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Abstract

A closed form for the computation of the dipolar and monopolar influence coefficients related to a low-order panel method is shown. The
flow problem is formulated by means of a three-dimensional potential model; the method of discretization is based on the Morino formulation
for the perturbation velocity potential. On the body surface this representation reduces to an integral equation with the source (or monopolar)
and the doublet (or dipolar) densities. The former is found by application of the boundary condition, and the latter is the unknown over the
surface of the body. The lower panel method is used for the analytical integrations of the monopolar and dipolar influence coefficients, with
special attention to avoid a logarithmic singularity in the monopolar matrix when flat fairly structured meshes that are common in ship-wave
calculations are used.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Panel methods are well known and widely accepted in
aerospace [1,2] and in naval industry [3,4] for calculating
potential flows. In some problems a two-dimensional
approach is sufficient, for instance, flows past multicompo-
nent airfoils, infinite cascade, ground effects and wind
tunnels [5,6] whereas in other cases a three-dimensional
approach is necessary. There exist many types of panel
methods for the last case. For exterior potential flows with-
out a free surface, three types of singularity, or surface
density, can be used in the numerical solution: only-sources
(monopoles), only-dipoles (dipoles) or mixed distributions.
For non-lifting flows only-sources may be used, while a lift
requires the third type. All these take about the same compu-
tational effort. However, as Hunt [2] states, the choice of
mixed distributions leads to better results than only-source
or only-dipole distributions, as it reduces leakage consider-
ably. Most panel codes originate from the very well known
Hess and Smith [7] method, see Refs. [1,2,8]. In practice,
the body surface is approximated by quadrilateral or trian-
gular panels. The zero-order methods use plane panels with
a constant surface density, while in higher order methods the
panels may be curved and the surface density varied in some
prescribed manner [9]. The most widely used technique for

ship-like problems, is the so-called Rankine source method,
which is extensively reviewed in Refs. [3,10,11]. Most
Rankine source methods originate from the Hess and
Smith method where both the body surface and the free
surface are discretized. A successful way of incorporating
the free surface boundary condition, which was obtained
from a so-called double model solution, was proposed by
Dawson [12]. The kinematic boundary condition on the
body surface specifies zero normal velocity, which is
equivalent to setting the normal derivative of the velocity
potential to zero, i.e. a Neumann boundary condition. An
alternative formulation for a closed body is to set the
potential equal to a constant inside the body surface, i.e. a
Dirichlet boundary condition. An overview of the latter
approach is shown in Ref. [1]. For the linear, three-dimen-
sional, zero-speed problem of a vessel in sinusoidal waves
using panel methods see Refs. [13–17]. For the solution in
the time domain and the propeller problem in unsteady flow
see Refs. [18–23]. The Morino [24,25] approach is a mixed
formulation that involves the computation of surface
integrals with both monopolar and dipolar kernels. These
surface integrals can be obtained with the aim of closed or
numerical integration formulas. Closed formulas are only
available for low-order panel formulations and can be
obtained with several approaches [7,26,27]. In the Medina
and Ligget [27] approach, the surface integral over each flat
panel is replaced by its closed contour integration, and a
local side tern is used for each side contribution, so it can
be seen as a rotational tern strategy. When this strategy is
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employed for panels with constant dipolar and monopolar
surface layers, or panels of zero order, a singularity appears
in rather special situations, for instance, in flat structured
meshes that often appear in ship-wave calculations. In
previous works we have considered alternative methods
for potential flows with a free surface, as the ship-wave
resistance problem [27–31]. In this case, we need to
compute the basic flow over a reference plane, such as the
hydrostatic equilibrium plane, with a fairly structured panel
mesh due to some properties of the Dawson approach, but in
such cases the monopolar integral can be ill-conditioned or
undefined since a logarithmic singularity occurs. In this
work we show in detail the rotational methodology for
zero-order panels, where the logarithmic singularity is
eliminated by means of a singularity subtraction.

2. Potential formulation review

Consider the flow around a body in an unbounded flow at
constant speed. The fluid occupies the unbounded regionV
exterior to the wetted surface of the bodyGS. Thex-axis is
parallel to the upstream non-perturbed velocityu∞; the
z-axis positive upwards. The potential velocity fieldu is
given by u � 7F; whereF is the total potential, which
satisfies the Laplace equation in the flow regionV and
can be split asF � u T

∞x 1 f where x � �x; y; z� is the
position vector andf is the perturbation potential. The
kinematic boundary condition is the slip condition2nF �
0 at the wetted body surface whereas at infinity the pertur-
bation velocity potential tends to zero for external flows, i.e.
f�x� ! 0 for uxu! ∞: Then, the governing equations for
the solutionF of the potential flow model are:

DF � 0 in V; 2nF � 0 atGS;

F! u T
∞x for uxu! ∞:

�1�

3. Panel formulation

The panel mesh considered here employs a low-order
representation of the body surface by means of a polyhedral
with n flat surfaces over the wetted body surface. We

employ a low-order panel formulation, with collocation at
the centroids of the panels, to set up a discrete linearized
system of algebraic equations, where the system matrix is
square of dimensionN � n: The equation system of the
panel method for the flow problem can be written as,Hm �
b; where H is the matrix system,m � 2f is the basic
bipolar vector evaluated at the centroids of theN-panels,
equal to minus the basic potential vectorf � �…f�xi�…�T
andb the source vector. The matrix system is the sumH �
1=2I 1 A; of the scaled identity matrixI and the bipolar
influence matrixA. The source vectorb � Cs; is the
product of the monopolar influence matrixC and the flow
vector s � �…s�x i�…� T; obtained by means of the slip
condition on the solid walls where the normal velocity
component is nulls�x j� � 2u T

0 �xj�n�xj� for j � 1; 2;…;N;

wheren�xj� is thej-unit panel oriented normal to the wetted
side, so it can be seen as akinematicsource vector. The
bipolar and monopolar influence coefficientsAij ;Cij are
given by the surface integrals

Aij � 1
4p

Z
G

dG j
r T

ij nj

r3
ij

and Cij � 1
4p

Z
G

dG j
1

ur ij u

for i; j � 1;2;…;n; (2)

wherenj is the panel unit normal oriented to the wetted side,
r ij � uxi 2 xj u is the distance between the centroidxi and the
integration point xj over the j-panel surface withx �
�x; y; z�; where both influence matricesA and C are dense
and non-symmetric in general.

4. Monopolar matrix

For the monopolar matrix~Cij ; we suppose a flat panel of
M sides and we consider the integral

~Cij �
Z

Sj

dS
1
r

�3�

where ~Cij � Cij =4p; Sj is thej-panel surface andr the length
between the collocation pointxi and the integration pointy
over the panel surface, see Fig. 1. We employ the Medina
and Ligget strategy [27], where we find an auxiliary
function V�R;h� such that its bidimensional Laplacian
DpqV over the panel surface is equal to the monopolar kernel
1=r ; i.e.

DpqV � 1
r
; �4�

with r � ������������
R2 1 h2;

p
whereR� ����������

p2 1 q2
p

is the projection
of the position vectorr over the panel plane andh the length
between the collocation pointxi and the plane (constant).
Then, we convert the surface integral into a line integral by
means of the 2D-divergence theorem

~Cij �
Z

Sj

DpqV dSpq �
Z

Lj

�7pqV; s� dL; �5�
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Fig. 1. Local side ternpqh on theLk side.



wheres is the planar normal unit to the sidesLj ; Dpq is the
planar Laplacian operator in thep, q-coordinates and
V�R;h� a regular function, The auxiliary monopolar
functionV�R;h� is found solving the differential equation

1
R

2

2R
R
2V
2R

� �
� 1�����������

R2 1 h2
p ; �6�

whereDpqV is the bidimensional Laplacian in theR; u polar
coordinates, with2uV � 0: The integration process gives

V �
Z ����������

R2 1 h2
p

R
dR; �7�

which admits the solution [32]:

V�R;h� �
����������
R2 1 h2

q
1 uhu ln

����������
R2 1 h2

p
2 uhu

R

" #

for R . 0;

�8�

where the logarithm argument is positive forR, h positives.
Then, the line integral for the monopolar coefficient~Cij ; can
be written as the sum of the~Ck contributions of the surface
gradient of the auxiliary monopolar functionV:

~Cij �
XM
k�1

~Ck where ~Ck �
Z

Lk
�7pqV; s� dL; �9�

where the sideL k has the nodesnk^1=2; in the closed node
sequencek � 1; 2;…;M on thej-panel. For the computation
of the contribution of~Ck

; we now impose a finite rotation of
the planar dihedralp; q; in such way that thep-axis is paral-
lel to theLk side, so the ordinateq� cnst during the side
integration (see Fig. 2). The derivative ofV along the direc-
tion of the planar unit vectors is computed as

�7pqV; s� � 2V
2R
�R̂; s�

R
: �10�

where7pqR� R̂=R and R̂ is the unit vector in the radial
directionR. Given the particular position of the local dihe-
dral p;q in the L k-side evaluation, we have�R̂; s� � 2q�

cnst; and then

�7pqV; s� � 2
q

�R2 1 h2�1=2

2
quhu

��R2 1 h2�1=2 2 uhu��R2 1 h2�1=2 1
quhu
R2 :

�11�
The monopolar integral along theLk side is written as:

~Ck � F�pk11=2;q;h�2 F�pk21=2;q;h�; �12�
wherepk11=2; pk21=2 are the extreme abscissas of theLk side
and q is the common ordinate, which are obtained as
pk^1=2 � �xk^1=2 2 xi�·tk and q� �xk21=2 2 xi�·sk; where
tk; sk are the tangential and normal planar unit vectors of
theLk side on the panel surface. The sequence sense is such
thatsk × tk � nj ; wherenj is normal unit vector to the panel.
The auxiliary functionF � F�p;q;h� is the sum:

F � 2qF1 2 uhuqF2 1 uhuqF3; �13�
where the first integral is

F1 �
Z dp�������������������

p2 1 �q2 1 h2�p � ln�p 1
�������������������
p2 1 �q2 1 h2�

q
�; �14�

and the second one is

F2 �
Z dp

p2 1 q2 �
1
q

tan21 p
q

� �
: �15�

For the third integral

F3 �
Z dp

� �������������������p2 1 �q2 1 h2�p
2 uhu� �������������������p2 1 �q2 1 h2�p ; �16�

we introduce the variable changep� ����������
q2 1 h2

p
sinhj;

then:

F3 �
Z dj����������

q2 1 h2
p

coshj 2 uhu
; �17�

with the solution [29]

F3 � 2
q

tan21

����������
q2 1 h2

p
ej 2 uhu

q

" #
: �18�

Now, we expressj�p� with

sinh�j� � p����������
q2 1 h2

p ; z; �19�

theny2 2 2zy2 1� 0; wherey� ej; and its solution isy�
z^

���������
z2 1 1

p
: From this we obtain

ej
����������
q2 1 h2

q
� p^

�����������������
p2 1 q2 1 h2

q
: �20�

It can be shown that the negative sign is the correct choice;
thenF3 is written as

F3 � 2
q

tan21 p 2 uhu 2
�����������������
p2 1 q2 1 h2

p
q

" #
; �21�
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and the functionF is

F � 2uhu tan21 p 2 uhu 2 r
q

� �
2 q ln�p 1 r�

2 uhu tan21 p
q

� �
: �22�

But, the sum by differences between the vertices of theLk

side of the function tan21 �p=q� can be written asbk �
bk11=2 2 bk21=2; where

bk^1=2 � tan21 pk^1=2

qk^1=2

� �
; �23�

wherebk is the view angle for theLk side from theO local
origin. Its sum over the closed perimeter is null and then this
term will be omitted inF. We also note that the local origin
O is the projection of the observation pointxi on the panel
plane and is fixed during the integration. Then, the mono-
polar influence coefficient~Cij between thej-source panel and
the collocation pointxi, is the sum of theM contributions

~Cij �
XM
k�1

~Ck where

~Ck � F�pk11=2;q;h�2 F�pk21=2;q;h�; (24)

wherepk^1=2 are its extreme abscissas andq the common
ordinate, in the side dihedralp;q with p parallel to theLk

side. The (reduced) auxiliary functionF � F�p; q;n� is

F � 2uhutan21 p 2 uhu 2
�����������������
p2 1 q2 1 h2

p
q

" #

2 q ln�p 1
�������������������
p2 1 �q2 1 h2�

q
�: �25�

By direct computation we can verify the classical properties

of the monopolar potential [1,2], for instance, let us consider
the monopolar coefficient~Cij as a function of the observa-
tion point p;q;h over a normal line passing through the
panel centroid: (i) is a symmetrical function of the distance
h between the observation point and the panel surface
~C�p;q;h� � ~C�p;q;2h�; and (ii) the tangents to the curve
~C�p;q;h� � f �h� at the originh � 0 are finites and the
opposite sign, so the normal derivative2 ~C=2h has a finite
jump to crossing the panel (Fig. 3). In Fig. 4 we show the
monopolar intensity~C�p;q;h� for points �p;q;h� over the
planesa parallel to the panel for two values ofh .

5. Logarithmic singularity in the monopolar matrix

In the monopolar matrixC a singularity appears when
both q and h vanish simultaneously, which is common,
for instance, in flat-structured surfaces meshes as in ship-
wave calculations, since all these panels are coplanar, so
h � 0; and many of them will have side terms withq� 0;
which can be arrived at by direct computation on a sample
mesh, whereas the node coordinates from the projection
point O arep1;p2 . 0 orp1;p2 , 0 for such flat-structured
meshes (Fig. 5). The singularity is due to the logarithm term

Db� ln
b2

b1
� ln

p2 1
�����������������
p2

2 1 q2 1 h2
q

p1 1
�����������������
p2

1 1 q2 1 h2
q : �26�

Whenq� h � 0; simultaneously, we have

Db� 1ln
p2 1 up2u
p1 1 up1u

for p1;p2 . 0; �27�

which is a regular term. But, whenp1;p2 , 0 we haveDb�
NaN (undefined). In order to overcome this shortcoming,
we employ the classical technique of subtracting the
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Fig. 3. Symmetry of the monopolar coefficient~C�p;q;h� with respect to the panel.

Fig. 4. Intensity of the monopolar coefficient~C�p;q;h� over the planesa , for: h � 0:01 (left) andh � 0:50 (right).



singularity, i.e.

Db ; ln
p2 1 r2

p1 1 r1

r2 2 p2

r1 2 p1

r1 2 p1

r2 2 p2

� �
; �28�

wherer2
1;2 � p2

1;2 1 q2 1 h2 so that

Db� ln
r2
2 2 p2

2

r2
1 2 p2

1

r1 2 p1

r2 2 p2

( )
; �29�

but r2
2 2 p2

2 � r2
1 2 p2

1 � q2 1 h2; then

Db� 2ln

�����������������
p2

2 1 q2 1 h2
q

2 p2�����������������
p2

1 1 q2 1 h2
q

2 p1

: �30�

Whenq� h � 0; simultaneously we have

Db� 2ln
up2u 2 p2

up1u 2 p1
for p1;p2 , 0: �31�

Both Eqs. (27) and (31) can be reduced to

Db� ln
b2

b1
� sgn�p1� ln

up2u
up1u

for q� h � 0: �32�

From a computational viewpoint, we suppose thatq� h �
0 is present when the condition

����������
q2 1 h2

p
,

1 max{up1u; up2u} is verified, where1 is a fixed tolerance.

6. Dipolar matrix

The dipolar matrix~Aij is found from

~Aij �
Z

Sj

dGy
2

2ny

1
r
; �33�

where2n is the normal derivative to the surface panel. The

dipolar kernel2ny
r 21 can be expressed as

2

2n
1
r
� 2

2r
1
r
2r
2n
� 21

r2

h

r
� 2

h

r3 �34�

Again we employ the previous strategy: we find an auxiliary
function W�R;h� such that its bidimensional Laplacian
DpqW over the panel surface is equal to the dipolar kernel
2h=r3

; i.e.

DpqW � 2
h

r3 ; �35�

Then, the surface integral is replaced by the line integral by
means of the 2D-divergence theorem

~Aij �
Z

Sj

DpqW dSpq �
Z

Lj

�7pqW; s� dL; �36�

whereW�R;h� is a regular enough function which is found
from the solution of the differential equation

1
R

2

2R
R
2W
2R

� �
� 2

h

{ R2 1 h2} 3=2 ; �37�

whereDpqW is the bidimensional Laplacian in theR; u polar
coordinates, with2uW � 0: The integration gives:

W �
Z h

R
����������
R2 1 h2

p dR; �38�

which admits the solution [32]

W � h

uhu
ln

����������
R2 1 h2

p
2 uhu

R

" #
for R . 0; �39�

where the logarithm argument is positive forR;h positives.
Then, the line integral for the monopolar coefficient~Aij can
be written as the sum of the~Ak contributions of the surface
gradient of the auxiliary dipolar functionW

~Aij �
XM
k�1

~Ak where ~Ak �
Z

Sk
�7pqW; s� dL; �40�

Thes component of the gradient7W is

�7pqW; s� � 2W
2R
�R̂; s�

R
; �41�

due the position of the local dihedralp;q for theL k side we
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Fig. 5. The casesp1; p2 , 0 (left) andp1; p2 . 0 (right), both withq� h �
0:

Fig. 6. Skew-symmetry of the dipolar coefficient~A�p;q; n� with respect to the panel.



have�R̂; s� � 2q� cnst: Then

�7pqW; s� � q sgn�h� 1

� �����������R2 1 h2
p

2 uhu� ����������R2 1 h2
p

2 q sgn�h� 1
R2 : �42�

The dipolar lineal integral on theLk side, is written as

Ak � D�pk11=2;q;h�2 D�pk21=2; q;h�; �43�
where the auxiliary dipolar functionD�p; q;h� is the sum

D � q sgn�h�D1 2 q sgn�h�D2: �44�
The integral D1 is the same as the monopolarF3. The
integralD2 is equal to the monopolar termF2, so its closed
sum around the panel perimeter is null. Then, the dipolar
influence coefficient~Aij between thej-source panel and the
collocation pointxi, is the sum of theM contributions

~Aij �
XM
k�1

~Ak where

~Ak � D�pk11=2;q;h�2 D�pk21=2;q;h�; (45)

where

D � 2 sgn�h� tan21 p 2 uhu 2
�����������������
p2 1 q2 1 h2

p
q

" #
: �46�

Again, by direct computation we can verify the classical
properties of the dipolar coefficient [1,2]. For instance, let
us consider the monopolar coefficient~Aij as a function of the
observation pointp;q;h over a normal line passing trough
the panel centroid: (i) is a skew-symmetric function of the
distanceh between the observation point and the panel
surface ~A�p; q;h� � 2 ~A�p;q;2h�; and (ii) the tangents to
the curve ~A�p;q;h� � f �h� at the originh � 0 are finites
and with the same sign, so the normal derivative2n

~A
remains continuous when crossing the panel (Fig. 6). In
Fig. 7 we show the dipolar intensity~A for points over the
planesa parallel to the panel for two values ofh .
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