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Abstract
We study isoperimetric surfaces in the Reissner–Nordström spacetime, with
emphasis on the cuasilocal inequality between area and charge. We analyze the
stability of the isoperimetric spheres and we found that there is a lower bound
on the area in terms of the charge, and that the inequality is saturated in the
transition from the superextremal to the subextremal case. We also derive a
general inequality between area and charge for stable isoperimetric surfaces in
maximal electro-vacuum initial data.

PACS numbers: 04.20.Cv, 04.20.Dw

1. Introduction

An important method to obtain physically relevant properties of general relativity is through
geometrical inequalities. They relate quantities of physical interest and tell us what type
of phenomena is allowed within the theory. Particularly fruitful have been the search for
geometrical inequalities for axially symmetric black holes (for a recent review see [5] and
references therein), where attention to the angular momentum has been paid. There are two
important possible generalizations of these kinds of inequalities. The first one is for non-axially
symmetric spacetimes. Axial symmetry is used in a crucial way to define angular momentum. In
order to study general spacetimes a model problem is to replace angular momentum by electric
charge, this has been done recently in [6]. The second, and more difficult, generalization is to
consider geometrical inequalities for general objects (i.e. not only black holes). Remarkably,
in this kind of inequality the black hole trapped surfaces are replaced by stable isoperimetric
surfaces. In particular, in [6] the following cuasilocal geometrical inequality has been obtained,

A � 4

3
π

(
Q2

E + Q2
M

)
, (1)
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where A is the area of a stable isoperimetric surface � in an electro-vacuum, maximal initial
data, with non-negative cosmological constant and QE and QM are the electric and magnetic
charges of �. This inequality tells us that it is not possible to put an arbitrarily large quantity of
charge inside an isoperimetric surface. The requirement of � being isoperimetrical cannot be
dropped without further requirements. This can be seen by looking at the spacetime presented
by Bonnor [2]. There, a spacetime is constructed where a spheroidal distribution of charge is
surrounded by electro-vacuum. The solution is such that the quotient A/Q2 for the surface of
the spheroid can be made arbitrarily small.

Taking into account how (1) is obtained it is possible to conjecture that the inequality is
not sharp. To investigate this relation we consider the Reissner–Nordström spacetime, which
can be considered the simplest non-trivial electro-vacuum solution of Einstein equations. We
found that in this case inequality (1) is not sharp, and that the bound of the area in terms of
the charge is obtained in the transition from superextremal to subextremal. We also isolate the
possible cause of (1) not being sharp and present a new sharp inequality.

2. Main results

Let us consider a spherically symmetric three-dimensional metric, written in the form

ds2 = f (r) dr2 + r2 d�2, d�2 = dθ2 + sin2 θ dφ2. (2)

We are interested in the Reissner–Nordström metric, in which case

f (r) =
(

1 − 2m

r
+ Q2

r2

)−1

, (3)

where m is the mass and Q the charge. According to the range of m and Q we have three cases,
subextreme, m2 > Q2, extreme, m2 = Q2 and superextreme, m2 < Q2. In the first two cases,
the coordinate r has range r0 � r � ∞, where r0 = m +

√
m2 − Q2. In the superextreme case

the coordinate has range 0 � r � ∞.
A surface is called isoperimetric if its area is an extreme with respect to nearby surfaces

that enclose the same volume. This implies that its mean curvature is constant. It is also called
stable if its area is a minimum. For further discussion on isoperimetric surfaces in this context
we refer to [6, 5] and for the concept of stability see [1]. We have the following condition on
an isoperimetric surface � to be stable [1],

F(α) > 0, (4)

where
F(α) =

∫
�

[−α��α − α2(χABχAB + Rabnanb)]dA�, (5)

and α is any function such that∫
�

α dA� = 0. (6)

In (5) Rab is the three-dimensional Ricci tensor and na the normal, χAB the second fundamental
form and dA� the volume element of �.

It is known that for m2 > Q2 all spheres of revolution r = constant are isoperimetric
stable surfaces (see [4]). We want to analyze the case m2 < Q2.

Theorem 2.1. Consider the spheres r = constant in the Reissner–Nordström metric given by
equations (2) and (3). Then we have the following result:

1. For 0 � |Q| � m, all these surfaces are isoperimetric stable.
2. For m < 0, all these surfaces are isoperimetric but not stable.
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3. For 0 < m < |Q|, the surfaces with radius r > rc are isoperimetric stable. The surfaces
with r < rc are unstable, where

rc = 2Q2

3m
. (7)

In particular, all stable isoperimetric surfaces satisfy the bound

A � 16

9
πQ2. (8)

4. There is not a sphere in Reissner–Nordström where inequality (8) is saturated. The
inequality is saturated in the limit for the sphere r = rc when the extreme case is
approached from the superextreme case.

Remark. We also prove that the stability operator is not positive for test functions that do
not satisfy the volume preserving condition (6) (for example the constants).

Note that the bound (8) is higher than the one obtained in [6]. We expect this bound to be
optimal. Following the analysis in [6] which is based on [3] we obtain the following result.

Theorem 2.2. Consider an electro-vacuum, maximal initial data, with a non-negative
cosmological constant. Assume that � is a stable isoperimetric sphere. Then(

1 − 1

16π
χ2A

)
A � 4π

3

(
Q2

E + Q2
M

)
, (9)

where QE and QM are the electric and magnetic charges of � and χ is its mean curvature.
Moreover, the surfaces rc in superextreme Reissner–Nordström satisfy the equality in (9).

Remark. Inequality (9) in this theorem is a straightforward consequence of previous
results [3]. The interesting and new part of this theorem is that equality is achieved for
this limit surface in Reissner–Nordström, showing that previously neglected terms are of
consequence.

It is an interesting open problem to study the same problem for superextreme Kerr. In that
case the problem is much more complex because the location of the isoperimetric surfaces is
known only numerically (see [7]).

Let us discuss the different regimes for the solution and the relation with respect to the
area-charge inequalities. An appropriate quantity to consider for an isoperimetric stable surface
in this context is

A

4πQ2
(10)

as a function of ε = Q2/m2. The parameter ε is the natural parameter for distinguishing the
different regimes, where ε < 1 corresponds to subextremal, ε = 1 to extremal and ε > 1 to
superextremal. For the subextreme case, we have

Asub

4πQ2
= r2

Q2
� r2

0

Q2
= −1 + 2

ε
(1 + √

1 − ε). (11)

For the superextreme case

Asuper

4πQ2
= r2

Q2
� r2

c

Q2
= 4

9
ε. (12)

For comparison, the inequality previously obtained in [6] is

A

4πQ2
� 1

3
. (13)
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It is interesting to note that the bounds in (11) and (12) appear because there is a limiting inner
sphere. In the subextremal case, this is the boundary of the manifold corresponding to the event
horizon, while in the superextreme case it is the transition from stable to unstable surfaces. We
put these inequalities together in the following graph, where the dark gray region are spheres
in the subextremal case, the light gray region is the superextremal case and the bottom line is
the previously obtained bound. Here it is worth noting that the inequality gets close to equality
as one approaches the extreme case, both from the subextremal and the superextremal cases.
Also, there is a gap between inequality (13) and the lower bound, suggesting that in general it
is not optimal.

3. Proof of the theorems

Proof of theorem 2.1. Let us consider the surface � = {r = constant}. From (2) and (3) is a
direct calculation to show that the mean curvature is

χ = 2

r
√

f
(14)

and therefore the surface is isoperimetric. Considering (5),

F(α) =
∫

�

[
−α��α − α2

(
2

r2 f
+ f ′

r f 2

)]
d� (15)

=
∫

�0

[
−α�0α − α2 1

f

(
2 + r f ′

f

)]
d�0 (16)

=
∫

�0

[
−α�0α − α2

(
2 − 6m

r
+ 4Q2

r2

)]
d�0, (17)

where �0 is the unit sphere and �0 is the Laplacian on it. The lowest non-zero eigenvalue
λ1 = 2 of the Laplacian on the sphere, �0α = −λα, can be written in the following variational
form:

λ1 = inf∫
α dS0=0

∫ |Dα|2 dS0∫
α2 dS0

. (18)
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From (18) we deduce∫
−α�0α dS0 =

∫
|Dα|2 dS0 � 2

∫
α2 dS0, (19)

and hence

F(α) � 2

r

(
3m − 2Q2

r

)∫
S0

α2 dS0 (20)

where we have restricted to functions that satisfy (6). In particular, equality is obtained in (20)
when the function α is an eigenfunction corresponding to λ1. Using this test function α and
the equality in (20) we see that if m < 0 then all spheres are unstable. On the other hand, if
|Q| < m from inequality (20) we deduce that all spheres are stable, as in this case r � r0. If
0 < m < |Q|, we can define a critical radius

rc = 2Q2

3m
, (21)

such that if r < rc then the sphere is unstable and if r > rc it is stable.
The proof of (8) comes from the analysis of (11) and (12). The minimum of the rhs in the

range of applicability of (11) is attained for the extremal case, that is, ε = 1, and gives
Asub

4πQ2
� 1. (22)

For (12) we have also that the minimum is obtained for ε = 1, although in this case the
minimum is obtained as a limit,

Asuper

4πQ2
� 4

9
. (23)

Comparing the last two inequalities we obtain the bound (8). The fact that there is no sphere
that actually saturates the inequality is because if we take ε = 1, then we are in the extremal
case and then r0 > rc. �

Proof of theorem 2.2. The proof follows the proof of (1) in [6]. If one follows [3] it is possible
to see that for a stable isoperimetric surface

12π � 1

2

∫
�

(
R + 3

2
χ2 + χ̄ABχ̄AB

)
dA�, (24)

where χ̄AB is the trace-free part of the second fundamental form of � and R is the three-
dimensional Ricci scalar. The constraint equations in the three-dimensional manifold imply

R + K2 − KabKab − 2� = 2(E2 + B2). (25)

If we consider now that the data are maximal, K = 0 and that we assume � � 0, combining
the previous equations we have

12π − 1

2

∫
�

(
3

2
χ2 + χ̄ABχ̄AB

)
dA� �

∫
�

(E2 + B2) dA�. (26)

As shown in [6],∫
�

(E2 + B2) dA� � 16π2

A

(
Q2

E + Q2
M

)
. (27)

Using this, neglecting the term χ̄ABχ̄AB as it is always positive and can be zero, and
remembering that χ = constant, we obtain (9). It is important to note that discarding the
term χ̄ABχ̄AB does not pose a risk to the inequality being sharp, as this term is zero if the
surface is umbilical.
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If we evaluate (9) for Reissner–Nordström, we have

4π(2mr − Q2) � 4

3
πQ2, (28)

which is saturated in the superextremal case for r = rc and is never saturated in the subextremal
case. �
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