimum. However, when a configuration of the local phase
appears at low temperature [as is the case in Fig. 1(c)], this is
allocated on a sublattice. Let us suppose that this configuration
lies on the sublattice « = 1 (see eqn (4) and (5)). Then, the
coverage 0, is maximum (0, = 1) and the coverage of the rest
of the sublattices is zero or minimum. Consequently, ¥ is also
maximum.

As some of the bonds are randomly attenuated in the lattice,
this becomes disordered with p > 0 and r < 1. Adsorption
isotherm and differential heat of adsorption for w/kgT = 6
and different values of p and r are shown in Fig. 2(a) and (b),
respectively. It can be observed that for increasing values

Fig. 2 Adsorption isotherm (a) and differential heat of adsorption
(b), for triangular lattices with w/kgT = 6 and different degrees of
disorder as indicated.
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of p and r, the plateaus in the adsorption isotherm and the
corresponding steps in the differential heat of adsorption are
gradually smeared out. An interesting phenomenon occurs for
r = 0 (diluted bonds) and values of p larger than p ~ 0.5.
For this disorder degree, the differential heat of adsorption
presents six steps (seven plateaus) at characteristic concen-
trations. This situation can be explained as follows: each
incoming particle is adsorbed in such a way that it does not
have any NN occupied site. This occurs until all possible sites
with this characteristic are filled. Then, a first plateau in ¢, is
formed where ¢, = 0. Taking into account that the substrate is
a bond-diluted lattice, the remaining empty sites can be
divided in six groups according to the number of bonds
that they have. Thus, upon increasing the reduced chemical
potential each one of those groups will be sequentially filled.
As a consequence, after the saturation of all sites of each
group a plateau is formed in ¢, The value of this quantity in
each plateau is ¢, = nw, where n is the connectivity of each
kind of site. In addition, the particle-vacancy symmetry is lost.
This symmetry breaking can be explained by taking into
account the fact that, due to repulsive interactions, sites
attached to attenuated bonds will be filled preferentially as
the coverage increases.

The above results suggest the existence of a critical degree of
disorder (p. and r.), below which the order—disorder phase
transition observed for the ordered lattice will survive. In what
follows we explore in more details this possibility and work
out a way of estimating these critical values and the extent to
which the critical temperature is affected by the degree of
disorder.

The effect of the disorder on the order parameter is studied
in Fig. 3, where V¥ is plotted versus u/kgT for w/kgT = 6,
p = 0.25 and different values of r ranging between 0 and 1. It
can be seen that all curves are contained between the two limit
ones: the one corresponding to r = 1 (regular lattice), where
the order parameter indicates the existence of the order—
disorder phase transition at 0 = 1/3 and 0 = 2/3, and the
one corresponding to r = 0 (bond-diluted lattice), where the
disorder destroys the phase transition and the order parameter
is practically zero over the whole range of chemical potential.
The curves for intermediate values of r vary continuously
between the two limit cases.

1.0

0.8+

0.6
174

0.4+

0.2 4

Fig. 3 Order parameter ¥ versus chemical potential for w/kgT = 6,
p = 0.25 and different values of r as indicated.

On the basis of the behavior of the curves in Fig. 3, and in
order to quantify the disorder degree in the adsorbate for
different values of p and r, a new order parameter will be
defined by the following procedure:

e One of the two possible phases is selected. In this case, we
restrict the analysis to the low-coverage phase.

e Given fixed values of p, r and w/kgT, and the corres-
ponding W(u/kgT) curve, the area A, 5 is measured (see Fig. 4).
A, ;3 represents the area under the W(u/kgT) curve in the range
of chemical potential where the low-coverage phase is
formed (w/kgT — u./kgT). As it is shown in Fig. 4, (u,/kgT)
corresponds to a point in the low-chemical-potential region
where ¥ = 0, and pu./kgT corresponds to the value of the
chemical potential at which ¥ has a local minimum in the
region of intermediate chemical potential. Thus,

pe/kpT
Ays = / W(u/ksT)d(u/ksT).  (6)
w/kgT

e Finally, the new order parameter J,3 is calculated as
dip =11, (7)

where A7)3 0 represents the value of 4,5 for the regular lattice,
and consequently, ;3 varies between 0 and 1.

The order parameter d,3, characterizing the high-coverage
phase transition, is defined in a similar way. In this case, 4,3 is
calculated in the range (u./kgT — . /kgT), see Fig. 4. As an
illustrative example, Fig. 5(a) [(b)] shows 6,3 [23] as a
function of r for w/kgT = 8, p = 0.15and 0 = 1/3 [0 = 2/3].
Clearly, the curves exhibit the typical behavior corresponding
to an order parameter, which reinforces the idea that the phase
transition survives up to a certain critical degree of disorder. In
the following, ;3 and J,/3 will be used to study the critical
behavior of the present model.

Now, the variation of 6,3 with r for different values of p and
a fixed value of w/kgT = 3.5 is represented in Fig. 6(a). For
each curve, a critical value of r (r.) is obtained from the
position of the inflexion point. Thus, the ordered phase is
separated from the disordered state by a order—disorder phase
transition occurring at a critical r..

1.0 T

0.8 1
0.6 1
v

0.4+

0.2

0.0

Fig. 4 Typical curve of the order parameter W versus coverage
showing the different quantities used to build the order parameter
0 (see the corresponding text).
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Fig. 5 (a) Order parameter ¢ as a function of r for 0 = 1/3,
w/kgT = 8 and p = 0.15. (b) As in part (a) for 6 = 2/3.
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Fig. 6 Analysis at the high coverage transition, 6 = 2/3: (a) variation
of the order parameter ¢ with r for w/kgT = 3.5 and different values of
p as indicated; (b) phase diagram, in the (p—r) space, for a disordered
triangular lattice at @ = 2/3 and a fixed interaction strength (w/kgT = 3.5).
Solid symbols on the critical line have been obtained from the position
of the inflexion point of the curves in part (a): circle, p = 0.15; square,
p = 0.25; triangle, p = 0.50; and diamond, p = 0.70.

Repeating the procedure of Fig. 6(a) for different values of p
between 0 and 1, the phase diagram of Fig. 6(b) is obtained. Solid
symbols on the critical line have been obtained from the position

of the inflexion point of the curves in part (a): circle, p = 0.15;
square, p = 0.25; triangle, p = 0.50; and diamond, p = 0.70.

The extreme points of the critical curve can be calculated in
an analytical way. In fact, for p = 0 (regular lattice), the
behavior of the system is well-known: if w/kgT > 2.985,% the
phase transition occurs for all values of r; and the phase
transition does not take place for w/kgT < 2.985. On the
other hand, in the limit p = 1, the system corresponds to a
regular lattice with homogeneous lateral interactions equal to
rw/kgT. In this case, the value of r. is obtained from the
condition r.w/kgT = 2.985.%

To conclude with the analysis of the results presented in
Fig. 6(b), we briefly analyze the behavior of the system for
p ~ 0and r = 0. As studied in ref. 17, the phase transition
survives up to a critical value of p, which is of the order of
107>, The dashed line in Fig. 6(a) indicates that this region of
the phase diagram, where p ~ 0 and r ~ 0, has already been
studied following the scheme of ref. 17.

The study of Fig. 6 was repeated for a wide range of values
of w/kgT. In this way, a detailed (p—r—w/kgT) phase diagram
was obtained for the low-coverage phase (Fig. 7) and the
high-coverage phase (Fig. 8). As discussed in Fig. 6, the region
below the critical curves (line-symbol curves in Fig. 7 and 8)
corresponds to the no phase-transition region, and the region
above the critical curves corresponds to the phase-transition
region. Several conclusions can be extracted from Fig. 7 and 8.

(1) The particle-vacancy symmetry is lost. It is therefore
clear that critical parameters are different at the two phase
transitions located at 0 = 1/3 and at 0 = 2/3, the latter being
more sensitive to the degree of disorder. The reason for this
behavior can be traced down to the particularities of the
geometry of each ordered phase. At § = 1/3 the ordered
phase consists of a configuration where any central filled site is
surrounded by an hexagon with six empty sites at the corners.
If just one bond between a filled and an empty site is
attenuated, no new configurations arise with the same or lower

Fig. 7 Phase diagram (in the p—r—w/kgT parameter space) corres-
ponding to repulsive monomers adsorbed on disordered triangular
lattices at 1/3 coverage. Line-plus-symbol curves correspond to critical
lines that separate the phase-transition and no phase transition regions.
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Fig. 8 Same as Fig. 7 for 6 = 2/3.

energy. At 6 = 2/3, on the contrary, the ordered phase is
characterized by the fact that any central empty site is
surrounded by an hexagon with six filled sites at the corners.
If just one bond between a filled and an empty site is
attenuated (a radial bond in an hexagon) there are several
new configurations with lower energy, namely those where the
eliminated bond is transformed into one of the sides of an
hexagon of filled sites. The system will try to evolve toward
one of the new configurations passing through a huge number
of intermediary partially disordered states.

(it) According to the discussion of Fig. 6(b), the critical
curves for p = 0 and p = 1 show a marked step in w/kgT =
2.985, which corresponds to the critical interaction for the
regular lattice.

(iii) As w/kgT is increased, the low- and high-coverage
phases exhibit two well-differentiated behaviors. At § = 1/3,
the overall effect of w/kgT is to decrease the critical r vs. p
curves for all p. On the other hand, for the high-coverage
phase, the (p—r) curves tend to a limit curve as w/kgT is
increased. The limit curve was obtained for w/kgT = 30, with
an effort reaching almost the limits of our computational
capabilities (data do not shown here for clarity).

The results in (iii) indicate that an analysis of the delicate
balance between the lateral interaction energy and the degree of
disorder (p and r) allows to interpret the critical behavior of the
system. Thus, for the low-coverage phase, the effects of the
disorder can be “compensated” by an appropriate w/kgT, such
that the phase transition survives. On the contrary, there exists a
wide region of p and r where the high-coverage phase disappears,
independently of the value of w/kgT. These findings reinforce the
arguments in point (i), ie. the high-coverage phase is more
sensitive to the degree of disorder than the low-coverage phase.

IV. Conclusions

In the present work, we have addressed the critical properties
of repulsively interacting particles adsorbed on disordered
triangular lattices. The results were obtained by using grand
canonical Monte Carlo simulations.

Disorder was introduced by a simple model where each
bond (which represents the adsorbate—adsorbate interaction
between two particles adsorbed at the connected sites) can be
either a regular bond, associated to a NN interaction w, or an
attenuated bond, associated to a NN interaction rw (0 < r < 1).
Attenuated and regular bonds were randomly distributed with a
concentration pand 1 — p (0 < p < 1).

Thermodynamic quantities like adsorption isotherm and
differential heat of adsorption were calculated and their
behavior discussed. In addition, we have introduced an order
parameter, 0, which is particularly useful for describing
adsorption on disordered systems at critical regime. This
parameter is well behaved and computationally convenient.
Taking advantage of its definition, a complete (p—r—w/kgT)
phase diagram of the studied system was obtained.

In the limit of r = 1 (regular lattice), two order—disorder
phase transitions exist at 0 = 1/3 and at 0 = 2/3 when w/kgT
is above the critical value w./kgT = 2.985 and all thermo-
dynamic quantities show a particle-vacancy symmetry around

0 = 1/2. As the degree of disorder increases, the critical
behavior of the system is characterized by the following
properties:

(1) The particle-vacancy symmetry is lost and, consequently,
the critical parameters are different at the two phase
transitions located at @ = 1/3 and at & = 2/3. This symmetry
breaking can be explained by taking into account the fact that,
due to repulsive interactions, sites attached to attenuated
bonds will be filled preferentially as the coverage increases.

(2) Even though the presence of defects affects the formation
of ordered structures in the adlayer, the phase transition
survives up to a certain critical degree of disorder p.. In the
limit of r = 0, which corresponds to the case reported in
ref. 17, this critical value is of the order of 107 (a very small
quantity of defects break down the order of the low-temperature
phases). The results obtained here show that the value of p.
increases significantly as r is increased.

(3) As w/kgT 1is increased, the low- and high-coverage
phases exhibit two well-differentiated behaviors. At § = 1/3,
the overall effect of w/kgT is to decrease the critical r vs. p
curves for all p (or to diminish the area of the no
phase-transition region). On the other hand, for the high-
coverage phase, the (p-r) curves tend to a limit curve as w/kgT
is increased. Thus, for the low-coverage phase, the effects of
the disorder can be “‘compensated” by an appropriate w/kgT,
such that the phase transition survives. On the contrary, there
exists a wide region of p and r where the high-coverage phase
disappears, independently of the value of w/kgT. These
findings indicate that the high-coverage phase is more sensitive
to the degree of disorder than the low-coverage phase.

Future efforts will be directed to (a) include attractive
interactions between the adparticles and (b) develop an
exhaustive study on critical exponents and universality.
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