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A procedure to determine the viscosity
function from experimental data

of capillary flow

Abstract The accurate calculation of
the viscosity # as function of the
shear rate y from capillary viscome-
try is still a matter of debate in the
literature. In fact, this problem in-
volves the inversion of an integral
equation, which leads to multiple
solutions due to the unavoidable
noise present in the experimental
data. The purpose of this work is to
develop an efficient procedure to
determine the viscosity function
from experimental data of capillary
flow without presenting the difficul-
ties inherent in other methods dis-
cussed previously in the literature.
The system identification procedure
is used here to estimate the param-
eters of a viscosity model, which is
appropriately selected for the fluid

under study through preliminary
calculations involving the apparent
shear rate — shear stress data. Once
the model is chosen by satisfying
criteria for the fit goodness and its
parameters are evaluated, a smooth
and continuous function #(7) is
obtained in the range of experimen-
tal shear rates. The procedure pro-
posed is also applicable to fluids in
shear flow that present two Newto-
nian plateaus, as it is typically found
in macromolecular dilute solutions.
The mean value theorem of contin-
uous functions is used to reduce
significantly the computational time.
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Introduction

Although capillary viscometry is one of the most used
techniques to measure the viscosity of several kinds of
fluids, the appropriate determination of the rheometric
viscosity function #(y) from experimental data is still
under analysis and discussion in the literature. Capillary
viscometry should allow one to calculate the viscosity n
of a given fluid from experimental data involving
pressure loss AP and flow rate Q in the capillary tube.
In this sense, for the case of Newtonian fluids, the
viscosity is obtained easily through the Hagen-Poiseuille
equation. On the other hand, special considerations
must be taken into account for the determination of the
viscosity function #(7) when non-Newtonian fluids are
considered. In fact, difficulties appear in the calculation
of the shear rate 7 because it is non-uniform in the

capillary cell. In this framework, to obtain the viscosity
function

a
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both the shear stress ¢ and the shear rate y have to be
known at least at one place in the rheometric cell. In
the capillary tube, when transient effects are absent,
the shear stress o is evaluated with the following
equation (Walters 1975; Bird et al. 1977; Schowalter
1978):

APr r
a(r) = YA O'WE (2)

where R is the tube radius, L is the tube length, a,, is the
shear stress at the tube wall and the radial coordinate r
satisfies 0 < r £ R. The shear rate y, however, is related
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to the flow rate Q in the capillary tube through the
following expression:

T R3 Ty
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which involves the no-slip boundary condition of the
velocity field. Therefore, the determination of (o)
requires the inversion of Eq. (3). This step is the source
of difficulties in capillary viscometry, since it constitutes
a mathematically ill-posed problem; i.e., a unique
solution cannot be found as a consequence of the
unavoidable scattering present in the experimental data
0 vs a,, (Honerckamp 1989; Friedrich et al. 1996).

The method most used to evaluate y in capillary
viscometry is based on the following expression:

. l. dIny,
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where 7,, is the shear rate at the tube wall. Also, for
Newtonian fluids, y,, is equal to the apparent shear rate
7, = 40 / nR3. Equation (4) is obtained by differentiating
Eq. (3) with respect to the wall shear stress, and is
designated the Weissemberg-Rabinowitsch-Mooney
(WRM) equation. Although in the WRM method
numerical data of the viscosity function are generated
from 5 = JW/”[)W as one expects, Eq. (4) is most reliable,
and hence useful, only in the cases in which
diny, / dlng,) ~ 1 (fluids almost Newtonian) and
dIny,/dIne,) ~ 1/n (“power law” fluids with power
index n). Apart from these two situations, the numerical
results yielded by Eq. (4) are very sensible to y, and to
the way the calculation of (dInj,/dIna,) is performed
because experimental data are always noisy in some
degree. Therefore, converting Eq. (3) to a differential
expression like Eq. (4) does not eliminate the difficulty
associated with the existence of multiple solutions. In
this sense, some interesting proposals to solve this
problem can be found (Brunn and Vorwerk 1993;
Munoz and Yeow 1996).

By defining , = 0,,/7,, Eq. (4) may be rewritten as

1dIng,\ "
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From this equation, Brunn and Vorwerk (1993) ob-
served that when 7 is a purely monotonic function, 7,
always lie to the right of #. In this context of analysis, a
shift factor <1 was introduced to yield
n,(0) = n(Po,). These authors concluded that the
method provides approximate values of #(o,,) and for
some typical viscosity models the shift factors can be
analytically found. Nevertheless, this method cannot be
applied to fluids that show two Newtonian plateaus.
On the other hand, without considering directly a
viscosity model, Munoz and Yeow (1996) suggested the
numerical determination of the function #(c¢) by apply-

(5)

ing the maximum entropy (ME) method to capillary
data. With this purpose, the authors used the following
integral equation

[ 63
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which was the result of introducing y(¢) = ¢/n(s) in
Eq. (3). These authors indicated that the prediction of
this method is strongly dependent on the “prior”
knowledge of the viscosity function. In addition, the
results generated by the ME method did not excel those
obtained with the classical WRM method. To show this
aspect of the problem, the authors carried out a deep
and well-described comparison between the WRM and
the ME methods. It should be emphasized here that the
ME method uses a viscosity model for guessing algo-
rithmic functions only, and that the target is to get
numerical values of the viscosity function directly from
experimental data. This general framework has also
been discussed in the recent literature (Friedrich et al.
1996) by including the analysis of regularization meth-
ods, which introduce further information into the basic
ill-posed problem with the purpose of defining a unique
solution from many that are attainable.

To deal with the ill-posed problem in capillary
viscometry, in this work we propose to extend the
analysis carried out by Brunn and Vorwerk (1993) by
using the system identification procedure (Dahlquist
et al. 1974) to determine the parameters of an appro-
priate viscosity model which is chosen by satisfying
criteria for the fit goodness. The starting point is to
rewrite the basic equations of capillary viscometry in
terms of a viscosity model as described below. The
approach to solve this problem should overcome the
difficulties presented by the methods described above.
Therefore, two requirements are imposed here: (a) the
procedure must be also applied to fluids that show two
Newtonian plateaus; (b) the procedure should excel
those results obtained with the classical WRM method
and other methods not directly using a viscosity model.
In this sense, instead of determining #(o) numerically, we
suggest to identify the set of parameters corresponding
to a viscosity model, which can be readily selected for
the fluid under study through preliminary calculations
involving the apparent shear rate — shear stress data; i.e.,
from y, = 0,,/7, having taken into account that either
o, and 7, can be evaluated with simple algebraic
expressions and the capillary experimental data. For
this reason, throughout this work we will designate this
proposal the System Identification (SI) procedure. Also,
once the model parameters are known, the rheometric
viscosity function #(7) is easily calculated in the range of
shear rates of the experimental data. Nevertheless, the
success of the strategy involved in the SI procedure relies
on the adequate consideration of two aspects. One is to
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compute the integral equation of first kind with the
viscosity model of unknown parameters selected, and
the other is to use properly the mean value theorem of
continuous functions to reduce significantly the compu-
tational time as it is explained below.

Fundamentals

Equation (3) can be used to evaluate the relationship
between Q and g, for a given fluid, by inserting the
function j(o) and performing the integration. Clearly,
the function (o) is chosen from the menu of viscosity
models available in the literature for different fluids and
the SI procedure shall be applied with the rules (criteria
for fit goodness) established for the best choice, as it is
described in the Appendix. Since Eq. (3) can be evalu-
ated analytically for simple models only, like the well
known “power law’’ model, for a more general viscosity
model we suggest to use the following pair of equations
of capillary viscometry:

(7)
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Equation (7) is the result of combining Eqgs. (1) and (2),
where (7, pi,...,pm) represents a viscosity model with
a fixed number of parameters p; (usually M < 4).
Equation (8) is obtained from Eq. (3) by substituting
the new variable of integration r for ¢. Therefore, when
the experimental technique satisfies the requirements to
assure that the flow is viscometric (steady state, no-slip
at the wall, end effects negligible, isothermal flow), one
may estimate the set of parameters {pi,...,pm} by
fitting the experimental data Q% vs ¢¢' with Eqgs. (7) and
(8). In these expressions, the superscript ex refers to
experimental values. One should observe that this
problem cannot be solved by standard fitting methods
available in the literature. With the purpose of describ-
ing the SI procedure, we define the following sum, which
is the objective function to be minimized in the
evaluation of unknown parameters:

0, - 0=
= Z( o )

where N is the number of experimental data Of*. In
Eq. (9), Q; represents the flow rate value resulting from
Egs. (7) and (8) for each value of o7, and a trial set of
parameters. Thus, Q; must be determined with Eq. (8)
once j(r) is found from the inversion of Eq. (7). This
inversion is readily carried out with the Newton-
Raphson algorithm (Carnahan et al. 1969) where a

conservative initialization is y = 0 for each value of r.

©)

Then, we determine a new set of parameters {pi,...,pm}
that makes S as small as possible. In this iterative
mathematical framework, it is required to minimize
simultaneously the following functions:

ds ¢ <Q1 Q“) do:
! dp ; o\ o )dp (10)
Numerical procedure
Defining F=[F},...,Fy]" and p=[pi.....pm]", the prob-
lem to be solved is expressed as
F(p)=0 (11)

The best estimate of p is obtained with the Newton-
Raphson algorithm for systems of non-linear algebraic
equations. This method involves an iterative process in
which p is modified through the following recurrence law

p"t = p" —E (") F(p™) (12)
from an initial vector p ©) up to get that the normalized
difference | (p"*+V ) /p" ‘ becomes sufficiently

small and less than &j < 107°. In Eq. (12), F’ = dF /dp
is a matrix of dimensions M x M that is inverted
through the Gaussian elimination subroutine.

In addition, each of the jk-components of matrix F’
are obtained by differentiating Eq. (10) to find o

N2 [ 1 doidg; (Qi -~ Qx) d*o; ]
= E ! 13
— O [Qzex dpi dp; " o dpidp; (13)

It is also clear that F’ is a symmetrical matrix, i.e.,
F}, = K, since &) [dpedp) = 2017/ (dpdpy).

In Eqs (10) and (13) the expressions for dQ,/dp; and
d? 0,/(dpkdp;), which carry information about the vis-
cosity model selected, must be included. Therefore, these
differential expressions are obtained from Eq. (8):

d_Q:@/R d(n") 5, _ mouk’ <d(n1)> (14)

dp; R Jo dp 4 dp; /5,

&0 _moy [Fd) 5 mouR /()

dpydpc - R Jo dpdp T4 <dpjdpk>>-,m
(15)

where the first and second derivatives of #~' are

evaluated analytically from the viscosity model selected.
For the purposes of the SI procedure, these derivatives
could also be calculated numerically. Nevertheless,
analytical expressions shall be preferred for higher
precision. The second equalities in Egs. (14) and (15)
result from the application of the mean value theorem of
continuous functions (Korn and Korn 1968). Thus, the
expressions placed within the angular brackets (-) are
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evaluated at y,, = j(r,), where r,, = ¥rand 0 <9 < 1 in
the integration domain. The use of the mean value
theorem 1is useful to reduce the computational time in
the SI procedure during the calculations of dQ,/dp; and
dZQ,-/(dpkdpj—), as it is discussed below.

Before ending this section, a brief description of a
criterion for the initialization of the Newton-Raphson
algorithm applied to Eq. (12) is required. In fact, since
the iterative process described by Eq. (12) in the
calculation of F @p =0 always converges when p(© is
chosen sufficiently close to the root p (Dahlquist et al.
1974), the appropriate selection of the initial values is a
crucial step in the SI procedure. In this sense, the set

(0) 0 - . . X N
{pl Yoo pM} introduced in our calculations is ob
tained by carrying out a preliminary fitting of the data #,
vs 7, with the viscosity model #n(y,pi,...,pm) and
substituting 7, for 7. This task can be readily carried
out by using standard subroutines for fitting explicit no-
linear algebraic equations included in classical mathe-
matical software.

To summarize the numerical algorithm used in the SI
procedure, a calculation scheme is presented in the
Appendix. There one finds that the input data are N
experimental values Q% vs ¢¢', while the output is the
appropriate set of parameters {pi, ..., pm} that belongs
to the viscosity model considered in the calculations. In
this sense the fit goodness of the calculations is measured
through both the determination coefficient #* and the
standard deviation §, as they are defined in the
Appendix.

Applications of the Sl procedure
Viscosity model

The viscosity function 7(y) for most fluids of practical
interest, such as polymeric solutions, melts, colloidal
suspensions, and emulsions, presents typically three
zones: a low shear rate plateau followed by a near
power-law decrease that ends finally at a high shear rate
plateau. This behavior is satisfactorily described by
several viscosity models proposed in the literature (see,
for example, Bird et al. 1977; Barnes et al. 1991). To
present calculations with the SI procedure here, we pick
out, for instance, the following viscosity function:

o) — Mo — Mo
n(7) T+t
where 7, and 5., are the limiting viscosity values,
corresponding to the asymptotic shear rates y — 0 and
7 — oo, respectively (Cross 1965). In addition, 4 is a
characteristic relaxation time for the fluid and o« > 0 is
the exponent that measures the severity of shear
thinning. Although we adopt Eq. (16) for the purposes
of this work, any other model can be also used to apply

Moo (16)

the SI procedure in practical situations. Therefore, to
get the viscosity function from viscometric capillary data
in the theoretical framework described above, Eq. (16) is
used in the algorithm (Egs. 7, 8, 14, and 15) by defining
P1=1o, P2=4, p3=0, and py=1,. In this application,
Eq. (16) is also used to obtain the set of initial values

{pg()), £0>, pgo), pio)} by fitting the data #, vs 9, as was

explained in the previous section.

Synthetic data

To test the SI procedure, we generate samples of
synthetic data 40 /nR? vs ¢¢. The subscript T means
true data or equivalently error-free data. Here the
expression 40/ R>, which involves experimental errors
from Q% and R, is preferred instead of using Q%
directly. Therefore, discrete values of 40%/zR® in a
given range of ¢¢ were obtained from Eqs. (7), (8), and
(16) with a prefixed set of parameters #,, 4, o, and 7.
Then, different levels of the pseudo experimental error 6
were introduced in the flow rate data as follows (Munoz
and Yeow 1996):

405" 407
nR> 7R3
In Eq. (17) G is a Gaussian random number with zero
mean and unit variance, which is included to simulate
the experimental noise. Therefore, experimental data of
capillary viscometry with different levels of error
(0=0.02, 0.05, 0.1) were produced to be analyzed with
the SI procedure.

(1+0G) (17)

Calculations with the WRM method

The results obtained by applying the SI procedure to
data 40%° /7R3 vs ¢% are compared with those evaluated
with the WRM method, which is the one most
frequently used in capillary viscometry. Therefore, the
derivative (dIny,/dIne,) in Eq. (4) is calculated nu-
merically by averaging the slopes of two adjacent data
points as follows (Kincaid and Cheney 1991):

d_y:l yi+l_yi+yi_yi71
de 2 \x — X X — X

where y; = In(40¢ /nR%),, and x; = In(c¥),

i

(18)

Results and discussion

We first analyzed a set of synthetic data labeled Sample
I, which represents the shear flow response of a
hypothetical fluid with #,=1 Pas, A=20 ms, «=0.6,
and 7., =0.1 Pas. The SI procedure is applied to these



276

data by following the calculation scheme described
above and in the Appendix. Results are shown in Fig. 1,
where the viscosity function #(7) obtained for different
levels of ¢ is plotted. In the same figure, the prediction of
the WRM method is also included for comparison. It is
observed that, while the WRM method generates
viscosity values highly scattered as 0 increases, the
numerical predictions obtained with the SI procedure
are not affected significantly by the experimental noise.

Sample I represents suspensions and dilute solutions
which show two Newtonian plateaus in the range of 7y
considered. Nevertheless, in the case of polymeric fluids
such as concentrated solutions and melts, #,>>7,, , and
hence, the second Newtonian plateau is not reached
experimentally (Bird et al. 1977). To illustrate these
situations, we next use Eq. (16) with three parameters,
i.e., 7, ~ 0 is imposed. Thus, data labeled Sample II
were generated for a polymeric fluid with n,=1 Pas,
A=5ms, and o =0.6. Results obtained by applying the
SI procedure to these data are presented in Fig 2, where
the resulting function #(7) is compared with the
prediction of the WRM method. This figure thus shows
the same features as those already discussed in relation
to Fig. 1. In fact, the SI procedure predicts almost the
same viscosity curve for the different levels of pseudo
experimental error considered.

In order to reduce the computation time in the SI
procedure, an alternative way to calculate dQ,/dp; and
szi/(dpkdpj) was tested by using the second equalities of

1.2
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o SI procedure:
101e Qe . 5=0.02
O - .
-1 Ty 5:005
084 e Oy T 6=0.1
| WRM method:
E‘ o §=0.02
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~ J ® 5=0.1
0.4
0.2
0.0 4—r T
10" 10° 10' 10° 10° 10*
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Fig. 1 Viscosity 5 as function of shear rate j obtained from the
capillary data of Sample I (Eq. 16 with four parameters) for different
values of the experimental error J. Lines represent the predictions of
the SI procedure and symbols refer to the classical WRM method
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Fig. 2 Viscosity 5 as function of shear rate j obtained from capillary
data of Sample II (Eq. 16 with three parameters) for different values
of the experimental error J. Lines represent the predictions of the SI
procedure and symbols refer to the classical WRM method

Egs. (14) and (15). Since y,, is unknown and different for
each derivative of ', one may perform approximate
calculations by assuming either y,, =7, or y, =7,. In
comparing the results obtained by using these approx-
imations with those coming from the exact calculations,
it was observed that the parameter values, as well as i?
and §, presented minor variations for different levels of
error. Nevertheless, the computational time was signif-
icantly diminished in relation to that required when the
exact calculations of dQ,/dp;, and sz[/(dpkdp,») are
included in the algorithm.

We then test the SI procedure with experimental
capillary data corresponding to real fluids. With this
purpose, three sets of experimental data are taken from
the literature and presented in Fig. 3. In fact, Sample II1
is a 3.5% carboximetil-cellulose solution reported by
Fredrickson (1964) (p 309), Sample IV is a polyisobut-
ylene solution reported by Schowalter (1978) (p 114),
and Sample V is a 24.8% cellulose acetate solution
reported by Skelland (1967) (p 158). These experimental
data cover the low shear rate plateau and mainly the
power law region. Thus, the viscosity model selected for
these three samples was Eq. (16) with 5, ~ 0. The SI
procedure was applied to each sample and the resulting
parameters are presented in Table 1.

Figure 4 shows the relative viscosity 1/y, as function
of shear rate y for Samples III, IV, and V. Once more, it
is observed that the WRM methods generate viscosity
values with a high degree of scattering, with the
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Fig. 3 Experimental data of capillary rheometry for different fluids.
The samples are: 111, 3.5% carboximetil-cellulose solution (Fredrick-
son 1964) (p 309); IV, polyisobutylene solution (Schowalter 1978)
(p 114); V, 24.8% cellulose acetate solution (Skelland 1967) (p 158)

Table 1 Parameters of Eq. (16) obtained through the SI proce-
dure, for the different sets of experimental capillary data presented
in Fig. 3

Samples o [Pas] A [ms] o e §[s™
111 1.864 6.97 0.731 0.99818 380
v 0.553 5.45 0.683 0.99938 11
A% 111.8 40.3 0.680 0.99967 6.7

exception of those corresponding to Sample III which
has a near “power law” response (see also Fig. 3). The
full lines in Fig. 4 are the functions n(})/n, obtained
from the SI procedure.

In a wider context of analysis, it is also possible to use
better rheometric viscosity models by increasing the
number of rheological parameters, this depending, of
course, on the physical view and considerations of the
analysis being carried out for the fluid sample. Under
any circumstances, it will always be of great interest to
obtain a smooth curve of the viscosity function rather
than having numerical values of this function with some
degree of scattering, which increases significantly with
the value of o.

Conclusions

The SI procedure to determine the viscosity function
n(7) in capillary viscometry is presented with the

10F ©o ——SI procedure
] WRM method:
08 L A Sample I
' O Sample IV
I O SampleV
0.6 -
ST
~
S04t
0.2 F
0.0 bl
10° 10' 10° 10° 10* 10’
e
y[s]

Fig. 4 Relative viscosity 7 / 1, as function of shear rate j obtained
from the experimental capillary data presented in Fig. 3. Lines
represent the predictions of the SI procedure by using Eq. (16)
with three parameters, and symbols refer to the classical WRM
method

following advantages on other methods published
previously in the literature:

1. A smooth and continuous function #(7) is obtained in
the range of shear rates of the experimental data,
which is generated by satisfying criteria of fit good-
ness.

2. The procedure can be applied to fluids in shear flow
that present two Newtonian plateaus.

3. This procedure uses the mean value theorem of
continuous functions to simplify the basic problem,
facilitate the calculations, and reduce significantly the
computational time. The initialization of parameters
in the iterative process is established and the success
of the results produced depends critically on this
aspect.

To the present time, the SI procedure seems to give
results with higher precision than those obtained with
methods avoiding the direct use of a viscosity model.
Nevertheless, one should always prefer to be able to
infer not only parameters but also functions from
experimental data to better characterize the system
under investigation.
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Appendix

Evaluation of the standard deviation s
and the determination coefficient 12

Calculation scheme for the SI procedure

in capillary rheometry

Input:
{405"/nR’, 0% } and p©

The determination coefficient ° is calculated as follows
(Carnahan et al. 1969):

2
==
Sxx Sy
n=11to NI where
N

method; Eq. (7)

e (Calculation of Q;: Eq. (8)

. Calculation of dQy/dp; and
d°Qi/(dpidpj): Egs.(14) and (15).
e (Calculation of S: Eq. (9)

e Calculation of y(r): Newton-Raphson

i=1

=Y (0 - o)’

N
e Calculation of F and £ : Egs. (10) §xy _ Z (Qfx . Qex,m) (0 — O™
and (13). i=I
o Inversion of /" Gaussian elimination In these expressions, the superscript av indicates average
subroutine. values.
e Calculation of p"": Newton- The standard deviation § is
Raphson method; Eq. (12). R | zN: 40% 40 2
. § — _ 0¥
(N=-M) &\ R =R
pﬁn-l-l) _p}n) NO
YES
Output:
{pl’ -"sPM}a f.z and ;
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