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Abstract

Sine-generated curves (i.e. curves in which the curvature is a sine function of the arc-length
parameter) have been used in the past to describe river meanders. Here we show how these
curves spontaneously appear during the decay of high-aspect-ratio surfaces mediated by
surface diffusion. We obtained analytical results for the kinetic evolution of such processes
relevant to a wide class of initial geometries. Our theoretical results were satisfactorily
compared with numerical simulations and with results from previous approaches to the same
problem, and they can be useful for interpreting and designing experiments related to the
technologically important process of high-temperature annealing on nano/micro-structured

samples.

(Some figures may appear in colour only in the online journal)

1. Introduction

In the last few years, surface diffusion processes have attracted
increasing interest in several branches of surface science,
both from the theoretical and the experimental points of
view [1-7, 9, 8, 28]. In particular, when high-temperature
treatments are applied to solid samples, particle mobility is
strongly enhanced, thus inducing important morphological
modifications on them. Although different mechanisms,
such as evaporation—condensation or bulk diffusion, can
make a relevant contribution, in many cases, especially in
nanoscale applications, surface diffusion is the most important
mass-transport process.

Nanotechnology provides the ability to engineer the
properties of materials by controlling their size and shape.
In particular, anisotropic metallic and semiconductor nanos-
tructures with high aspect ratios such as nanorods, nanowires,
nanocolumns, nanoripples and flag-like nanocrystals have
attracted considerable attention due to their unique physical
properties. While the production of such nanostructures is
in many cases a challenging task, shape control under
temperature changes or even at room temperature is also

0953-8984/12/0150014+-08$33.00

an open issue with important practical implications. The
knowledge of shape evolution under thermal treatments opens
the possibility of predicting the viability or the lifetime of
nanomaterial-based devices, or to produce new shapes, and
accordingly new material properties, in a controlled way. In
the last few years, thermal treatments have been widely used
on semiconductor samples. Several technologically important
applications of high-temperature hydrogen annealing in the
semiconductor industry have been recently reported, thus
becoming a very useful technique for obtaining devices
with specific photonic or electronic properties. Hydrogen
annealing has also been used on silicon substrates to reduce
their surface roughness [14, 15], to round trench corners [16],
to obtain special topologies [6, 17, 7], etc. Concerning
the physical processes involved in the shape evolution
of metals and semiconductors it is widely recognized
that surface diffusion is the main factor operating at the
nanoscale. This process is particularly important for metallic
nanostructures that suffer drastic morphological changes
at relatively low temperatures [10-12] and even at room
temperature [13]. Regarding the theoretical interpretation of
these applications of high-temperature hydrogen annealing

© 2012 IOP Publishing Ltd Printed in the UK & the USA
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to change the morphological properties of semiconductor
samples, it is worth remarking that such results have been
properly interpreted in terms of the continuous theory of
surface diffusion for isotropic materials [16, 18, 15, 19].

The continuous theory of interface evolution mediated
by surface diffusion is a well-established topic since the
pioneering work of Mullins [20, 21] and Herring [22]. In
this framework, and under the assumption that all surface
properties are independent of orientation, interface evolution
is dictated by the Mullins equation:

vn = —KAC, (1)

where v, is the normal velocity at a given point on the
evolving surface, Ay is the intrinsic surface Laplacian (the
so-called Laplace-Beltrami operator), and C is the local
curvature. The coefficient K depends both on the type
of material considered and on temperature through the

relationship [20] K = 2 Slg’B S;z”, where Ds is the diffusion
constant, y is the surface tension, Q2 is the atomic volume,
v is the adatom density on the surface, kg is the Boltzmann
constant and 7 is the absolute temperature.

In a paper by Langbein and Leopold published in
1966 [23], sine-generated (SG) curves were introduced to
describe the characteristic morphology of river meanders. A
SG plane curve is one in which the angle 6 between its tangent
and a fixed axis (the x-axis, for instance), is a sine function of
the arc-length parameter s. Thus, a SG curve can be written in
an intrinsic way (i.e. in a way independent of the choice of the
origin of coordinates), by means of the following relationship,
that gives the angle 0 as a function of the arc-length parameter
(the so-called Whewell equation):

) (271 )
O(s) =Rsin| —s |, 2)
s
where R and Ay are the SG amplitude and wavelength
respectively.

After the seminal paper by Langbein and Leopold [23],
SG curves became a standard model to describe river mean-
ders, widely employed in hydrology-related fields [24-26].
In this paper, we show how SG curves naturally appear
in a very different context, specifically in the study of the
surface-diffusion-driven decay of high-aspect-ratio (HAR)'
patterned surfaces, but we also show the kinetic evolution
of the parameters that describe the SG curve. Besides
their relevance from the theoretical perspective, these results
can be useful in practical and technological applications.
Specifically, the results presented in this paper can be
used to predict morphological properties and to obtain
accurate estimations of annealing times in those applications
in which a given HAR micro/nanopattern is submitted to
high-temperature annealing [16, 6, 17, 7, 14].

The rest of the paper is organized as follows: the
relevance of SG curves in the study of surface-diffusion-
driven decay of 1D gratings and the basic geometrical

1 To be precise, we shall call the aspect ratio of a given 1D periodic
pattern € = %, where W is the difference between the global maximum and

minimum along the pattern and A is its wavelength. Similarly, the ratio %

will be understood as the amplitude of such pattern.

properties of SG curves are discussed in section 2. Theoretical
predictions about the time evolution of the parameters that
characterize SG curves are shown in section 3, and these
results are compared with numerical simulations in section 4.
In section 5, we compare the results introduced in this paper
with previous approaches to the same kind of problem.
Finally, in section 6, we summarize our concluding remarks.

2. Emergence of SG curves in surface diffusion

As we mentioned before, in this work we combine and
compare analytical and simulational results. Such simulations
consist of a numerical integration of the Mullins equation,
by means of which a plane curve restricted to periodic
boundary conditions” evolves in a finite-difference scheme.
Our numerical procedure supports dynamical regridding of
the interface to overcome the numerical instabilities that often
take place in those cases in which the aspect ratio of the initial
interface is quite high.

To test the accuracy of our numerical scheme to obtain
quantitative information for high-aspect-ratio interfaces, we
have performed numerical simulations to compare with an
analytical exact result published by Asvadurov et al [27]. In
fact, these authors showed that the surface-diffusion-driven
retraction of the tip of a wedge with angle of aperture 2&

evolves in time as NB(Q)ti. By means of an analytical
study of similarity solutions in an analogue problem in
the theory of curvature driven evaporation, Asvadurov et al
found an exact result for the dependence of the coefficient §
with wedge aperture angle ® (equation (3.24) in [27]). We
have studied this dependence by numerically integrating the
Mullins equation (1) for periodic triangular patterns (each
triangle laying on a wedge of angle of aperture 2d) and
measuring the retraction of the triangle tips for short times.
These results are shown in figure 1, where the solid line
represents the exact solution of Asvadurov ef al [27] and the
circles correspond to our numerical data. It is evident that
simulational data fit very well with the analytical solution,
thus showing that our numerical scheme gives accurate
quantitative results even in cases of moderately high aspect
ratios and also in the presence of quite sharp angles in the
initial condition.

The spontaneous emergence of SG curves during the
surface-diffusion-driven decay of 1D gratings can be readily
seen in figure 2. In fact, figure 2(a) shows the shape adopted
by an interface at successive times, starting from a rectangular
HAR initial pattern, while figure 2(b) shows the dependence
of the interface curvature as a function of the arc-length
parameter for each of the interfaces shown in figure 2(a).
From figure 2(b) it is clear that already at 1, C(s) adopts a
sinusoidal shape and it remains valid at later times, although
the amplitude is time dependent and the wavelength of this
sine curve decreases as time increases. Such a decrease in the
wavelength is responsible for the fact that curves in figure 2(b)

2 1In real 3D systems, this geometry evidently applies to patterns invariant
along a certain direction. Under this symmetry requisite, the interface is
effectively one-dimensional.
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Figure 1. Solid line: dependence of coefficient § as a function of ®
(where 2® is the aperture angle of the wedge), according to the
exact result stated by equation (3.24) in [27]. Circles: é versus ®
dependence, obtained by means of our finite-difference numerical
integration of the Mullins equation.
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Figure 2. (a) An interface that initially (at r = #) is a HAR
rectangular pattern evolves in a surface-diffusion-driven relaxation,
adopting distinguishing shapes, as time increases

(ty < 1 < th < t3). (b) Curvature of the interface as a function of
the arc-length parameter for each curve shown in (a).

become shorter as a function of time, which is a direct
consequence of a general property of the surface diffusion
flow of curves: it is length-shortening.

2.1. Basic geometrical aspects of SG curves

Let us discuss briefly a few general properties of SG curves.
The periodic nature of SG curves becomes evident by its own
definition (2). The typical shape of a SG curve of amplitude
A is schematically drawn in figure 3. In equation (2), 6
represents the angle between the positive direction of the
x-axis and the tangent to the curve at a given point, R is
the maximum value of this angle and A is the arc-length
in a period of the curve (length of the shadowed part in
figure 3). When the arc-length parameter increases in a period,
i.e. it increases from s to s + Ag, the x-component increases
from x to x 4+ A,. Following the usual notation used in the
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Figure 3. Sketch of a typical SG curve.

hydraulics-related literature [23-26], we shall call the ratio
i—i ‘sinuosity’. The Whewell equation 6 = 6(s) implies the
following differential forms for the x and y components:

dx = cos(6(s)) ds 3
dy = sin(6(s)) ds. @

Combining equation (3) with the Whewell equation 6(s) =
R sin(kss) (where kg = %) for a SG curve it can be seen

that g—f; > 0if 0 < R < 7. When the parameter R is higher
than 7, the x-component is not monotonically increasing,
thus the resulting SG curve becomes multivalued (i.e. in that
case the SG curve is not the graph of a function y(x)), as is
the case for the SG curve shown in figure 3. Qualitatively
speaking, the same shape remains for values of R in the range
% < R < ~2.11. However, for values of R higher than ~2.11,
the SG curve self-intercepts, leading to non-physical curves
(associating curves with interfaces). In this paper we shall
only consider physically realistic SG curves, thus throughout
this paper we will assume that 0 < R < ~2.11.

From differential forms (3) and (4), we can immediately
obtain parametric equations for the x and y components as
functions of the arc-length parameter s for a SG curve:

$ (27
x(s) = cos | Rsin| —u du + xo ®))
0 As
s . (2
y(s) = sin | Rsin{ —u du + yo. (6)
0 As

We can obtain A, (defined in figure 3) as a function of
parameters R and Ag, evaluating the integral on the right side
of (5) for s = Ag:

= . (27
Ay = f cos <R sin (—u)) du. @)
0 As

Performing a simple substitution and using a well-known
integral representation of Bessel functions [29], we obtain

Ay = AJo(R), €]

and

where Jj is the Bessel function of the first kind and order
zero. Equation (8) implies that the sinuosity (o) of a SG curve
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depends on R through the relationship
As 1

o Jo®)

)]
Similarly, making s = % in (6), we can find an exact result
for the amplitude A of a SG curve. In fact, after a change of
variables, we obtain
As 7. .
A=— sin(R sin(u)) du. (10)
47 0
The integral on the right-hand side of (10) can be written in
terms of the so-called Struve function [30]:

A—’\SH(R)
—4 0 s

where Ho(R) is the zero-order Struve function (notice that
Hy(R) > 0 for the considered values of R, i.e. those in the
range [0, ~2.11]). Combining (9) and (11) we obtain a closed
form for the aspect ratio of a SG curve:

Y

Ho(R)

B = 0@

12)

It is worth noticing that equation (12) shows us that € depends
on R, but it is independent from Ag, so for any fixed value of
Ay, the value of the amplitude R defines the shape of the SG
curve.

3. Time evolution of the parameters: theoretical
predictions

As shown in section 2 (see figure 2), SG curves spontaneously
emerge during the surface-diffusion-driven decay of 1D HAR
gratings. Thus, it is natural to study time-dependent SG curves
in the form

0, s) = R(7) sin ( 27 ) (13)
, 8 S )\s(t)s .

However, irrespective of the choice of functions R(#) and
As(1), such time-dependent SG curves are not exact solutions
of the Mullins equation (this can be easily demonstrated by
introducing expression (13) into the Mullins equation written
out in terms of 6(z,s), equation (1.8) in [27]). However,
our numerical simulations (figure 2, for instance) tell us that
such expressions should be good approximations to the true
solutions. Therefore, we will attempt to find the functions
R(#) and A4(?) to obtain a closed form for these approximated
solutions. To accomplish this task, we will evidently need two
relationships involving R(7) and A¢(?) in the surface diffusion
flow. One of these relationships is provided by the imposed
boundary conditions: in fact, we are looking for periodic
solutions for the surface diffusion flow, in which A, is constant
(it does not change with time). Therefore, equation (9) tells
us that knowing the time dependence of the amplitude R(¢) it
suffices to know the time dependence of As(?):

Ax

MO =5 RO)

(14)

An immediate consequence of the Mullins equation is that
the total length of the interface satisfies the following
relationship [31]:

dL(t
-le_Kf 2 ds,
dr L@

where L(7) is the total length of the curve>. Evaluating (15)
for a period of a SG curve (using that C = 6;), we obtain

5)

dis( o 4RO
a TR0

(16)

Differentiating (14) and combining it with (16) we can
eliminate Ag(f) from such equations and thus we obtain a
closed form evolution equation for the amplitude R():

5
R _ OO B
dt A 2J1(R)

a7

The pair of equations (14) and (17) constitute a closed set
of equations giving us a theoretical prediction that fully
determines the SG solution (13) at any given time, under the
assumption that the curve keeps its SG shape during the whole
decaying process. In section 4 we will check the accuracy
of this theoretical prediction, contrasting it with numerical
simulations.

4. Numerical results

In the first place, we contrasted our theoretical predictions
against a direct numerical integration of the Mullins equation
in cases in which the initial condition is a SG curve. In
this sense, figure 4 shows the time evolution for both the
aspect ratio € and the arc-length in a period of the interface
As (notice that knowing € at any time we can find the
associated value for R(f) by using (12), that is an invertible
relationship in the range considered for the parameter R),
starting from SG curves with different initial values for the
parameter R (i.e. we are considering SG curves with different
sinuosity at the initial state). Figure 4 shows an excellent
agreement between numerical simulations (solid lines) and
theoretical expectations (dotted lines) for all considered
values of Rjy, since it is almost impossible to distinguish
with the naked eye between related curves obtained from
both approaches. Remarkably, these results show that the
pair of equations (14) and (17) account very accurately for
the surface-diffusion-driven decay of SG curves with aspect
ratios in the range [0, ~1], thus largely increasing the range
of accuracy of the linear theory of surface diffusion, that
ordinarily is restricted to the range 0 < € < ~0.1. Once the
values of R(f) and A¢(f) are known we can, by employing (2),
reconstruct the SG interface. Although, as we pointed out
above, theoretical values for R(7) and Aq(#) are in excellent
agreement with numerical simulations, one might ask if small
errors in values of R(f) and/or As(f) could lead to some
observable difference in the associated SG curve. Therefore,

3" As the second member in (15) is non-positive, that equation proves that the
surface diffusion flow is area-decreasing (length-decreasing in the 1D case).
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Figure 4. Dependences of € (at the top) and A (at the bottom) with
the (rescaled) time K, for a SG initial condition with

Asy; = 1000 nm and several different values of the initial amplitude
Rini- Solid lines correspond to numerical simulations and dotted
lines are the expected theoretical values according to (14) and (17).
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Figure 5. Interface shapes at successive times (fp < t; < t; < 13),
for a SG initial condition (curve that corresponds to fy). Solid lines
were obtained by a numerical integration of the Mullins equation,
while dotted lines were reconstructed by using the analytical
prediction for the time dependence of R(¢) and A(?), according to
equations (14) and (17).

we should compare the predicted theoretical interface against
the simulated one. That comparison was performed and the
results are shown in figure 5. In fact, solid lines in figure 5
correspond to a numerical integration of the Mullins equation
for the initial condition labelled as 79, while dotted lines
correspond to the interfaces predicted (at three successive
values of time f; < f, < f3) by using equations (14) and
(17). Figure 5 shows that, at any time, the agreement between
simulated interfaces and the theoretical ones is excellent,
since also in this case the associated interfaces are almost
indistinguishable.

Up to now, we have shown how the pair of equations (14)
and (17) provides an excellent approximation for the time
evolution of the surface-diffusion-driven decay process when
the initial interface is a SG curve. Evidently, thinking of
applications to real situations, is necessary to analyse how

T
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» —
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Figure 6. Dependence of the ratio i—* on the dimensionless time 7.

The solid line correspond to a SG curve with R = 2.11 as the initial
condition, while the dashed line is the theoretical prediction
according to (14) and (17). Remaining curves correspond to initial
conditions indicated inside the graph. Horizontal arrows are used to
indicate that curves were shifted along the t axis, to obtain
data-collapse.

these results apply to more general initial conditions. As we
discussed in section 2, we found that for a broad class of
patterns an initially non-SG grating decays, after a transient
time (see figure 2), into a SG curve. This means that our results
for SG curves are applicable to a broad class of initial patterns,
once such transient time has elapsed®. In this sense, it is
expected that time-dependent pattern characteristics converge,
after a first transient stage, towards the dependence found
for SG patterns. Figure 6 shows this behaviour for the ratio

;‘\—S as a function of the dimensionless time defined as T =
X

(i—”)4 Kt. In fact, the solid line in figure 6 corresponds
to a SG curve with R = 2.11 as the initial condition in
a numerical simulation, the dashed line is the theoretical
prediction according to equations (14) and (17) (both curves
are almost coincident), while the remaining curves correspond
to numerical simulations for several classes of HAR patterns
(indicated inside the graph) as initial conditions. To overcome
the existence of a different transient time for each case, curves
associated with non-SG initial conditions were shifted along
the 7 axis (indicated by horizontal arrows in figure 6), to
obtain data-collapse with the SG solution. As becomes evident
by the analysis of figure 6, for a broad class of HAR initial
patterns (trapezoidal, sinusoidal, triangular, etc) the kinetic
behaviour of observable quantities (such as the sinuosity i—;‘)
follows (beyond the transient stage) the same dependency
found for SG patterns.

The fact that a given HAR pattern (e.g. a rectangular
HAR pattern) decays after a transient time into a SG curve
can be viewed, from the perspective of its harmonic content,
as a fast filtering of short wavelength Fourier modes in the
same way as occurs in the linear limit of the Mullins equation.
In fact, it is well known that in such a limit, Fourier modes

4 The exact elapsed time in the transient stage evidently depends on the
specific pattern and we won’t discuss that in this paper, although obtaining
at least an estimated value could be important in practical situations.
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Figure 7. (a) Snapshots, at successive times, showing the relaxation
of an initial condition that is a generalized SG curve, with two
Fourier components in its Whewell equation

6(s) = Bj sin(kss) + By sin(2kss). (b) Time evolution of the first
three spectral components of the interface. Values of the parameters

in the initial condition are By = 1.5, B, = 1.0 and ks = %&) nm™!

decay exponentially with time and with a lifetime that depends
on wavelength as )»f;. However, beyond this linear limit, the
Mullins equation is nonlinear; thus linear superposition ideas
are not applicable. Therefore, it is interesting to study the time
evolution of Fourier coefficients for a typical pattern during
the decay process. In fact, let us suppose that, at time ¢, such
a pattern is described by 6 (s, t). For a fixed value of t, 6 is a
periodic function of s of wavelength A¢(¢). Therefore, it can
be expanded in a standard Fourier series

0(s. 1) = % +3 (An (1) cos (AZSZ) ns>

n=1

B.(f)si 2
+ n()sm()hs(t)ns)).

To study the time evolution of coefficients A, and B,
in a typical situation, we have performed a numerical
simulation of the decay process starting from an initial
condition in which B; = 1.5, B, = 1.0 and the rest of
the Fourier coefficients were taken equal to zero, and
Fourier coefficients were numerically computed during the
whole decay process. Interface shapes at different times are
shown in figure 7(a), while the time evolution of the main
Fourier coefficients is shown in figure 7(b) (the rest of the
computed coefficients became negligible). We can see in
figure 7(b) how the component B3z, absent in the initial
condition, spontaneously appears, although it decays after a
short transient. This emergence of higher order harmonics
is evidently a nonlinear effect, since it has no room within
the linear theory. Figure 7(b) also shows that already for
7 = ~0.1, the B} component is the main contribution, i.e. at
that time the interface is nearly a SG curve. Notice that this
occurs even when the initial condition (figure 7(a), T = 0)
does not have the peak—valley symmetry property present
in SG curves. Therefore, the ideas presented in this paper
can, in principle, be applied to initial patterns without such
peak—valley symmetry, although it becomes evident that the

(18)

(b)

2000 <
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Figure 8. (a) SG curves for different values of R (solid lines) and
the associated parametric curves defined in (19) with parameters
fitted trying to minimize the area enclosed by the curves (dashed
lines). (b) (Solid line) asymptotic trajectory in (¢ = %, %) phase
space according to equation (22) in [34]. (Circles) Points in the
plane (e, %) obtained by fitting parametric curves to SG curves
with different values of R.

time elapsed in the transient stage will grow as this asymmetry
increases.

5. Relation to previous approaches

In a series of recent papers [32-35], some of the authors of
this work studied the surface-diffusion-driven decay of HAR
patterns by employing a different class of curves than SG
ones. In fact, the typical shape of a SG curve (see figure 3)
can be reproduced, within an excellent approximation, with
a simple explicit parametric expression depending on two
time-dependent coefficients A and B:

x(p, 1), y(p. 1))

= B(1) si 22n A(?) si 2m
—(p— ()SIH<A_XP>’ ()s1n<rxp>>,

where p is a parameter that has length units and takes values
in the range [0, Ls] and Ly is the pattern length.

For low values of the sinuosity of the curves (i.e. low
values of R), a pair of values of parameters (A, B) can be
found such that the SG and parametric curves become almost
indistinguishable. This can be seen in figure 8(a), where we
have plotted SG curves for several values of the SG amplitude
R and, by means of an optimization procedure based on the
minimization of the enclosed area, we have found the values
of parameters (A, B) giving the best fitting. We can see that a
very good fit can be obtained even for the highest considered
value of the SG amplitude (R = 2.1), that is almost in the
self-crossing limit of the curve.

One of the most distinguishable facts considering the time
evolution of the decay process in those previous studies is
that trajectories starting from an arbitrary point in the (A, B)
phase space quickly approximate a special trajectory [34, 35].
In [34] an analytical ad hoc approximation for such a special
trajectory was proposed (see equation (22) in [34]). Although

19)
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the existence of such an asymptotic trajectory was supported
by numerical simulations and is consistent with experimental
data [35], the origin of such behaviour remained obscure.
However, we will show that under the SG based approach
presented in this paper, the origin of such behaviour can be
explained. Indeed, if we look at figure 8(b) we can see that
the solid line represents the asymptotic curve obtained with
the ad hoc expression in equation (22) of [34], while circles in
figure 8 are associated with data obtained by taking the (A, B)
values corresponding to different amplitudes R according
to the optimization procedure described above. Thus, the
conclusion becomes evident: the ‘asymptotic’ trajectory in
(A, B) space is the one that makes the parametric function (19)
adopt a (in a good approximation) SG shape.

So, the description of the particular behaviour found
in the previous description using parametric functions (19)
becomes much simpler (and thus more natural) under the
SG framework. The idea of a pair of parameters (A, B)
approaching a special trajectory can be restated in a simpler
way: once the transient stage has elapsed, patterns adopt a SG
shape characterized by a single parameter R (of course, pattern
wavelength A, is an additional parameter in both approaches).

6. Summary and concluding remarks

We have shown how SG curves spontaneously emerge during
the decay of HAR 1D gratings mediated by surface diffusion.
We proposed analytical solutions in the form of SG curves
with time-dependent amplitude and wavelength and we found
analytical expressions for such time dependences. Although
these expressions are not exact solutions of the Mullins
equation, they are, according to our numerical simulations,
excellent approximations to such exact solutions over the full
range of amplitudes considered, that is the range in which
SG curves can describe physically realistic interfaces. Such a
range is well beyond the scope of the linear theory of surface
diffusion, thus our results can be applied to situations, as in the
case of the decay of HAR gratings, where the linear theory of
surface diffusion is not applicable.

By means of the obtained theoretical approximation we
can predict, with great accuracy, the shape adopted for an
initially SG curve at any time during the decay process.
Moreover, we have shown how this solution is also relevant
for a broad class of initial HAR gratings (different from
the SG ones), in the sense that after a short transient time
(that depends on the exact geometry of the initial condition),
the kinetic evolution of such systems converges into that
corresponding to SG curves, for which our theoretical solution
represents an excellent approximation.

On the other hand, we have compared our results with
a previous approach to the same problem (approach based
on the use of another family of curves different from the
SG), introduced recently by one of us [34]. As a conclusion
of this comparison, it becomes evident that the framework
introduced in this paper (based on SG curves) is more robust
and natural, in the sense that it provides much more accurate
predictions for the time evolution of measurable quantities
such as pattern amplitudes or surface areas. Although the

previous approach [34] has the advantage of giving an
accurate description of morphological aspects by means
of simple parametric equations, its accuracy regarding the
time evolution of the system is rather poor and quickly
deteriorates when the aspect ratio increases. On the other
hand, some relationships that were numerically found (with no
analytical support) in the previous approach, appear naturally
under the present description based on SG curves. The
development of an accurate mathematical tool to describe
shape evolution of HAR nanostructures is certainly a valuable
contribution, considering possible applications in nanoscience
and nanotechnology. In fact, this tool can be useful to predict
the viability or the lifetime of a variety of nanomaterial-based
devices that use this type of structure, or to produce materials
with new shapes, and accordingly with new properties, by
simply tuning the surface mobility.
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