

REVISTA ARGENTINA DE MICROBIOLOGÍA

www.elsevier.es/ram

BRIEF REPORT

Multidrug and vancomycin-resistant *Enterococcus* isolates in different productive stages of a poultry farm

Juliana González ^{a,*}, Constanza Pifano García ^a, Juliana Cantón ^b,
María José Izaguirre ^b, María Soledad Ríos ^a, Andrea Mariel Sanso ^a

^a Laboratorio de Inmunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, CIC, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina

^b Laboratorio de Microbiología Clínica y Experimental, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET, CIC, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina

Received 16 April 2025; accepted 14 October 2025

KEYWORDS

Vancomycin-resistant *Enterococcus*;
Poultry industry;
Van-genotypes;
Multidrug-resistance

Abstract The poultry industry represents an important economic sector in Argentina. In this study we recovered 26 vancomycin-resistant *Enterococcus* (VRE) isolates from different productive stages of a poultry farm located in Tandil, Argentina. Ten isolates were *Enterococcus faecium* and seven, *Enterococcus faecalis*. Total resistance to vancomycin (96.2%), erythromycin (80.8%), levofloxacin (57.7%), chloramphenicol (26.7%), penicillin (23.1%), ampicillin (7.7%) was detected and 20 isolates (76.9%) were identified as multidrug-resistant (MDR). With respect to the distribution of glycopeptide resistance genes, 57.7% of the isolates harbored the *vanC-1* gene, and 11.5%, carried the *vanC-2/C-3* gene. The *vanA* and *vanB* variants were not detected. This study provides evidence that healthy chickens from the studied region can be a reservoir of MDR-VRE. Further surveillance should be conducted to control their dissemination through the food chain.

© 2025 The Author(s). Published by Elsevier España, S.L.U. on behalf of Asociación Argentina de Microbiología. This is an open access article under the CC BY license (<http://creativecommons.org/licenses/by/4.0/>).

PALABRAS CLAVE

Enterococcus
resistente a
vancomicina;
Industria avícola;
Genotipos van;
Multirresistencia

***Enterococcus* multirresistentes y resistentes a vancomicina en diferentes etapas productivas de una granja avícola**

Resumen La industria avícola representa un sector económico importante en Argentina. En el presente estudio se obtuvieron 26 aislamientos de *Enterococcus* resistentes a vancomicina (ERV) en diferentes etapas productivas de una granja avícola ubicada en Tandil, Argentina. De los aislamientos obtenidos, 10 correspondieron a *Enterococcus faecium* y 7 a *Enterococcus faecalis*. Se detectó resistencia a vancomicina (96,2%), eritromicina (80,8%), levofloxacina (57,7%),

* Corresponding author.

E-mail address: julianag@vet.unicen.edu.ar (J. González).

<https://doi.org/10.1016/j.ram.2025.10.001>

0325-7541/© 2025 The Author(s). Published by Elsevier España, S.L.U. on behalf of Asociación Argentina de Microbiología. This is an open access article under the CC BY license (<http://creativecommons.org/licenses/by/4.0/>).

cloranfenicol (26,7%), penicilina (23,1%) y ampicilina (7,7%). Veinte aislamientos (76,9%) fueron multirresistentes (MDR). En cuanto a la distribución de los genes de resistencia a glicopéptidos, el 57,7% de los aislamientos presentó el gen *vanC-1* y el 11,5% presentó *vanC-2/C-3*. No se detectaron las variantes *vanA* ni *vanB*. Este estudio aporta evidencia de que los pollos sanos de la región estudiada pueden ser reservorios de ERV MDR y destaca la necesidad de continuar con la vigilancia para controlar su diseminación a través de la cadena alimentaria.

© 2025 Los Autores. Publicado por Elsevier España, S.L.U. en nombre de Asociación Argentina de Microbiología. Este es un artículo Open Access bajo la licencia CC BY (<http://creativecommons.org/licenses/by/4.0/>).

Enterococcus, mainly *E. faecium* and *E. faecalis*, represents one of the main agents causing nosocomial infections. This genus exhibits intrinsic resistance to common antibiotics and a plastic genome which allows it to readily acquire resistance to further antibiotics, such as vancomycin, either through mutation or by horizontal transference of genetic elements⁵. Despite their low virulence, resistance to antimicrobials and adaptability have enabled enterococci to transition from intestinal commensals to major causes of healthcare-associated infections¹¹.

The WHO has identified the most critical antimicrobial-resistant bacteria worldwide, which must be monitored due to the urgent need for new treatments to combat them. Vancomycin-resistant *Enterococcus* (VRE) is classified as a high priority pathogen (Group 2)¹⁴. Vancomycin is considered a last-resort antibiotic for treating infections caused by Gram-positive bacteria. Resistance is mediated by *van* genes, with *vanA* and *vanB* located on transposons and capable of being horizontally transferred, while *vanC* and *vanD* are chromosomal and apparently not transferred in that way⁷.

Enterococcus contributes to the spread of antimicrobial resistance. Antibiotic resistance genes present in mobile genetic elements of *Enterococcus* isolates of animal origin can be transmitted to *Enterococcus* isolates of human origin¹⁰. The poultry industry is one of the most crucial food producers globally, and Argentina is among the top 10 poultry meat producers⁹. The emergence of VRE in food production systems has been attributed not only to the hospital use of glycopeptides but also to the use of avoparcin as a growth promoter in animals¹.

This study aimed to isolate VRE from a poultry farm located in Tandil, Pampean region, Argentina, to determine which isolates were *E. faecium*/*E. faecalis* and to investigate the antimicrobial susceptibility profiles and the glycopeptide resistance genotypes. Thirty samples obtained in 2022 in a previous study⁸ from a conventional farm raising broiler chickens, with a slaughter room, were selected. Originally, the samples were grown in LB medium and stored at -80 °C with the addition of glycerol. Samples from cloacal swabs of 40-day-old and 30-day-old broiler chickens, barn beds, poultry drinker surfaces, balanced feed, carcasses and slaughter room surfaces were incubated in glucose azide broth with shaking (120 rpm) at 37 °C for 18 h. An aliquot of bacterial cultures was inoculated into bile esculin azide (BEA) agar (Britania, Argentina) supplemented

with vancomycin (6 µg/ml) at 37 °C for 48 h. Presumptive colonies that grew on the selective medium were confirmed as *Enterococcus* spp. by esculin hydrolysis and catalase tests, and Gram stain. Identification of *E. faecium* and *E. faecalis* and distribution of glycopeptide resistance genes were performed by PCR, according to Dutka-Malen et al.⁴, with modifications. Additionally, biochemical tests, such as PYR (L-pyrrolidonyl arylamidase) test, arabinose, mannitol, and sorbitol fermentation, were performed on isolates in which the species could not be defined by PCR. The isolates were tested for susceptibility to six antibiotics representing five antimicrobial classes, using the disk diffusion method, according to the CLSI² guidelines (Supplementary Table 1). The antibiotics were ampicillin (AMP, 10 µg), penicillin (PEN, 10 U), vancomycin (VAN, 30 µg), erythromycin (ERY, 15 µg), chloramphenicol (CHL, 30 µg), and levofloxacin (LVX, 5 µg). All samples analyzed showed growth on BEA agar supplemented with vancomycin and 30 isolates suspected of exhibiting antimicrobial resistance (AMR) to vancomycin were obtained.

Twenty-six isolates were confirmed as *Enterococcus* spp. (Catalase-negative/Gram-positive diplococci that hydrolyzed esculin), of which 10 were *E. faecium*, 7 *E. faecalis*, 7 *E. avium*, and 2 *E. durans*. The largest number of isolates and the greatest specific diversity (*E. avium*, *E. durans*, *E. faecalis*, *E. faecium*) were found in the slaughter room (Table 1). Total resistance to VAN (96.2%), ERY (80.8%), LVX (57.7%), CHL (26.9%), PEN (23.1%), AMP (7.7%) was detected among the 26 *Enterococcus* isolates (Table 2). Taking into account resistant and intermediate isolates, 15 AMR profiles were observed. VAN-ERY-LVX was the most predominant profile (19.2%). Twenty isolates (76.9%) were multidrug-resistant (MDR), showing resistance to three or more antimicrobial classes. One *E. faecium* isolate obtained from a slaughter room utensil (#12) was resistant to all tested antimicrobial agents (Table 1). With regard to the distribution of glycopeptide resistance genes, 57.7% of the isolates analyzed harbored the *vanC-1* gene, and 11.5%, carried the *vanC-2/C-3* (Table 1). *VanA* and *vanB* variants were not detected. Isolates from henhouse 1 showed the greatest diversity of *van* genotypes (Table 3). It can be hypothesized that the same strain may be distributed at different stages of production in some cases, for example, *E. faecalis* isolates #15 and #20 from henhouses 2 and 1, respectively (AMR profile: AMN-S/PEN-S/VAN-R/ERY-R/CHL-S/LVX-S, without *van* genes). However, this could only be confirmed after applying

Table 1 Origin and antimicrobial susceptibility of vancomycin-resistant *Enterococcus* (VRE) isolates obtained from a poultry farm in Argentina.

Isolate	Identification	Source	Production phase			Antimicrobial susceptibility profile				van genotype
			AMN	PEN	VAN	ERY	CHL	LYX		
1	<i>E. faecalis</i>	Equipment	S	S	R	R	S	I	vanC-1	
2	<i>E. faecalis</i>	Table	S	S	R	R	S	S	vanC-1	
3	<i>E. faecalis</i>	Equipment	S	S	R	I	S	S	vanC-1	
4	<i>E. faecium</i>	Utensil	S	S	R	S	S	S	vanC-1	
5	<i>E. faecium</i>	Carcasses	S	S	R	S	S	S	vanC-1	
6	<i>E. faecium</i>	Carcasses	S	S	R	R	S	I	vanC-1	
7	<i>E. avium</i>	Utensil	S	S	R	R	S	I	vanC-1	
8	<i>E. avium</i>	Carcasses	S	S	R	S	S	I	–	
9	<i>E. faecium</i>	Carcasses	S	S	R	I	R	S	vanC-1	
10	<i>E. durans</i>	Carcasses	R	R	S	R	S	R	–	
11	<i>E. durans</i>	Carcasses	S	S	R	I	S	S	–	
12	<i>E. faecium</i>	Utensil	R	R	R	R	R	R	vanC-1	
13	<i>E. faecium</i>	40-Day-old broiler chicken	S	R	R	R	S	R	vanC-1	
14	<i>E. faecium</i>	40-Day-old broiler chicken	S	R	R	R	S	R	vanC-1	
15	<i>E. faecalis</i>	40-Day-old broiler chicken	S	S	R	R	S	R	–	
16	<i>E. faecalis</i>	40-Day-old broiler chicken	S	S	R	R	I	R	–	
17	<i>E. faecalis</i>	Barn bed	S	S	R	R	R	R	vanC-2/C-3	
18	<i>E. faecium</i>	Balanced feed	S	S	R	R	R	R	–	
19	<i>E. avium</i>	30-Day-old broiler chicken	S	S	R	R	R	R	–	
20	<i>E. faecalis</i>	30-Day-old broiler chicken	S	S	R	R	S	R	–	
21	<i>E. avium</i>	30-Day-old broiler chicken	S	S	R	R	S	R	–	
22	<i>E. faecium</i>	30-Day-old broiler chicken	S	R	R	R	R	R	vanC-1	
23	<i>E. faecium</i>	30-Day-old broiler chicken	S	R	R	R	S	R	vanC-1, vanC-2/C-3	
24	<i>E. faecium</i>	Poultry drinker surface	S	R	R	R	R	R	vanC-1	
25	<i>E. avium</i>	Balanced feed	S	S	R	R	I	S	vanC-2/C-3	
26	<i>E. avium</i>	Barn bed	S	S	R	R	I	S	vanC-1	

R, resistant; I, intermediate; S, susceptible by the disk diffusion test: AMN (ampicillin), PEN (penicillin), VAN (vancomycin), ERY (erythromycin), CHL (chloramphenicol), LYX (levofloxacin).

Table 2 Antibiotic susceptibility percentages of vancomycin-resistant *Enterococcus* (VRE) isolates obtained from a poultry farm in Argentina.

Antibiotic	Susceptible	Intermediate	Resistant
	n (%)		
Ampicillin	24 (92.3)	–	2 (7.7)
Penicillin	20 (76.9)	–	6 (23.1)
Vancomycin	–	1 (3.8)	25 (96.2)
Erythromycin	4 (15.4)	1 (3.8)	21 (80.8)
Chloramphenicol	17 (65.4)	2 (7.7)	7 (26.9)
Levofloxacin	6 (23.1)	5 (19.2)	15 (57.7)

Table 3 Distribution of *van* genotypes in vancomycin-resistant *Enterococcus* (VRE) isolates obtained from a poultry farm in Argentina according to the production phase.

	n (%)
<i>Henhouse 1 isolates</i>	
<i>vanC-1</i>	3 (11.5)
<i>vanC-2/C-3</i>	1 (3.8)
<i>vanC-1, vanC-2/C-3</i>	1 (3.8)
Without detected <i>van</i> genes	3 (11.5)
<i>Henhouse 2 isolates</i>	
<i>vanC-1</i>	2 (7.7)
<i>vanC-2/C-3</i>	1 (3.8)
Without detected <i>van</i> genes	3 (11.5)
<i>Slaughter room isolates</i>	
<i>vanC-1</i>	9 (34.6)
Without detected <i>van</i> genes	3 (11.5)

ing some subtyping method. Although future studies that include the identification of sequence types (ST) will be necessary to determine the lineages and study the epidemiology, the information provided here on antimicrobial resistance profiles and *van* genotypes show genetic diversity among VRE strains circulating in the analyzed farm.

In Argentina, Delpach et al.³ isolated *E. faecalis* and *E. faecium* with high levels of AMR to glycopeptides from chicken feces. In the present study, most of the isolates showed phenotypic total resistance to vancomycin and were MDR-ERV. Moreover, it was determined that of the isolates analyzed, 57.7% carried the gene *vanC-1* and 11.5%, *vanC-2/C-3*. These genes, unlike *vanA* and *vanB*, would be associated with low levels of resistance to vancomycin⁶. In China, Yu et al.¹⁵ found *E. faecalis* in poultry production, but did not detect *vanA* or *vanB* genes. In contrast, Osman et al.¹² found vancomycin resistance genes (*vanA*, *vanB*, *vanC*) in *Enterococcus* obtained from chickens in Egypt. Regarding local epidemiology, the *vanA* gene was detected in *E. faecium* strains previously obtained from Argentinian chickens³ and, vancomycin-resistant *E. faecium* strains harboring either *vanA* or *vanB* were recovered from patients with invasive infections (2010–2014) at the Public Hospital of Tandil¹³.

Although conclusions should be interpreted with caution due to the limited number of samples studied, our results suggest that healthy chickens from the studied region may serve as a reservoir of MDR-VRE and this information is a call

for further surveillance in the poultry sector. MDR *Enterococcus* represents a therapeutic threat to the community, and controlling its spread from poultry to humans is crucial¹⁰. The presence of a *van* gene pool in chickens, as observed in this study, and the colonization of humans by glycopeptide-resistant strains highlight the need to control this reservoir so that these glycopeptide-resistant strains that colonize the chicken intestine are not selected and spread through the poultry production chain into the community. The emergence of resistance is a global concern for human and animal health. For this reason, coordinated action between both sectors is essential to preserve the therapeutic efficacy of treatments used for human infections in the future.

CRediT authorship contribution statement

Juliana González: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Writing – original draft, Writing – review & editing, Project administration, Funding acquisition. **Constanza Pifano García:** Validation, Investigation, Formal analysis. **Juliana Cantón:** Investigation, Writing – review & editing. **María José Izaguirre:** Investigation, Writing – review & editing. **María Soledad Ríos:** Investigation, Writing – review & editing. **Andrea Mariel Sanso:** Conceptualization, Methodology, Writing – original draft, Writing – review & editing, Supervision.

Funding

This work was supported by Fondo para la Investigación Científica y Tecnológica (FONCYT, PICT 2020 serie A No. 02851).

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

We thank M. Rosa Ortiz and Victoria Ballesteros for technical assistance.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version available at <https://doi.org/10.1016/j.ram.2025.10.001>.

References

1. Ahmed MO, Baptiste KE. Vancomycin-resistant *Enterococci*: a review of antimicrobial resistance mechanisms and perspectives of human and animal health. *Microb Drug Resist*. 2018;24:590–606.
2. Clinical and Laboratory Standards Institute (CLSI). Disk diffusion. Performance standards for antimicrobial susceptibility testing; 35th informational supplement, M100-S15. Wayne, PA: CLSI; 2025.
3. Delpach G, Sparo MD, Baldaccini MB, Ceci M, Leonardo GA. High level resistance to gentamicin and vancomycin in enterococci isolated from poultry in Argentina. *PIJR*. 2018;7:434–6.

4. Dutka-Malen S, Evers S, Courvain P. Detection of glycopeptide resistance genotypes and identification to the species level of clinically relevant *Enterococci* by PCR. *J Clin Microbiol*. 1995;33:24–7.
5. García-Solache M, Rice LB. The *Enterococcus*: a model of adaptability to its environment. *Clin Microbiol Rev*. 2019;32:1–28.
6. Geraldes C, Tavares L, Gil S, Oliveira M. *Enterococcus* virulence and resistant traits associated with its permanence in the hospital environment. *Antibiotics (Basel)*. 2022;11:857.
7. Gold HS. Vancomycin-resistant enterococci: mechanisms and clinical observations. *Clin Infect Dis*. 2001;33:210–9.
8. González J, Ríos MS, Hernández L, Chiapparrone ML, Riccio MB, Cacciato C, Colello R, Bustamante AV, Sanso M. Extended-spectrum beta-lactamase-producing *Escherichia coli* through the poultry production chain in Argentina. *Vet Microbiol*. 2025;302:1–6.
9. MAGyP (Ministerio de Agricultura; Ganadería y Pesca). Anuario Avícola 2023. Año XXVIII; N° 86. 1(1) 2023. [cited 2 Dec 2024]. Available from: https://www.magyp.gob.ar/sitio/areas/aves/informes/boletines/_archivos//230000_Anuario%20Avicola%202023.pdf
10. Malik F, Nawaz M, Anjum AA, Firyal S, Shahid MA, Irfan S, Ahmed F, Bhatti AA. Molecular characterization of antibiotic resistance in poultry gut origin enterococci and horizontal gene transfer of antibiotic resistance to *Staphylococcus aureus*. *Pak Vet J*. 2022;42:383–9.
11. Miller WR, Murray BE, Rice LB, Arias CA. Resistance in vancomycin-resistant enterococci. *Infectious disease clinics of North America. Infect Dis Clin North Am*. 2020;34:751–71.
12. Osman KM, Badr J, Orabi A, Elbehiry A, Saad A, Ibrahim MD, Hanafy MH. Poultry as a vector for emerging multidrug resistant *Enterococcus* spp.: first report of vancomycin (*van*) and the chloramphenicol–florfenicol (*cat-fex-cfr*) resistance genes from pigeon and duck faeces. *Microb Pathog*. 2019;128:195–205.
13. Schell CM, Tedim AP, Rodríguez-Baños M, Sparo MD, Lissarrague S, Basualdo JA, Coque TM. Detection of β -lactamase-producing *Enterococcus faecalis* and vancomycin-resistant *Enterococcus faecium* isolates in human invasive infections in the public hospital of Tandil, Argentina. *Pathogens*. 2020;142:1–11.
14. WHO (World Health Organization). Global priority list of antibiotic-resistant bacteria to guide research; discovery; and development of new antibiotics; 2017 [cited 2 Dec 2024].
15. Yu L, Liu Y, Liu M, Li Z, Li L, Wang F. Research note: Molecular characterization of antimicrobial resistance and virulence gene analysis of *Enterococcus faecalis* in poultry in Taiwan, China. *Poul Sci*. 2022;101, 101763.