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Prólogo

Los autores de esta obra llevan años utilizando el programa estadístico R como herra-
mienta fundamental para analizar datos, interpretar resultados y obtener conclusiones 
válidas en sus investigaciones, lo que ha culminado en la publicación de numerosos traba-
jos en revistas científicas de prestigio. En Estadística para estudios ecológicos. Un enfoque 
práctico utilizando R comparten, a lo largo de los distintos capítulos, la aplicación de di-
versos paquetes del entorno R y detallan minuciosamente sus experiencias en el análisis 
de datos.

El libro comienza con una breve introducción a los conceptos básicos de R, incluyendo 
instrucciones para su instalación, la gestión de paquetes, la apertura de scripts y la organi-
zación de proyectos. En el capítulo 2, los autores presentan las etapas fundamentales del 
proceso de investigación científica, haciendo especial énfasis en el diseño experimental 
y la recolección de datos. El capítulo 3 describe las principales estructuras de datos en R, 
como vectores, distintos formatos de matrices, así como las formas de almacenamiento y 
visualización de datos, incluyendo la generación de gráficos.

El capítulo 4 aborda los distintos tipos de pruebas estadísticas, tanto paramétricas 
como no paramétricas, explicando cómo seleccionar la prueba más adecuada según las 
características de los datos y las hipótesis formuladas. El capítulo 5 está dedicado al aná-
lisis de la diversidad biológica a través de los índices de diversidad alfa y beta, mientras 
que el capítulo 6 introduce otras métricas no neutrales para evaluar la biodiversidad. El 
capítulo 7 presenta las curvas de Whittaker y el análisis de escalamiento multidimensional 
no métrico (NMDS), utilizados para comprender la estructura de los ensambles biológi-
cos. Por su parte, el capítulo 8 examina distintos análisis orientados a evaluar la influencia 
de variables ambientales en la estructura de dichos ensambles. Finalmente, el capítulo 9 
ofrece una introducción al modelado de nicho ecológico (MNE) en R, como herramienta 
para entender y predecir la distribución actual de las especies. A lo largo de estos ca-
pítulos, los autores incluyen ejemplos prácticos basados en sus propias investigaciones, 
incluyendo los scripts utilizados en el entorno R para realizar los análisis, aplicar pruebas 
e interpretar resultados. «
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En los dos siguientes capítulos destacan la flexibilidad y potencia de R en el ámbito de 
la estadística ecológica, y recopilan en un solo lugar todos los scripts mencionados entre 
los capítulos 4 y 9.

Este libro, fruto de un trabajo colaborativo, no sólo comparte el conocimiento y la ex-
periencia de los autores en el uso de R, sino que también brinda a los lectores una herra-
mienta flexible y accesible para el análisis estadístico en estudios ecológicos. Los cono-
cimientos y experiencias aquí compartidos resultarán de gran utilidad para estudiantes, 
investigadores y profesionales interesados en profundizar en el uso aplicado de R. 

Miryam Pieri Damborsky

«
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Capítulo 1
Introducción al lenguaje R

Darío D. Larrea y Lucas J. Mina

R es un entorno de software y un lenguaje de programación diseñado específicamente 
para el análisis estadístico y gráfico. Fue desarrollado inicialmente por Ross Ihaka y Robert 
Gentleman en la Universidad de Auckland, Nueva Zelanda, a principios de la década de 
1990. 

El desarrollo de R tuvo como objetivo principal proporcionar una herramienta de análi-
sis estadístico de libre acceso y código abierto, dirigida a estudiantes, académicos y profe-
sionales de diversas disciplinas. Desde un enfoque general, R puede entenderse como una 
adaptación del lenguaje de programación S creado en los laboratorios Bell a finales de la 
década de 1970, con la particularidad que R es un software libre, lo que significa que está 
disponible para su uso de manera gratuita y sin restricciones. Actualmente, el desarrollo 
de R está a cargo del R Development Core Team.

Es importante destacar que, a diferencia de otros programas destinados a los análisis 
estadísticos de datos en ecología, R es un lenguaje de programación interpretado. Esto 
significa que los comandos se ejecutan línea por línea, a medida que se escriben, sin la 
necesidad de realizar una previa compilación del código, lo que ofrece mayor versatilidad 
y facilita la escritura de código y su comprensión para los usuarios.

Una de las características distintivas de R es su extensibilidad. El sistema central de 
R proporciona funcionalidades básicas para el análisis estadístico, pero también permi-
te a los usuarios y desarrolladores crear sus propias funciones y paquetes para ampliar 
su funcionalidad. Esto ha llevado a una gran cantidad de paquetes disponibles para una 
amplia gama de aplicaciones, desde el análisis de datos espaciales y la genómica hasta el 
aprendizaje automático. Al presente, R se ha convertido en una herramienta fundamen-
tal en campos como la ciencia de datos, la investigación académica, la bioinformática, la 
ecología y muchos otros, gracias a su flexibilidad, poder y la activa comunidad de usuarios 
y desarrolladores.

«
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RStudio

RStudio es un entorno de desarrollo integrado –abreviado como IDE por sus siglas en in-
glés (Integrated Development Environment)– y diseñado específicamente para trabajar 
con R. Proporciona una interfaz gráfica intuitiva que facilita la escritura, el desarrollo, la 
depuración y la ejecución de códigos en R. También permite la visualización de resultados 
y la gestión de proyectos.

La interfaz RStudio ofrece un editor de código integrado con resaltado de sintaxis, au-
tocompletado de código, sangría automática y otras características que facilita la cons-
trucción del código. Además, cuenta con un depurador de código integrado que permite 
detectar y corregir errores de forma eficiente. Asimismo, RStudio permite explorar y ad-
ministrar los archivos y directorios del sistema de archivos desde dentro del entorno de 
desarrollo, lo que facilita la gestión de proyectos y la organización de archivos de código 
y datos.

Conceptos básicos sobre R

Para aprovechar al máximo las capacidades del lenguaje de programación R, es esen-
cial comprender algunos conceptos básicos que estructuran su funcionamiento. En esta 
sección se abordarán aspectos clave como la sensibilidad entre mayúsculas y minúscu-
las, la creación y ejecución de scripts, el uso de paquetes, la estructura de datos básica 
(vectores) y la importancia de los comentarios y diagnósticos en la escritura de código. 
Además, se destacarán herramientas prácticas ofrecidas por RStudio, como la gestión de 
proyectos y la ejecución eficiente de scripts, que facilitan la organización y reproducibi-
lidad de los análisis. Estos conceptos sentarán las bases para un manejo adecuado de R, 
permitiendo desarrollar análisis robustos y bien documentados.

Sensibilidad entre mayúsculas y minúsculas. R es un lenguaje de programación case sen-
sitive, es decir en la sintaxis del código se puede diferenciar entre mayúsculas y minúscu-
las. Por esta razón, es importante tener precaución al construir scripts, ya que, para R, no 
es lo mismo escribir una variable como «Hormigas» u «hormigas». En este ejemplo, las 
dos palabras serían consideradas como dos cadenas de texto diferentes. 
Script en R. Es un archivo que contiene una serie de comandos R que pueden ser eje-
cutados secuencialmente. Los scripts son una forma eficiente de organizar y reproducir 
análisis de datos, ya que permiten documentar y automatizar tareas.
Paquetes en R (packages en inglés). Son extensiones de funcionalidad que amplían las 
capacidades del lenguaje base. Los paquetes pueden contener funciones, conjuntos de 
datos y documentación. Para utilizar un paquete en R, primero debe ser instalado en su 
sistema y luego cargado en la sesión de R con el comando library().
Ayuda en R. Todos los paquetes de R tienen asociados manuales que facilitan la escritura, 
ejecución e interpretación de resultados. Para acceder a estas ayudas, están disponibles 
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tres comandos: ?x, help(x) y help.search(x). Por ejemplo, si interesa tener más informa-
ción sobre la función vegdist, se reemplaza el nombre de la función por las x, obteniendo 
los siguientes comandos: ?vegdist, help(vegdist) y help.search(vegdist). 
Vectores en R. Son la estructura de datos más básica y fundamental en R. Son objetos 
que pueden contener datos numéricos, cadena de caracteres o datos lógicos, entre otros. 
Para realizar la asignación de un vector en R, se emplea el operador de asignación <-. Es 
recomendable, para simplificar la construcción de scripts, aprovechar el atajo de teclado 
Alt+- (signo menos) en RStudio. Generalmente, se evita usar = para asignaciones. Aun-
que el uso de = no arroja un mensaje de error, podría no realizar la asignación esperada y 
causar errores lógicos. 
Serie de comandos. R permite escribir múltiples comandos en una misma línea. Para ello, 
se utiliza el ; (punto y coma) como marcador final de comando, lo que permite separar 
cada instrucción y facilita la escritura de scripts más concisos.
Expresiones en R. Las expresiones se construyen mediante una secuencia de comandos 
encerrados entre llaves {}. Estas expresiones son fundamentales en la construcción de 
funciones, bucles y otros elementos de la programación en R.
Caracteres pares. En R existen caracteres que siempre se usan de a pares, como las comi-
llas (“”), los paréntesis () y las llaves {}. Estos símbolos son usados para representar cade-
nas de caracteres o aplicar operadores sobre más de un carácter. En RStudio siempre que 
se escriba uno de estos caracteres se insertará automáticamente el otro, lo que facilita la 
construcción de los scripts. 
Diagnóstico de script. El editor de script del RStudio revisa constantemente la arquitec-
tura del código y avisa cualquier problema que encuentre en el mismo. Cuando RStudio 
detecta un error de sintaxis, muestra, al lado del número de línea del código, una x roja y 
una línea roja sobre el código. RStudio también informa sobre otros posibles problemas 
en el código por medio de un símbolo de admiración dentro de un triángulo amarillo.
Comentarios en RStudio. El símbolo # se utiliza para hacer comentarios en el editor de 
script. En RStudio, cuando se agrega # en el editor de comandos, todo lo que esté después 
de # será tratado como un comentario y no será ejecutado como código. Esto es útil para 
documentar y organizar el código, explicar lo que hace cada parte del mismo o hacer 
anotaciones para uno mismo o para otros que lean el código en el futuro. Los comentarios 
son ignorados por R cuando ejecuta el código, por lo que no afectan el resultado del 
análisis.
Proyectos. RStudio proporciona una excelente herramienta para organizar datos de en-
trada, scripts, resultados y gráficos, asociándolos a un proyecto. Esta metodología de ges-
tión de toda la información relacionada con un estudio no sólo garantiza la seguridad de 
los datos y los resultados del análisis, sino que también facilita compartir esta información 
con otros miembros del equipo. Por este motivo, se recomienda enérgicamente realizar 
todos los análisis de un estudio asociados a un proyecto de R (para más detalles sobre 
este tema, consultar el capítulo 3).
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Ejecutar el script. La mejor forma de ejecutar un script es corriendo línea por línea, así se 
podrá identificar en qué línea se encuentran exactamente los errores que surjan y corregir-
los rápidamente. Para ello, es recomendable utilizar el atajo de teclado Ctrl+Enter. Aunque, 
si se está seguro de que todas las líneas del script funcionan correctamente, se puede usar 
el comando Ctrl+Shift+S para correr el script completo.

Convenciones de nomenclatura

En la programación, los espacios son un carácter reservado, lo que significa que no se pue-
de usar en los nombres de las variables. Por esta razón, las convenciones de nomenclatura 
son importantes en programación para escribir un código legible y mantener consistencia 
en el estilo de escritura. En R, estas convenciones también son relevantes para crear nom-
bres de variables claros y comprensibles. A continuación, se describen las convenciones 
de nomenclatura más usadas:

Camel Case. Se utiliza comúnmente para nombrar objetos o funciones. Por ejemplo, se 
podría tener una variable llamada estoEsUnaVariable.
Pascal Case. Al igual que en Camel Case, Pascal Case se usa para nombrar funciones o 
clases. Por ejemplo, se podría tener una función llamada EstoEsUnaFuncion.
Snake Case. Se utiliza principalmente para nombrar variables y columnas en data frames. 
Por ejemplo, se podría tener una variable llamada esto_es_una_variable.
Kebab Case. Aunque menos común, en R también se puede encontrar el uso de Kebab 
Case, especialmente para nombrar archivos o directorios. Por ejemplo, se podría tener un 
archivo llamado esto-es-una-variable.R.

El uso de estas convenciones no es obligatorio en R, pero es altamente recomendado para 
mejorar la legibilidad del código, tanto para otros colaboradores como para uno mismo en 
el futuro. No existe un estándar estricto en cuanto a la elección de una convención, ya que 
depende de las preferencias del equipo o del programador individual. Sin embargo, seguir 
una convención consistente en todo el código facilita su comprensión y mantenimiento.

Instalación de paquetes

Un paquete de R es una extensión que amplía las funcionalidades del lenguaje base, incor-
porando nuevas funciones, métodos de análisis, conjuntos de datos y herramientas adi-
cionales. La mayoría de estos paquetes están disponibles en el repositorio CRAN (Com-
prehensive R Archive Network). Para instalarlos, los usuarios pueden acceder a la pestaña 
«Packages» en RStudio o ejecutar directamente la función correspondiente en la línea de 
comandos de R: 

install.packages()
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Pero hay algunos casos donde se pueden encontrar por fuera de este repositorio, en Gi-
tHub, por ejemplo, en cuyo caso se debe instalarlos valiéndose de la ayuda de una librería 
llamada «Remotes». Por ejemplo, para instalar el paquete datosEcoR –donde se encuen-
tran todos los datos usados en los ejemplos de este libro, así que es muy recomendable si 
se desea experimentar con los scripts por su cuenta–, está alojado en GitHub:

install.packages(“remotes”)	 # Se instala remotes primero

remotes::install_github(“lucasjmina/datosEcoR”)

Primeros pasos en el lenguaje R

Lo primero que se debe hacer antes de empezar a usar R es instalarlo, sobre lo cual se 
hablará a continuación. Se introducirá la interfaz gráfica RStudio, que será el entorno de 
desarrollo o IDE, y se demostrará cómo instalar librerías.

Paso 1. Instalación de R
Para iniciar en la programación en R, se deberá descargar el programa del repositorio The 
Comprehensive R Archive Network (CRAN) e instalarlo en la computadora accediendo a la 
página web de CRAN (https://cran.r-project.org). En esta página se encontrarán todas 
las versiones disponibles para los sistemas operativos Linux, macOS y Windows. 

Paso 2. Instalación de RStudio
Aunque es posible programar utilizando directamente la interfaz de R instalada en el paso 
anterior, es recomendable trabajar en la construcción y ejecución del código utilizando 
RStudio. Esta plataforma proporciona numerosas ventajas adicionales que hacen que sea 
una opción indispensable para la programación en R. Además de facilitar la detección de 
posibles errores en el código, RStudio ofrece características como resaltado de sintaxis, 
autocompletado de código, administración de proyectos y entorno integrado para la ex-
ploración de datos y la visualización de resultados. Su interfaz intuitiva y su amplia gama 
de utilidades hacen que sea una herramienta invaluable en el proceso de desarrollo de 
código en R, mejorando significativamente la eficiencia y la productividad del usuario. 
Asimismo, la comunidad de RStudio es activa y ofrece una gran cantidad de recursos, tu-
toriales y paquetes adicionales que pueden enriquecer aún más la experiencia de progra-
mación en R. RStudio se puede descargar e instalar desde https://posit.co/downloads/. 

https://cran.r-project.org/
https://posit.co/downloads/
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La primera vez que se ejecute RStudio se verán en la interfaz tres paneles principales:

	• Consola: es donde se interactúa directamente con R. Se pueden escribir comandos 
en la consola y ver la salida inmediata de esos comandos. Es útil para probar rápida-
mente pequeñas porciones de código, realizar cálculos y explorar datos.

	• Entorno: el ambiente muestra los objetos (como variables, funciones, paquetes car-
gados, etc.) que están actualmente disponibles en la sesión de R. Se puede ver una 
lista de estos objetos en la pestaña «Environment» en RStudio. Esta función permite 
tener una visión general de los datos y objetos que se está utilizando en la sesión de 
R. En este panel también se puede encontrar la pestaña de historial, que muestra un 
registro de los comandos que se ejecutaron en la consola durante tu sesión actual. 
Asimismo, se accede al historial desde la pestaña «History» en RStudio. Esto puede 
ser útil para recordar comandos que se ejecutaron previamente o para volver a eje-
cutar comandos anteriores.

	• Salida: se refiere a los resultados de los comandos que se ejecutan en R. Esto puede 
incluir archivos generados, gráficos, etc. La salida se puede observar en la pestaña 
«Plots» como gráficos y «Files» para archivos generados. Existe otra información de 
salida como mensajes de error o valores de índices que se muestran típicamente en 
la consola.

Figura 1. Representación de la interfaz de RStudio. (A) Ventana de consola. (B) Ventana de entorno, 

historial y conexión. (C) Ventana de archivos, visualización de gráficos, paquetes y ayuda.

Paso 3. Creación de un script
Si se presionan las teclas Ctrl+Shift+N, se abrirá un cuarto panel de trabajo en RStudio, 
el editor de texto. En esta área es donde se puede escribir, editar y guardar los scripts de 
R. Permite escribir y organizar el código de manera más estructurada que en la consola. 
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También proporciona características como resaltado de sintaxis, autocompletado de có-
digo y sugerencias de función, lo que facilita la escritura y la lectura del código.

RStudio no guarda automáticamente todos los scripts. Por esta razón, es recomendable 
que, antes de cerrar el programa, se asegure guardar las modificaciones que se realizaron 
al código para no perderlas. Para llevar a cabo este guardado de la forma más meticulosa 
posible, es recomendable usar la función de proyectos de RStudio.

Figura 2. Representación de la interfaz de RStudio con la ventana del Editor de Scripts en actividad. En 

esta ventana se escriben las líneas de comandos que forman el código a ejecutar.

Paso 4. Instalación del paquete Tidyverse
Tidyverse es una colección de paquetes diseñados para trabajar de manera eficiente y 
coherente con datos. Estos paquetes están diseñados para abordar diferentes aspectos 
del análisis de datos, incluida la manipulación, visualización y modelado de datos. El Tidy-
verse promueve un enfoque coherente y estructurado para trabajar con datos en R, lo que 
facilita la escritura de código limpio, legible y reproducible.

Los principales paquetes que forman parte del Tidyverse incluyen:

a)	 ggplot2: para la creación de gráficos y visualizaciones de datos de alta calidad y 
flexibilidad.

b)	 dplyr: para la manipulación de datos, incluyendo filtrado, selección, transfor-
mación y agregación de datos.

c)	 tidyr: para la manipulación de la estructura de los datos, incluyendo la conversión 
entre formatos anchos y largos, y la limpieza de datos desordenados.

d)	 readr: para la importación de datos desde diferentes formatos de archivos, como 
CSV, Excel y archivos de texto plano.
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e)	 purrr: para la programación funcional en R, incluyendo la iteración sobre listas y 
vectores, y la aplicación de funciones a múltiples elementos de datos.

f)	 tibble: para la creación y manipulación de marcos de datos tibble, una forma me-
jorada y moderna de trabajar con datos tabulares en R.

A continuación, se presenta la línea de código que se tiene que escribir y ejecutar en en 
RStudio para realizar la instalación de Tidyverse en R:

install.packages(“tidyverse”)

Posteriormente, se escribe y ejecuta la función library() para cargar el paquete y poder 
usar sus funciones:

library(tidyverse)

Estos pasos instalarán y cargarán el paquete Tidyverse en la sesión de R, lo que per-
mitirá comenzar a trabajar con las herramientas y funciones que ofrece este conjunto 
de paquetes. En el capítulo 3 se detallará un poco más sobre este paquete con algunos 
ejemplos de su uso.

Paso 5. Creación de un proyecto de RStudio
Como se mencionó anteriormente, crear un proyecto en RStudio es una forma conve-
niente de organizar archivos, datos y scripts para un proyecto específico. Aquí, una guía 
detallada para crear un proyecto en RStudio:

1.	 En la barra de menú superior de RStudio hacer clic en «File» (Archivo).

2.	 En el menú desplegable que aparece al hacer clic en «File», seleccionar «New 
Project» (Nuevo Proyecto).

3.	 En el cuadro de diálogo que se abrirá, elegir el tipo de proyecto que se desea 
crear. Se puede seleccionar entre «New Directory» (Nuevo Directorio), «Ex-
isting Directory» (Directorio Existente) o «Version Control» (Control de Ver-
siones). Para crear un nuevo proyecto desde cero, elegir «New Directory» y 
luego hacer clic en «New Project».

4.	 En el nuevo cuadro de diálogo que se abrirá, seleccionar la ubicación en la com-
putadora donde se desea guardar el proyecto y darle un nombre. Es recomen-
dable elegir una ubicación específica y un nombre descriptivo para el proyecto.

5.	 En la pestaña «Create Project» (Crear Proyecto) hacer clic para crear el proyec-
to en RStudio, una vez seleccionada la ubicación y el nombre del proyecto.
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6.	 En el proyecto creado, RStudio abrirá una nueva sesión con el proyecto cargado. 

7.	 En el panel inferior derecho de RStudio, una pestaña llamada «Files» (Archi-
vos), donde se pueden explorar los archivos y carpetas asociados al proyecto. 
También en la pestaña «Environment» (Ambiente) se muestran los objetos 
que están actualmente disponibles en la sesión de R dentro del proyecto.

8.	 En una carpeta guardar todas las matrices y datos que se necesitarán para los 
análisis. Para crear una nueva carpeta dentro del proyecto en RStudio, seguir 
los pasos a continuación: 

a.	 En el panel de salida de RStudio, donde se muestra la pestaña «Files» 
(Archivos), hacer clic en la opción «New Folder» (Nueva Carpeta).

b.	 En el cuadro de diálogo que se abrirá, se solicitará un nombre para la 
nueva carpeta (se recomienda nombrar a la carpeta que contiene las 
matrices como data). 

c.	 Luego de nombrar la carpeta, presionar «Ok» para confirmar el nombre.

Estructura de las carpetas de un proyecto

Cuando se ejecuta un análisis en R, se necesita contar con datos de entrada (input data). Es-
tos datos pueden provenir de una variedad de fuentes, como archivos CSV, bases de datos, 
hojas de cálculo Excel, API web, o incluso generados internamente en R mediante funciones 
o simulaciones. A partir de esta información, los distintos análisis proporcionarán datos de 
salida (output data) en forma de resúmenes estadísticos, gráficos, tablas de resultados, ar-
chivos de texto o cualquier otra información derivada del proceso de análisis. 

Si no se mantiene una organización adecuada en la gestión y estructuración de la infor-
mación, los archivos dentro del proyecto pueden volverse caóticos y difíciles de manejar. 
Es por ello que es fundamental establecer un sistema claro y ordenado para almacenar, 
manipular y gestionar tanto los datos de entrada como los datos de salida en los proyec-
tos de R.

A continuación, se presenta una forma –aunque no la única– de organizar la informa-
ción en carpetas dentro del proyecto para mantener una estructura ordenada y fácil de 
manejar.
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Figura 3. Estructura de carpetas y archivos en un proyecto de R. La organización incluye directorios para 

datos base, salidas (output), gráficos (plots) y código fuente (src) con scripts específicos para diferentes 

tareas. Además, se muestran los archivos principales del proyecto y el archivo de proyecto de R (Rproj).

La figura 3 detalla la estructura usada en un análisis de nicho ecológico, en la raíz del 
proyecto –donde se encuentra el archivo Rproj– es donde se colocarán todos los scripts 
utilizados para el análisis, ordenándolos con números de acuerdo con el orden en el que se 
deben ejecutar. En la carpeta «data» se encontrarán todas las matrices listas para los aná-
lisis, luego de su limpieza y preparado, guardando en la subcarpeta «base» las matrices 
crudas. Las carpetas «output» y «plots» son las carpetas de salida, donde se guardarán, 
en el caso de que existan, los archivos arrojados por los análisis y los gráficos, respectiva-
mente.

Recapitulando

Este primer capítulo proporcionó una visión exhaustiva del lenguaje de programación R y 
su entorno de desarrollo, RStudio. Brindó una base sólida al ofrecer una introducción clara 
y accesible a R, un lenguaje fundamental en el análisis estadístico y la ciencia de datos. 

La explicación detallada sobre la instalación de R y RStudio, así como los conceptos bá-
sicos del lenguaje, sientan las bases para una comprensión profunda de la programación 
en R. Además, al enfatizar el uso de RStudio para facilitar la escritura y depuración del 
código, y al recomendar el uso de convenciones de nomenclatura y una estructura orde-
nada de proyectos, se resalta la importancia de una práctica organizada y meticulosa en 
la programación. 

En resumen, este enfoque proporciona herramientas esenciales para mejorar la eficien-
cia y la reproducibilidad en el análisis de datos.

«
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Capítulo 2
Diseño experimental y toma de datos

Darío D. Larrea, Matías I. Dufek y Florencia M. Monti Areco

En el proceso de investigación, el diseño experimental y la recopilación de datos son eta-
pas críticas que establecen las bases para la obtención de resultados significativos y con-
fiables. En este capítulo se exploran los fundamentos del diseño experimental –desde 
la conceptualización de variables hasta la planificación de estrategias de recolección de 
datos– y se aborda cómo diseñar experimentos que permitan identificar relaciones cau-
sales entre variables, así como la implementación de técnicas efectivas para la recopila-
ción precisa de datos. Además, servirá como guía y proporcionará los conocimientos y las 
herramientas necesarias para estructurar investigaciones sólidas y rigurosas en diversas 
disciplinas científicas.

Diseño experimental1

En el ámbito de la investigación, la experimentación sirve para identificar el efecto de un 
factor con significancia estadística en una respuesta. En este contexto, un experimento 
implica la selección de los niveles (valores) de una o más variables (factores) de entrada 
o independientes, y la observación de los valores de las variables de salida o dependien-
tes. El objetivo es comprender la relación entre estas variables para optimizar el proceso 
subyacente. En síntesis, un diseño experimental consiste en la selección de variables y los 
niveles de estas variables.

1.  Existen diversos tipos de diseño: 1) Preexperimental, aquellos en los que no se puede controlar 

completamente la variable independiente; 2) Experimental sensu stricto, aquellos en los que el investiga-

dor tiene un control total sobre la variable independiente; 3) Cuasiexperimental, aquellos en los que el 

investigador tiene un control parcial sobre la variable independiente; 4) Caso único y múltiple, aquellos 

que se utilizan en áreas como la salud pública, la educación y la psicología. «
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Para lograr un óptimo diseño experimental, se debe tener en cuenta tres cuestiones 
importantes: qué factores estudiar, cómo seleccionar los niveles de estos factores y qué 
variable dependiente seleccionar. A menudo, se tiene la libertad de seleccionar los niveles 
de los factores antes de la recopilación de datos, lo que aumenta la eficiencia del estudio.

Variables y niveles

En el diseño experimental, las variables son elementos fundamentales que se estudian y 
analizan para comprender fenómenos, procesos y relaciones dentro de un sistema en par-
ticular. Estas pueden variar en su naturaleza y pueden ser cuantitativas o cualitativas. La 
correcta identificación y distinción entre diferentes tipos de variables es crucial para el di-
seño y la interpretación adecuada de los estudios científicos. En este sentido, las variables 
dependientes e independientes son componentes esenciales en el diseño experimental. 

Variable independiente2. Es aquella que se manipula o controla deliberadamente por el 
investigador. Es el factor que se considera que tiene un efecto sobre la variable depen-
diente. Es decir, la variable independiente se utiliza para predecir o explicar cambios en 
la variable dependiente, como el nivel de contaminación en un área, la temperatura, la 
presencia de depredadores o cualquier otro factor que se sospeche influya en ciertas ca-
racterísticas del ecosistema estudiado. Por ejemplo, si se está estudiando el crecimiento 
de una población de plantas, la cantidad de agua podría ser una variable independiente 
que se modifica para observar su efecto en el crecimiento de las plantas.
Variable dependiente3. Es aquella que se observa y mide en respuesta a los cambios en la 
variable independiente. Esta variable es la que se considera el resultado, la que se espera 
que cambie en respuesta a la manipulación de la variable independiente, como ser la tasa 
de crecimiento de una población, la diversidad de especies, la densidad poblacional de una 
especie, entre otros. Siguiendo el ejemplo anterior, si la cantidad de agua es la variable 
independiente, entonces el crecimiento de las plantas sería la variable dependiente, ya 
que se espera que cambie en respuesta a diferentes cantidades de agua proporcionada.

Los niveles de una variable, por otro lado, representan los posibles valores que puede 
asumir la variable formando un continuo ordenado. El nivel o escala de medición de una 
variable determina sus propiedades, así como las operaciones matemáticas y los procedi-
mientos estadísticos que pueden aplicarse a dicha variable.

2.  Según el campo de aplicación, esta variable presenta distintos nombres, como rendimiento, variable 

de respuesta y medida de desempeño.

3.  Según el campo de aplicación, esta variable puede denominarse regresores, variable explicativa o 

variable predictora.
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Existen cuatro escalas principales de medición: nominal, ordinal, de intervalo y de ra-
zón. Las dos primeras –nominal y ordinal– se consideran escalas categóricas, mientras 
que las dos últimas –intervalo y razón– son escalas numéricas. Las escalas categóricas se 
utilizan para medir variables cualitativas, mientras que las numéricas son adecuadas para 
variables cuantitativas. Estas escalas determinan el tipo de análisis de datos y pruebas de 
hipótesis teóricas que se pueden aplicar a una variable en particular.

Escala nominal. Representa la forma más básica de medición. En esta escala, las unidades 
de estudio se agrupan en categorías según una o más características distintivas y obser-
vables. Cada categoría recibe una nomenclatura. Es importante destacar que los nombres 
utilizados en esta escala no necesariamente corresponden a términos alfabéticos o numé-
ricos, ya que también pueden ser números. En el contexto de las escalas nominales, estos 
números simplemente sirven como etiquetas o identificadores, y no tienen un significado 
cuantitativo. En otras palabras, los números en una escala nominal se utilizan para clasifi-
car, no para realizar operaciones aritméticas. Los números asignados a cada categoría no 
reflejan un orden o jerarquía, sino que actúan como códigos de identificación. En una es-
cala nominal, las observaciones no pueden ser ordenadas de menor a mayor, ya que todas 
las categorías son igualmente válidas y representan sólo diferentes valores que asume la 
variable medida. Por lo tanto, la magnitud de los números no es relevante en la medición 
nominal, lo importante es determinar si dos observaciones son idénticas o no. En resu-
men, la escala nominal se centra en la clasificación de datos, sin considerar la magnitud de 
las diferencias entre las categorías. En la escala nominal se clasifican las variables en dos o 
más categorías distintas. Cuando una variable nominal consta de únicamente dos catego-
rías, se le llama variable dicotómica. Por ejemplo, la presencia o ausencia de determinado 
carácter (presencia o ausencia de plumas), el sexo (macho o hembra) son variables dico-
tómicas comunes. Por otro lado, cuando una variable nominal cuenta con tres o más ca-
tegorías, se conoce como variable politómica. Ejemplos de este tipo de variables incluyen 
color de ojos, casta en insectos sociales, entre otros. En la práctica, los datos recopilados 
con este tipo de escalas generalmente consisten en conteos de frecuencias que muestran 
el número de eventos en cada categoría de la variable estudiada. A partir de estos datos, 
sólo se pueden calcular proporciones, porcentajes y razones.

Escala ordinal. Las observaciones pueden ser ordenadas jerárquicamente en relación con 
la característica que se está evaluando. Cuando se utilizan números, su magnitud repre-
senta el orden relativo de ese rasgo (nivel) dentro de la variable. Sin embargo, este valor 
no se puede emplear para ninguna estimación matemática. Es decir que las escalas ordi-
nales –al igual que la nominal– únicamente permiten el cálculo de proporciones, porcen-
tajes y razones, sin la posibilidad de realizar operaciones aritméticas más complejas. En 
este tipo de escalas, cada medición debe pertenecer obligatoriamente a uno de los niveles 
(categorías) de la variable. En términos generales, se puede medir en una escala ordinal 
una amplia variedad de atributos como el nivel de organización de un organismo (célula, 
tejido, sistema de órganos), el estado de desarrollo de un organismo, entre otros.
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Escala de intervalo. Son más precisas ya que, además de establecer un orden o jerarquía 
entre las categorías, los valores indican intervalos uniformes en la medición. En este tipo 
de escala se puede conocer exactamente la diferencia entre los objetos medidos, de ma-
nera que cada objeto se puede representar con un valor, y la diferencia entre los valores 
asignados refleja la diferencia entre los objetos. Las variables medidas en escalas de in-
tervalo proporcionan información sobre la magnitud de lo que se está midiendo. En esta 
escala, el cero no representa la ausencia de la característica medida, sino que es un punto 
de referencia arbitrario4 a partir del cual se establecen intervalos de igual magnitud para 
construir la escala. Algunos ejemplos de variables con escala de intervalo son la tempera-
tura, el tiempo, entre otras. Las escalas de intervalo admiten el cálculo de proporciones, 
porcentajes y razones, así como la estimación de estadísticas como la media, la mediana, 
la moda, el rango y la desviación estándar.

Escala de razón. El cero es real y absoluto, no arbitrario. Representa la ausencia completa 
de la característica en cuestión. Los números en esta escala pueden compararse como 
proporciones, permitiendo indicar cuántas veces es más grande un objeto que otro. Va-
riables como abundancia de individuos, riqueza de especies, peso, longitud y masa se 
miden en escalas de razón. Desde una perspectiva matemática, las escalas de razón per-
miten realizar todo tipo de operaciones aritméticas, obtener razones y proporciones, así 
como estimar diversos estadísticos.

Es fundamental conocer todos los niveles de todas las variables de una investigación, ya 
que esto determina el tipo de análisis estadístico adecuado. En este sentido, correlacionar 
dos variables de intervalo requiere pruebas estadísticas diferentes a las empleadas para 
correlacionar dos variables ordinales.

Según las características que presentan los valores de los niveles de estas variables, se 
pueden agrupar en cualitativas (nominales y ordinales) y cuantitativas (de intervalo y 
razón).

Variable cualitativa. También conocidas como variables categóricas, son aquellas que re-
presentan características no numéricas o cualidades de los elementos de estudio. Estas 
variables no se pueden medir directamente con números y generalmente se expresan 
mediante etiquetas o categorías.

Variable cuantitativa. Son aquellas que representan cantidades numéricas o medidas de 
los elementos de estudio. Estas variables se pueden medir y expresar con números, lo 

4.  Los puntos de referencia suelen establecerse por medio de convenciones (acuerdos de la comunidad 

científica) para la medición. Es decir que estas escalas son un acuerdo al que ha llegado la comunidad 

científica para definir estándares de registro de datos. Por esta razón, pueden variar según el sistema de 

medición utilizado (por ejemplo, la temperatura puede ser medida en grados Fahrenheit y Centígrados). 



. 24

que implica magnitudes numéricas y operaciones aritméticas significativas. Las variables 
cuantitativas se dividen en dos subtipos: discretas y continuas. Las variables discretas y 
continuas son fundamentales en el análisis de datos y la estadística. 

	• Variables discretas. Representan valores aislados y contables, generalmente ente-
ros, que no pueden subdividirse en partes más pequeñas. 

	• Variables continuas. Pueden tomar cualquier valor dentro de un rango específico y 
son infinitamente divisibles, lo que les permite tener valores intermedios. 

Mientras que las variables discretas se encuentran en escalones distintos, como el nú-
mero de hijos en una familia o la cantidad de estudiantes en una clase, las variables con-
tinuas abarcan rangos suaves de mediciones, como la altura de una persona o la tempe-
ratura. Comprender la distinción entre estos dos tipos de variables es esencial para su 
análisis adecuado y la interpretación precisa de los datos.

Toma de datos

La toma de datos es el proceso de recopilación de información relevante para un estudio. 
Este proceso puede implicar diversas técnicas, como la observación, la captura o colecta 
de ejemplares, las encuestas, las entrevistas, entre otras. La toma de datos debe ser siste-
mática y estandarizada para garantizar la fiabilidad y validez de los resultados.

La medición de variables es el proceso de cuantificar las características o propiedades 
que se están estudiando. Por esta razón, es indispensable realizar una adecuada selec-
ción de variables de estudio y comprender la naturaleza de estas para poder realizar las 
mediciones de la manera más adecuada. Por ejemplo, algunas variables cuantitativas se 
pueden medir directamente, mientras que las variables cualitativas se pueden analizar 
mediante encuestas o entrevistas. Una vez que se han recopilado los datos, estos se re-
presentan en tablas, gráficas estadísticas e incluso se pueden estimar parámetros estadís-
ticos como promedios, medias, entre otros.

Para asegurar la replicabilidad y la aplicabilidad de los resultados, las variables deben ser 
definidas con claridad, incluyendo tanto su conceptualización teórica como su operacio-
nalización práctica.

La operacionalización de variables representa un paso crítico en la investigación cien-
tífica, donde se define cómo medir una variable de manera precisa y observable. Este 
proceso esencial transforma conceptos abstractos en términos empíricos, facilitando su 
medición y análisis. Cada variable se convierte así en un indicador tangible que puede ser 
medido, recolectado, evaluado y observado. En este proceso se sustituyen variables abs-
tractas por otras más concretas que las representen de manera efectiva.

La precisión y la sistematicidad en la recolección de datos son pilares fundamentales 
para garantizar la confiabilidad de los resultados en estudios científicos. Esto se logra me-
diante una comprensión detallada de las variables en estudio, así como de las relaciones 
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entre ellas y los niveles que presentan. Para alcanzar esto, se emplean protocolos estan-
darizados que facilitan el diseño adecuado de muestreo y la recolección de datos. Cada 
disciplina científica desarrolla sus propias estrategias y diseños de investigación adapta-
dos a sus objetivos específicos. La síntesis de estos diseños y metodologías representa un 
desafío considerable que excede los objetivos de este capítulo. Sin embargo, a continua-
ción, se presentan algunos aspectos generales que se tienen que considerar durante el 
proceso de diseño experimental.

a. Conceptualización del estudio. Antes de abordar el diseño experimental, es cru-
cial entender los principios fundamentales de la temática de estudio, como las 
interacciones entre variables, las dinámicas entre ellas y las características del 
sistema que se estudiará (contexto).

b. Hipótesis claras y específicas. Un buen diseño experimental comienza con hi-
pótesis bien definidas y específicas. Una hipótesis biológica es una proposición 
general que busca explicar cómo funcionan los sistemas. Estas sólo pueden ve-
rificarse de manera indirecta, es decir, por el examen de sus predicciones. Por 
otro lado, las predicciones son los resultados esperados bajo el supuesto de que 
la hipótesis es verdadera. Comparando estos resultados esperados con los resul-
tados reales obtenidos de la investigación, se puede entonces rechazar (o no) 
la veracidad de la idea.

c. Variables de estudio. Identificar y definir las variables que se van a medir es esen-
cial. Reconociendo todos los niveles de estas, lo que permitirá comprender los 
posibles valores que pueden asumir los datos en el estudio. 

d. Selección del diseño experimental. Existen diferentes tipos de diseños experimen-
tales, como el diseño de parcelas divididas o el diseño de bloques al azar. La elec-
ción del diseño depende de las preguntas de investigación y de las condiciones 
específicas del estudio.

e. Replicación y aleatorización. La replicación de las unidades experimentales5 y la 
aleatorización de su asignación a tratamientos son fundamentales para redu-
cir la variabilidad no controlada y permitir inferencias válidas sobre los efectos 
de los tratamientos. La inclusión de réplicas es esencial para obtener resultados 
confiables y estadísticamente significativos. El número de réplicas necesarias 
depende de la variabilidad de los datos. El diseño experimental debe distribuir 

5.  En los estudios ecológicos se pueden encontrar dos o más unidades experimentales que se agrupan 

en dos categorías: a) el grupo de control (conjunto de elementos de la población que no estarán some-

tidos a las variaciones en la variable independiente); y b) los tratamientos (grupos de elementos que 

estarán sometidos a distintos valores –niveles– de la variable independiente). 
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aleatoriamente los tratamientos y las réplicas para evitar sesgos y permitir una 
evaluación objetiva de los resultados.

f. Control de variables no controlables. Es importante controlar y/o minimizar la 
influencia de variables no deseadas que puedan afectar los resultados del estu-
dio. Esto se logra con un entendimiento profundo del objeto de estudio y del 
contexto. 

g. Tamaño de la muestra6. Determinar el tamaño adecuado de la muestra es crucial 
para garantizar la detección de efectos significativos y la generalización de los 
resultados. Este aspecto es el más complejo de definir cuando uno empieza a 
adentrase en los estudios científicos, además de ser el que más especificidad 
presenta según la disciplina. Sin embargo, cada disciplina cuenta con detallados 
tratados donde definen de maneras muy precisas estos aspectos. 

Tipos de diseño experimental en ecología

El diseño experimental desempeña un papel crucial para garantizar la validez y confiabi-
lidad de los resultados obtenidos. A continuación, se desarrollan los fundamentos y apli-
caciones de tres enfoques metodológicos esenciales en el diseño experimental: el diseño 
aleatorizado, el diseño aleatorizado en bloques y el diseño factorial. Cada uno de estos 
métodos ofrece herramientas específicas para abordar diferentes desafíos en la planifica-
ción y ejecución de estudios, permitiendo a los investigadores optimizar la recolección de 
datos y la interpretación de los resultados.

Diseño aleatorizado. En este enfoque, los tratamientos se asignan aleatoriamente a las 
unidades experimentales. Las unidades experimentales pueden ser individuos, parcelas, o 
cualquier otra unidad sobre la que se esté realizando el experimento.
Diseño aleatorizado en bloques. Las unidades experimentales se agrupan en bloques ho-
mogéneos. Dentro de cada bloque, los tratamientos se asignan aleatoriamente, de modo 
que se reduzca la variabilidad dentro de cada bloque.
Diseño factorial. En este diseño se manipulan dos o más variables independientes simul-
táneamente. El diseño factorial permite evaluar cómo interactúan las variables indepen-
dientes entre sí y cómo influyen en la variable de respuesta.

6.  Las muestras en investigación se refieren a un subconjunto de objetos seleccionados de una pobla-

ción. Las muestras se utilizan en estadística cuando no es posible realizar una investigación que incluya la 

totalidad de los elementos de la población de estudio.
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Ejemplo de diseño experimental para estudios en ecología

Imagine que interesa estudiar cómo afecta la cobertura arbórea de los bosques a la comu-
nidad de hormigas en la provincia de Formosa. Se debe, en primera instancia, definir una 
hipótesis de trabajo que podría ser: «Los cambios en la cobertura arbórea afectarán a las 
comunidades de hormigas». A partir de esta hipótesis, se construye la siguiente predic-
ción7: «Al disminuir la cobertura arbórea, disminuirá la riqueza de especies de hormigas 
presentes en los bosques».

Ahora que ya se tiene construida la hipótesis y predicción, se necesita estructurar un di-
seño experimental que permita comprobar estos supuestos planteados. Para ello, prime-
ro se debe definir el área de estudio, que en este ejemplo serán los bosques de la provincia 
de Formosa. También se deben caracterizar estas áreas a partir del estado de cobertura, 
lo que se puede hacer registrando el porcentaje de cobertura arbórea de los bosques. 
Este porcentaje se podría utilizar para definir tratamientos o categorías de cobertura para 
clasificar las áreas boscosas, por ejemplo, áreas con cobertura alta (60 al 100%) y áreas 
de cobertura baja (30 al 59%). Sin embargo, aún se tiene un problema, estudiar todas las 
áreas boscosas de la provincia no es algo factible por el tiempo y recursos que requiere 
lograr tal iniciativa. Por esto, lo ideal sería realizar muestreos aleatorios que sean repre-
sentativos de los bosques de la provincia de Formosa. Además, es importante realizar 
muestreos balanceados para cada una de las categorías con el fin de poder comparar los 
distintos tratamientos.

Resuelto todo esto, surge una importante cuestión: ¿Cuántas réplicas (muestreos) se 
deberían realizar por cada categoría? Debido a la naturaleza compleja y multifactorial de 
los sistemas ecológicos, no existe una respuesta precisa para esta pregunta. Es decir, no 
existe un número único de muestras que se pueda realizar a todos los estudios ecológi-
cos, ya que el tamaño de la muestra ideal puede variar dependiendo de varios factores, 
incluyendo:

	• Objetivos del estudio: los estudios que buscan detectar efectos más puntuales (lo-
cales) pueden requerir tamaños de muestra más pequeños que aquellos que buscan 
detectar efectos grandes (regionales o continentales).

	• Variabilidad de los datos: si los datos son muy variables, se pueden necesitar tama-
ños de muestra más grandes para detectar un efecto.

	• Diseño del estudio: algunos diseños de estudio pueden requerir tamaños de muestra 
más grandes que otros. Por ejemplo, los estudios longitudinales que siguen a los 
individuos o poblaciones a lo largo del tiempo, generalmente, requieren tamaños de 
muestra más grandes. Esto es diferente de los estudios transversales, que toman el 
estado de las variables en un punto en el tiempo.

	• Recursos disponibles: el tamaño de la muestra también puede estar limitado por los 
recursos disponibles, incluyendo el tiempo, el dinero y el personal.

7.  Es importante aclarar que de una hipótesis se puede desprender más de una predicción. 
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Teniendo en cuenta esto, se puede definir un muestreo donde se recolecten muestras 
de comunidades de hormigas en diez áreas boscosas. Estas estarán distribuidas homogé-
neamente entre las categorías presentando el mismo número de réplicas para cada esta-
do de cobertura (cinco en áreas con cobertura alta y cinco en áreas con cobertura baja). 
Es importante considerar además que estas áreas tienen que ser independientes una de la 
otra en el estudio. Cada grupo taxonómico tiene estandarizada la distancia mínima8 para 
permitir independencia entre las unidades muestrales.

En este punto ya se cuenta con la estructura general del experimento, ahora queda 
definir cómo se recolectarán las muestras en campo. Esta etapa también se encuentra 
estandarizada para cada grupo de organismos. En el caso de las hormigas se utiliza el 
protocolo ALL (Ants of the Leaf Litter Protocol), desarrollado como propuesta para un 
relevamiento rápido y estandarizado de hormigas en ambientes boscosos. El esquema 
básico de muestreo con el protocolo ALL9 consiste en un transecto de 200 m de longitud, 
con 20 puntos de muestreo distribuidos a intervalos de 10 m. En cada punto de muestreo 
se aplican los siguientes métodos estandarizados:

a) colecta de un metro cuadrado (1m²) de hojarasca, que luego se tamiza para 
extraer las hormigas mediante una trampa mini-Winkler, y

b) instalación de una trampa de caída (pitfal). 

Este protocolo proporciona un marco sistemático y eficiente para la recolección de da-
tos en el campo, permitiendo la obtención de información precisa sobre la diversidad y la 
abundancia de las poblaciones de hormigas en el área de estudio.

En este punto se puede considerar que el diseño experimental ya está completo y se 
puede afirmar que se obtendrán 400 muestras. Es decir, se van a muestrear bosques de 
la provincia de Formosa distribuidos en dos categorías. Para cada categoría, se van a co-
lectar muestras en 5 áreas boscosas, y en cada área boscosa se tomarán 40 muestras 
(20 mini-Winkler + 20 pitfall). En muchos estudios ecológicos, esto es expresado en una 
fórmula que para el ejemplo de estudio sería: 

400 muestras = 2 categorías X 5 bosques X (20 mini-Winkler + 20 pitfall)

8.  Esta distancia mínima está definida para cada grupo taxonómico. En los estudios con vertebrados 

suelen ser de kilómetros, mientras que, cuando se estudian algunos grupos de insectos, la distancia mí-

nima puede ser de metros.

9.  La implementación de este protocolo en campo requiere de un período de tiempo de 48 horas y la 

participación de una a dos personas.
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Recapitulando

Este segundo capítulo exploró los pilares fundamentales del diseño experimental y la 
toma de datos, dos etapas esenciales en cualquier proceso de investigación científica. 
Desde la conceptualización de variables hasta la implementación de estrategias de re-
colección de datos, se abordó cómo estructurar investigaciones sólidas y rigurosas en 
diversos campos científicos. 

El diseño experimental, clave para identificar relaciones causales entre variables, impli-
ca la selección cuidadosa de variables y la identificación de sus niveles. Desde la variable 
independiente hasta la variable dependiente, se ha explorado cómo estas son esenciales 
para comprender fenómenos y procesos dentro de un sistema. Además, se examinaron 
las diferentes escalas de medición, desde la nominal hasta la de razón, y cómo estas de-
terminan el tipo de análisis estadístico aplicable. Comprender estas escalas es crucial para 
el análisis adecuado de los datos y la interpretación precisa de los resultados.

En cuanto a la toma de datos, se destacó la importancia de la sistematicidad y la preci-
sión en la recolección de información, así como la necesidad de definir claramente las va-
riables y comprender su operacionalización. La replicación y la aleatorización son pilares 
para reducir la variabilidad no controlada y permitir inferencias válidas sobre los efectos 
de los tratamientos.

Finalmente, se exploraron diferentes tipos de diseños experimentales en ecología, des-
de el aleatorizado hasta el factorial, y cómo estos permiten evaluar interacciones entre 
variables y su impacto en la variable de respuesta. A través de un ejemplo de diseño ex-
perimental para estudios en ecología, se ilustró cómo estructurar un experimento para 
investigar el efecto de la cobertura arbórea en la comunidad de hormigas.

En resumen, se proporcionan las bases teóricas y prácticas necesarias para diseñar e 
implementar investigaciones científicas sólidas y rigurosas, fundamentales para avanzar 
en el entendimiento de los fenómenos naturales y sus interacciones.

«
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Capítulo 3
Tipos de matrices de datos

Lucas J. Mina y Darío D. Larrea

Para realizar cualquier análisis en R, se utilizan funciones que requieren datos con estruc-
turas específicas. Por lo tanto, es necesario preparar y organizar los datos crudos para que 
sean útiles en el análisis. Esta tarea, que implica limpiar y estructurar los datos, suele ser 
la más demandante en términos de tiempo en el proceso de análisis.

Vectores, matrices, data frames y listas

A continuación, se presentarán las estructuras de datos más importantes en R, junto con 
instrucciones sobre cómo crearlas y cómo acceder a sus elementos.

Vectores
Un vector es un conjunto de objetos del mismo tipo –caracteres numéricos, lógicos, entre 
otros– concatenados con la función c(). Por ejemplo:

x <- c(3, 5, 7, 0, 8)

Esto crea un vector formado por los números 3, 5, 7, 0 y 8. Para acceder a un valor den-
tro del vector, se usa x[i] (donde i es el número de índice), por ejemplo, x[3] devolverá el 
valor en el tercer lugar, en este caso, el número 7. Cabe aclarar que R indexa los valores a 
partir del 1, a diferencia de otros lenguajes que empiezan por el 0.

Ahora, ¿qué pasaría si se quisiera crear un vector de números consecutivos? Usando la 
función anterior, la de concatenar, se tendrán que escribir todos los números de a uno, 
pero existen formas más sencillas:

«
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# Crea un vector con números del 1 al 10 

# 

x <- c(1:10) 

 

# Crea una secuencia del 1 al 10 con 5 elementos 

# 

x <- seq(1, 10, lenght = 5)

Y así como hay varias formas de crear vectores, también existen diversas maneras para 
acceder a sus valores. Algunas muy utilizadas como x[1:3] devuelve los valores en el rango 
especificado (incluyendo los extremos) o x[-i], que permite excluir el elemento ubicado 
en la posición i, por ejemplo, x[-1] mostrará todos los valores menos el primero.

A partir de aquí, se mostrarán algunas operaciones útiles que se pueden hacer con los 
vectores. Vale la pena tener en mente, a pesar de que todavía no se ha hablado de ellas, 
que todas estas también son válidas para columnas de data frames o matrices, ya que se 
puede interpretar cada columna como un vector:

# Encontrar los valores del vector_1 ausentes en el vector_2 

# 

setdiff(vector_1, vector_2) 

 

# Valores del vector_1 presentes en el vector_2 

# 

vector_1 %in% vector_2 

 

# Valores presentes en ambos vectores 

# 

intersec(vector_1, vector_2)

En caso de utilizar exclusivamente vectores numéricos, R ofrece un par de funciones 
que pueden ser muy útiles en el caso de necesitar dividir vectores en n cantidad de grupos 
o en grupos con n elementos, suponiendo que x es vector numérico:
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# Crear grupos con el mismo nro. n de elementos 

# 

cut_interval(x, lenght = n) 

 

# Crear n grupos con, en lo posible, el mismo nro. de elementos 

# 

cut_number(x, n = n)

Matrices
Las matrices son una extensión de los vectores y funcionan como vectores multidimen-
sionales y, al igual que estos, deben consistir en elementos del mismo tipo. Las matrices 
se pueden crear a través de la función matrix(). Por ejemplo:

x <- matrix(1:4 nrow = 2) 

 

# Esto crea una matriz con valores del 1 al 4 y dos filas 

 

x 

     [,1] [,2] 

[1,]   1    3 

[2,]   2    4

Lo que se observa dentro de los corchetes son los índices de las filas y columnas de la 
matriz, y es lo que se usará para acceder a los valores dentro de ella (recuérdese un poco 
el juego de la batalla naval). Suponga que quiere el valor 3 y como se ve, este se encuen-
tra en la fila 1 y columna 2, por lo tanto, tendrá que usar x[1,2]. De igual modo, es posible 
obtener todos los elementos de una fila (x[1,]) o de una columna (x[,1]), por lo que debe 
prestarse atención a la posición de la coma para cada caso.

Data frames
Los data frames son el elemento más común con el que se va a trabajar en R. Es lo más 
cercano a una tabla, como las que se podrían ver en programas como Excel. En este, cada 
campo puede tener tipos de objetos diferentes, pero cada columna debe estar compuesta 
por el mismo tipo. Por ejemplo, no se pueden mezclar tipos numéricos y caracteres en 
una misma columna, en el caso de tener números y palabras o letras en una columna, los 
números serán tratados como caracteres.

Para crearlos, se utilizará la función data.frame(), de forma muy similar a la usada para 
las matrices. En esta ocasión, se debe recordar que R rellena los data frames por columnas, 
es decir, el primer argumento que se pasa a la función corresponde a todos los valores de 
la primera columna; el segundo, a la segunda columna, y así sucesivamente. Para acceder 
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a los valores alojados en el data frame, se puede realizar como en las matrices, mediante 
índices (recuérdese x[i] o x[i,j]) o, en el caso de que las columnas tengan nombres, con la 
expresión x$nombre_columna (siendo x un data frame). Esto arroja como resultado un 
vector con todos los elementos de la columna.

Listas
Las listas son objetos en R que pueden almacenar cualquier tipo de otros objetos, como 
números, caracteres, vectores, matrices, data frames e incluso otras listas. Son especial-
mente útiles para organizar y manejar conjuntos de datos y objetos que se utilizarán pos-
teriormente. Pero también existen algunos análisis que pueden tomar listas como entrada 
en sus argumentos y, a su vez, devolver una como su resultado, como es el caso de la 
función iNext(), que se utiliza para interpolación y extrapolación de números de Hill (ver 
más detalles en el capítulo 7).

Para crear una lista, nos basta con la función list(), por ejemplo:

x <- list(subfamilia = Myrmicinae, género = Nesomyrmex, especie = 

Nesomyrmex spininodis)

En esta función, cada argumento es un elemento dentro de la lista, y los nombres antes 
del signo igual (subfamilia, género y especie) son los nombres que tendrán dentro de la 
lista. Por ende, para acceder a cualquiera de estos elementos, se puede usar x$genero, 
que nos dará como resultado Nesomyrmex. También se pueden usar índices, x[[i]], como 
se hace con otros objetos, pero aquí es necesario encerrar el índice en doble corchetes, 
por ejemplo, para obtener el género, al ser el segundo elemento deberíamos escribir: 
x[[2]].

Lectura de datos

Para empezar cualquier análisis, se deben cargar los datos necesarios en la sesión de R. 
Estos se pueden encontrar en distintos formatos. Aquí se describirán algunos de estos 
formatos y cómo leerlos dentro de R. Siempre que sea posible, se utilizará R base (las 
funciones por defecto, sin el uso de librerías), pero se verá que para algunos casos se 
deberán usar librerías.

La función genérica para leer archivos es read.table(). Existen derivados de esta fun-
ción, lo único que sucede es que cambian los argumentos por defecto, así no se tienen que 
ingresar para leer formatos en particular:

tabla <- read.table(“datos.txt”, header = FALSE, sep = “”, 

row.names, dec = “.”)



. 34

Aquí se almacenan los datos contenidos en datos.txt en la variable tabla. Los argumen-
tos que se ven son algunos de los más usados, de los disponibles en la función read.ta-
ble(), con sus valores por defecto. Es recomendable revisar los documentos de ayuda de 
R para ver todas las opciones. Esta recomendación es válida para cualquiera de las funcio-
nes mencionadas en este libro.

Ahora, se analizarán los argumentos aquí ejemplificados.

	• header: usar o no la primera fila como nombres de columna, sus valores son TRUE 
o FALSE.

	• sep: nos permite definir qué separador de datos es el usado en el archivo. Al estar va-
cío, se indica que el separado es un espacio. Si se coloca una coma entre las comillas 
(“,”), se indica que los datos están separados por comas. Existen otros separadores 
que se verán en el desarrollo de este capítulo.

	• row.names: se utiliza para asignar nombres a las filas de una tabla en R. Este pará-
metro puede ser un vector que contenga el mismo número de elementos que filas 
tenga la tabla, o un número que indique qué columna debe usarse para los nombres 
de las filas, siendo comúnmente la primera columna.

	• dec: para especificar cuál es el separador decimal usado.

Después de haber introducido una forma general de cómo leer datos en R, se analizarán 
algunos de los formatos con los que se suele trabajar y cómo importarlos a la sesión de R. 
Es importante aclarar que, excepto las hojas de cálculo, todos los archivos son de texto 
plano.

Archivos CSV

En estos archivos, los valores se encuentran separados por comas –Comma Separated 
Values (CSV)– y, para leerlos, se dispone de tres funciones (para el próximo y futuros 
ejemplos, suponer que se desean obtener nombres de columnas):

read.table(“datos.csv”, header = TRUE, sep = “,”)   #(1) 

 

read.csv(“datos.csv”, header = TRUE)                #(2) 

 

read.csv2(“datos.csv”, header = TRUE)               #(3)

Al usar la función 1, read.table(), se debe definir el separador, detalle que no es nece-
sario si se usan las funciones 2 o 3. Pero, ¿cuál es la diferencia entre estas dos últimas? La 
única diferencia es que la función 2 usa como separador decimal el punto y la función 3 
usa la coma.
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Archivos TSV

Los valores separados por tabulaciones –Tab Separated Values (TSV)– son más fáciles de 
interpretar si se abre el archivo en un editor de textos, como el bloc de notas de Windows. 
Sin embargo, ninguno de los dos formatos vistos hasta el momento es objetivamente 
mejor o peor que el otro. Aclarado esto, se verá que, para leerlos, otra vez se tienen tres 
posibilidades similares a las vistas anteriormente:

read.table(“datos.csv”, header = TRUE, sep = “\t”)   #(1) 

 

read.delim(“datos.csv”, header = TRUE)               #(2) 

 

read.delim2(“datos.csv”, header = TRUE)              #(3)

Al principio se utiliza read.table() (1) y se define el separador manualmente. En este 
caso se indican tabulaciones (\t). La diferencia entra la opción 2 y 3 es el separador deci-
mal que usan (la función 2 usa como separador decimal el punto y la función 3, la coma).

Hojas de cálculo

Hasta ahora, se ha visto un par de formatos en texto plano con los que lidiar sin problemas 
usando R base. Sin embargo, también se pueden encontrar datos o bases de datos alma-
cenadas en hojas de cálculo creadas con programas como Excel. Para leer estos archivos, 
se utilizará una librería llamada readxl1, disponible en CRAN. Una vez instalada esta libre-
ría, se procede a cargar datos desde una hoja de cálculo:

library(readxl) 

 

read_excel(“datos.xlsx”, sheet = 1)     #(1) 

 

excel_sheets(“datos.xls”)               #(2)

Con la línea de código número 1 se lee la primera hoja del archivo de Excel. El argumento 
sheet es el que permite elegir cuál de las hojas se desea leer. Para esto, se puede brindar 
un número o el nombre de la hoja en caso de tenerlo. Con la función número 2 se enume-
ran las hojas que contiene el archivo Excel. Como es el caso de otras funciones, aquí se 
muestra sólo una parte de las opciones disponibles.

1.  Se puede instalar de forma independiente o como parte de Tidyverse. Es recomendable la segunda 

opción, ya que se utilizará más adelante.
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Hasta ahora se han desarrollado algunas formas de importar datos a la sesión de R, ba-
sados en los formatos más utilizados en ecología. Sin embargo, existen aún más formatos 
y funciones disponibles. Usando otras librerías es posible incluso leer datos directamente 
de servicios como Drive de Google o OneDrive de Microsoft.

Trabajar con los datos	  	  	  	  	  	

Como se mencionó al inicio del capítulo, los análisis en R requieren datos con una estruc-
tura particular, por lo tanto, en esta sección se verá cómo preparar los datos importados 
para los distintos análisis.

Exploración. Una vez cargados los datos dentro de R, es posible que sea de interés explo-
rarlos, entonces se tomará como ejemplo una tabla de variables ambientales:

ambiente <- read.csv(“data/ambiente.csv”, header = TRUE)

Entonces: head(ambiente) permite ver las primeras filas de la tabla, aunque tails(am-
biente) es similar, pero nos muestra las últimas filas.

Si se quiere saber cuántas localidades se muestrearon, se puede usar:

lenght(ambiente$localidad) 

[1] 9

Con summary(ambiente) se obtienen algunas medidas resumen para cada columna. La 
función View(ambiente) permite ver los datos completos como una tabla.

Manipulación de los datos. No se refiere a alterar los datos en sí, sino a modificar las tablas 
donde estos se encuentran para que adquieran el formato apropiado para su uso. 
Agregar columnas y combinar tablas. Estas son operaciones comunes y sencillas de reali-
zar en R. Para agregar una columna a una tabla existente, basta simplemente con colocar 
el nombre de la variable donde se encuentra la tabla seguida del signo $ y el nombre de la 
columna nueva, por ejemplo:

tabla$suma <- rowSums(tabla)

Esto agrega la columna «suma» a la tabla con los valores de la sumatoria de cada fila. 
Es necesario aclarar que, para evitar errores, la cantidad de elementos que se agregan a la 
columna nueva deben ser iguales al número de filas que posee la tabla original.

Para combinar tablas, se puede hacer por columnas, colocando una tabla al lado de la 
otra, o por filas, colocándolas una debajo de la otra:
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combinacion_columnas <- cbind(tabla_1, tabla_2) 

 

combinacion_filas <- rbind(tabla_1, tabla_2)

En ambos casos, la cantidad de tablas que se pueden combinar utilizando las funciones 
cbind y rbind es ilimitada. Sin embargo, para evitar que estas funciones arrojen algún 
error, es necesario que todas las tablas tengan el mismo número de filas cuando se usa 
cbind y el mismo número de columnas cuando se usa rbind.

Reemplazar datos. Algunas veces es necesario reemplazar los datos de una tabla. 
Por ejemplo, en el caso de las tablas de incidencia para algunos cálculos de diver-
sidad, donde se tienen que cambiar todos los valores numéricos por ceros y unos 
(presencia o ausencia). Para esto se presentan dos formas:

tabla[is.na(tabla)] <- 0 

 

#Opción 1 

tabla[tabla > 0] <- 1 

 

#Opción 2 

tabla_incidencia <- ifelse(tabla > 0, 1, 0)

Primero se asegura que la tabla no tenga NA’s (en R se le asigna el valor NA a las celdas 
que no contienen ningún valor), reemplazándolo por cero. Luego, con la opción 1 se re-
emplazan todos los valores mayores a cero por uno sobrescribiendo la tabla original. En la 
opción 2 se crea una tabla nueva llamada tabla_incidencia. En este caso se utiliza un con-
dicional para reemplazar todos los valores mayores a cero por uno. Se recomienda utilizar 
la segunda opción, ya que crear una tabla nueva facilita encontrar errores y corregirlos.

Anteriormente, se vio cómo reemplazar los valores NA por ceros. Sin embargo, en al-
gunas ocasiones es necesario eliminar todas las filas que contengan algún valor NA. Por 
ejemplo, si se tiene una base de datos con todos los registros, pero se desea trabajar 
únicamente con aquellos que tienen una clasificación de estado de conservación, se eli-
minarán las filas con NA en esas celdas, ya que sólo las filas con una clasificación válida 
tendrán un valor en esas celdas:

na.omit(tabla)

Esto elimina la fila sin importar en qué columna se encuentra el valor NA. Algunas veces 
se quiere eliminar la fila solamente si el valor NA se encuentra en una columna específica, 
teniendo en cuenta el ejemplo anterior, se eliminarían los NA’s de la columna estado_de_
conservacion:
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tabla[!is.na(tabla$estado_de_conservacion),]

En la expresión anterior, la función is.na() por sí sola selecciona todas las filas que ten-
gan NA en la columna estado_de_conservacion. Pero al estar por delante un signo de 
exclamación (!), indica que es la operación opuesta, por lo tanto, se están seleccionando 
todas las filas que NO tengan NA en la mencionada columna.

Tidyverse

Tras una breve introducción en el primer capítulo sobre esta colección de paquetes, un 
análisis más detallado de su funcionamiento.

El uso más común que se le da a este conjunto de paquetes es para preparar los datos 
crudos, desde su limpieza y filtrado hasta el pivoteo de tablas, dejándolos listos para el 
análisis. A continuación, se muestra un ejemplo, realizando una tabla de abundancias a 
partir de una base de datos con registros de hormigas. En el siguiente fragmento se obser-
vará el uso de %>%, este es propio de uno de los paquetes parte de Tidyverse (magrittr), 
es el operador de pipe (o tubería) y permite realizar una secuencia de acciones donde el 
resultado de una es la entrada de la siguiente. A partir de la versión 4.1.0 de R, también 
está disponible una pipe nativa con la combinación |>, esta tiene algunas limitaciones con 
respecto a la mostrada anteriormente, pero usarla permite escribir código con menor 
cantidad de dependencias en librerías externas:

library(tidyverse) 

library(readxl) 

 

raw_data <- read_excel(base_datos, sheet = 1) 

 

abundancia_ec <- raw_data %>% 

  filter(estado_conservacion != “NA”) %>% 

  group_by(estado_conservacion, especie) %>% 

  summarise(ABUNDANCIA = sum(abundancia)) %>% 

  pivot_wider( 

    names_from = estado_conservacion, 

    values_from = ABUNDANCIA, 

    values_fill = 0 

  )

Primero se empieza por leer la base de datos y almacenarla en raw_data. Luego, con la 
función filter(), se seleccionan todas las filas que NO tengan NA como valor en la columna 
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estado_conservación (por eso el !=, que indica negación). A continuación, se agrupan los 
datos por estado de conservación y especie con la función group_by(), colocando próxi-
mos unos a los otros los elementos con un mismo valor en estas columnas. Con la función 
summarise() se realiza la sumatoria de las filas de abundancia que tienen el mismo estado 
de conservación y especie, y se lo almacena en una nueva fila llamada ABUNDANCIA. Esta 
función también genera que se eliminen todas las columnas que no fueron nombradas 
en la función group_by(). En este punto, la tabla se vería así (se muestra solamente la 
primera parte):

Especie ABUNDANCIA

Acanthoponera mucronata 3

Acromyrmex sp1 18

Acromyrmex sp2 2

Acromyrmex sp3 1

Anochetus cf. Neglectus 1

... ...

Por último, con la función pivot_wider(), se pivota la tabla de forma que el estado de 
conservación quede como nombre de columnas. Cada fila corresponde a una especie, y 
la tabla se rellena con los valores de la columna ABUNDANCIA (es decir, la sumatoria). 
Con el argumento values_fill, se especifica qué valor se desea para las celdas vacías, en 
este caso, se selecciona cero. El resultado es la siguiente tabla (se muestra un fragmento):

Especie ECB ECD ECI

Acanthoponera mucronata 3 0 24

Acromyrmex sp1 18 17 29

Acromyrmex sp2 2 0 0

Acromyrmex sp3 1 0 0

Anochetus cf. Neglectus 1 0 0

... ... ... ...

Cuando usamos Tidyverse, se está creando un tipo especial de tabla, propio de Tidyver-
se, llamado tibble. En muchos casos, principalmente en funciones de la librería vegan, no 
es posible usar estas tablas para los análisis, por lo que es necesario transformarlas a data 
frames. Para ello, se puede usar la función as.data.frame() o añadir al final del código an-
terior column_to_rownames(), una función que permite elegir una columna como nom-
bres de fila (lo que transforma el tibble en un data frame, ya que los primeros no tienen 
nombres de fila). En este caso, el código quedaría de la siguiente manera:
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library(tidyverse) 

library(readxl) 

 

raw_data <- read_excel(base_datos, sheet = 1) 

 

abundancia_ec <- raw_data %>% 

  filter(estado_conservacion != “NA”) %>% 

  group_by(estado_conservacion, especie) %>% 

  summarise(ABUNDANCIA = sum(abundancia)) %>% 

  pivot_wider( 

    names_from = estado_conservacion, 

    values_from = ABUNDANCIA, 

    values_fill = 0 

  ) %>% 

  column_to_rownames(“especie”)

Aquí se usan los valores de columna especie como nombres de fila.

Formatos de matrices de datos

A continuación, se describirán brevemente algunos de los tipos de tablas usadas para los 
análisis presentados en este libro. 

Matriz de abundancia
Como su nombre lo indica, cada valor contenido en la tabla corresponde a la cantidad 
de individuos capturados. Existen dos tipos que dependen de cómo se ubiquen las filas y 
columnas.

•	 Tipo 1 (especies por sitio): en esta tabla, cada columna corresponde a una 
especie y cada fila a un sitio. Los sitios pueden ser lugares geográficos, tran-
sectos, tipo de ambiente, etc. (esto también aplica para todas las tablas si-
guientes). Es frecuentemente utilizada en la gran mayoría de análisis.

Especie 1 Especie 2 Especie 3 Especie n

Sitio 1

Sitio 2

Sitio 3

Sitio n
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•	 Tipo 2 (sitios por especies): en este caso, en las columnas se ubican los sitios 
y en las filas las especies. Principalmente utilizada en análisis con el paquete 

iNext.

Sitio 1 Sitio 2 Sitio 3 Sitio n

Especie 1

Especie 2

Especie 3

Especie n

Matriz de incidencia
Se obtienen generalmente a partir de las matrices de abundancia. Como se describió ante-
riormente, suelen ser usadas para análisis de diversidad beta. Aquí los valores representados 
son de presencia/ausencia, expresados con 1 (unos) y 0 (ceros), respectivamente. En estas 
tablas también se pueden tener los dos tipos descritos para las matrices de abundancia.

Matriz ambiental
Las filas corresponden a cada sitio y en las columnas se encuentran variables ambientales 
(tipo de ambiente, tratamiento, temperatura, humedad, etc.).

Temperatura Humedad Tratamiento

Sitio 1

Sitio 2

Sitio 3

Sitio n

Matriz taxonómica
Es usada en los análisis de diversidad taxonómica y consiste en una tabla en la que cada 
columna representa una jerarquía taxonómica, los nombres de las filas corresponden a 
un ID que actúa como identificador de cada especie. Este ID debe ser el mismo de los 
nombres de las columnas en la matriz de abundancia de tipo 1. 
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Género Tribu Subfamilia

ID 1

ID 2

ID n

Matriz de rasgos
Utilizada para los análisis de diversidad funcional, en ella cada fila corresponde a una es-
pecie y cada columna a un rasgo funcional, que pueden ser continuos (como medidas 
morfométricas) o discretos (características, por ejemplo).

Rasgo 1 Rasgo 2 Rasgo 3 Rasgo n

Especie 1

Especie 2

Especie 3

Especie n

Matriz geográfica
Consiste en una tabla donde las filas representan a cada sitio en estudio y las columnas a 
la longitud y latitud, en ese orden. Usada en análisis de Mantel.

Longitud Latitud

Sitio 1

Sitio 2

Sitio n

Matriz para modelos
Usada para pruebas de hipótesis y modelos lineales. En esta tabla también están los si-
tios en las filas, pero las columnas serán cada variable que se quiere usar para el modela-
do, por ejemplo, riqueza, diversidad alfa, ambiente, tratamiento, etc.
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Tratamiento Riqueza Shannon

Sitio 1

Sitio 2

Sitio 3

Sitio n

Guardado de datos

Hasta ahora se han visto algunos tipos de objetos para almacenar datos, así como cargar y 
manipular los datos para su uso. Pero muchas veces es conveniente guardar estos datos ya 
limpios para poder usarlos en distintos scripts, sin tener que hacer todo el proceso desde 
cero. Para esto, R consta de algunas funciones que permiten guardar datos en distintos 
formatos como CSV o RDS. Aquí, se han explorado algunos tipos de objetos para almace-
nar datos, así como métodos para cargar y manipular datos para su uso. 

El formato más común para guardar las tablas ya limpias es CSV. Este, al ser un formato 
en texto plano y de amplio uso, asegura una gran compatibilidad al momento de usarlo 
en otros scripts, incluso por fuera de R. Para hacerlo, se utiliza la función write.csv(). Su-
póngase que se desea guardar la tabla abundancia_ec que se limpió anteriormente con el 
nombre abundancia.csv dentro de la carpeta data:

Write.csv(abundancia_ec, file = “data/abundancia.csv”)

Cuando se habla de archivos CSV, el separador en estos es la coma, pero ¿qué pasa si se 
quiere usar otro separador al guardar el archivo? Para esto, se puede usar la función write.
table(), que posee un argumento (sep) que permite elegir el separador. Por ejemplo, si se 
quiere guardar la misma tabla de antes, pero usando tabulaciones como separador:

Write.table(abundancia_ec, file = “data/abundancia.tsv”, sep = 

“\t”)

En cuanto a los archivos RDS, corresponden a un formato propio de R, por lo que su uso 
puede dificultar el uso de estos datos en otros softwares de análisis, pero posee algunas 
ventajas frente a los formatos de texto plano:
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•	 Suelen ser más livianos debido a la compresión que usa R en su creación.

•	 Pueden guardar cualquier tipo de objeto de R, sean vectores, tablas, listas, 
gráficos, etc.

•	 Almacenan todos los atributos del objeto a la hora de su creación, aquellos 
atributos que no se almacenan en formatos como CSV.

Por ejemplo, para guardar nuestra tabla de abundancias como RDS basta con ejecutar:

saveRDS(abundancia_ec, file = “data/abundancia.rds”)

Crear y manipular bases de datos

Estas recomendaciones tienen como finalidad facilitar el uso de los datos dentro de R.

•	 Evitar el uso de espacios en nombres de filas y columnas, nombrarlas usando 
CamelCase (NombreColumna) o snake_case (nombre_columna), por ejemplo.

•	 Evitar, mientras sea posible, caracteres especiales o acentos. Esto impide erro-
res en el tipeo de los nombres, ya que R no tiene problemas a la hora de usar 
acentos.

•	 Usar nombres de filas o columnas lo más descriptivos posibles, evitando nom-
bres como columna_1.

•	 Establecer reglas al crear una base de datos, es importante para el formato de 
horas y fechas, y apegarse a ellos. Tener distintos formatos de fecha u hora 
dentro de una misma tabla es una gran fuente de errores.

•	 Evitar colocar las unidades junto a los valores, si se tienen valores numéricos 
con alguna unidad de medida. En caso de ser necesario, aclarar la unidad de 
medida, es mejor colocarla en el nombre de la columna.

•	 Evitar guardarlos en la ubicación donde se encuentran los datos crudos, al 
preparar los datos para su uso en los análisis.

Recapitulando

Este capítulo ofreció una guía integral sobre los tipos de matrices de datos en R, funda-
mentales para el análisis estadístico y la manipulación de datos en este entorno, una visión 
detallada sobre las estructuras de datos más utilizadas en R, incluyendo vectores, matrices, 
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data frames y listas. Cada una de estas estructuras tiene su propio papel y utilidad en el 
manejo y análisis de datos.

Se adentró asimismo en el uso de vectores, que son la base de muchas otras estruc-
turas en R, en cómo crear y acceder a ellos, y en cómo realizar operaciones básicas que 
son esenciales para manipular datos. Posteriormente, exploró las matrices que amplían el 
concepto de vectores a múltiples dimensiones y permitió una organización más compleja 
de los datos.

También detalló el uso de data frames, que se asemejan a tablas en programas como 
Excel, y cómo trabajar con ellos para manejar datos heterogéneos. A través de ejemplos 
prácticos, se crearon data frames, se accedió a sus elementos y se los pudo manipular. Las 
listas, por otro lado, se presentaron como una estructura flexible que puede almacenar 
una variedad de objetos, desde vectores hasta otros data frames.

Además, se abordó la lectura y escritura de datos en diferentes formatos, como CSV, 
TSV y hojas de cálculo, y cómo manejar estos datos una vez importados en R. Se aprendió 
sobre funciones clave para la limpieza, exploración y manipulación de datos, así como 
recomendaciones prácticas para evitar errores comunes y asegurar la integridad de los 
datos.

En conjunto, este capítulo brinda las herramientas y conocimientos necesarios para 
preparar los datos de manera efectiva para el análisis, estableciendo una base sólida para 
el trabajo en R.

«
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Capítulo 4
Pruebas de hipótesis estadísticas en 
estudios ecológicos

Darío D. Larrea y Lucas J. Mina

Las pruebas de hipótesis estadísticas son métodos utilizados en la estadística inferencial 
para tomar decisiones sobre las características de una población, utilizando información 
obtenida de una muestra de esa población. Estas pruebas permiten evaluar si los datos 
proporcionan evidencia suficiente para rechazar o no una afirmación acerca de una ca-
racterística o relación en la población. Es decir, estas hipótesis estadísticas son en realidad 
predicciones biológicas propiamente dichas y no hipótesis biológicas.

Antes de continuar, es crucial abordar los errores de tipo I y tipo II, ya que constituyen 
conceptos esenciales en el ámbito de las pruebas de hipótesis estadísticas. Estos errores 
son fundamentales para comprender la interpretación de los resultados y la validez de las 
conclusiones extraídas de cualquier análisis estadístico. 

En el primer caso, un error de tipo I (falso positivo) ocurre cuando se rechaza incorrec-
tamente una hipótesis nula verdadera. Es decir, concluye que hay evidencia suficiente 
para rechazar la hipótesis nula cuando en realidad es verdadera. La probabilidad de co-
meter este error es alfa (α), que es el nivel de significancia que determinamos para la 
prueba de hipótesis. Por ejemplo, supóngase que se realiza un estudio para investigar si 
una especie de planta tiene un impacto negativo en el ecosistema local. La hipótesis nula 
(H0) sería que la planta no afecta negativamente al ecosistema. Si se comete un error de 
tipo I, se concluye que la planta sí tiene un impacto negativo (rechazando H0) cuando en 
realidad no es así.

Por otro lado, un error de tipo II (falso negativo) ocurre cuando se acepta incorrecta-
mente una hipótesis nula falsa. Es decir, concluye que no hay suficiente evidencia para 
rechazar la hipótesis nula cuando en realidad es falsa. La probabilidad de cometer este 
error es beta (β), relacionada con la potencia de la prueba y se reduce al aumentar el ta-
maño del muestreo. Continuando con el ejemplo anterior, si la hipótesis nula (H0) es que 
la planta no tiene un impacto negativo en el ecosistema local, un error de tipo II ocurriría 
si se concluye que la planta no tiene un impacto negativo (no se rechaza H0) cuando en 
realidad sí lo tiene, en otros términos, la planta sí afecta negativamente al ecosistema 
local. «
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En síntesis, el error de tipo I implica rechazar incorrectamente una hipótesis verdadera, 
mientras que el error de tipo II implica no rechazar incorrectamente una hipótesis falsa. 
Ambos tipos de error son importantes al interpretar los resultados de las pruebas de hi-
pótesis estadísticas.

Proceso de prueba de hipótesis

Teniendo claro en qué consisten las pruebas de hipótesis y cuáles son los posibles errores 
a cometer, ahora veremos una enumeración de los pasos a seguir para llevarlas a cabo 
dentro de R.

1.	 Formulación de hipótesis estadística: se plantea una hipótesis nula (H0) y una 
hipótesis alternativa (H1). La hipótesis nula representa la afirmación inicial 
que se desea poner a prueba, mientras que la hipótesis alternativa sugiere una 
posible alternativa a la hipótesis nula.

2.	 Selección de un nivel de significación: se elige un nivel de significación (α), que 
es la probabilidad máxima de cometer un error tipo I al rechazar incorrecta-
mente la hipótesis nula. El valor típicamente utilizado es 0.05.

3.	 Elección de la prueba estadística adecuada: se selecciona una prueba estadísti-
ca apropiada según el tipo de datos y la pregunta de investigación. Por ejemplo, 
ANOVA, Kruskal-Wallis, entre otros.

4.	 Cálculo del estadístico de prueba: se calcula un estadístico de prueba a partir de 
los datos de la muestra.

5.	 Toma de decisión: se compara el valor del estadístico de prueba con un valor 
crítico determinado a partir de la distribución de probabilidad bajo la hipótesis 
nula. Si el valor del estadístico de prueba cae en la región de rechazo (área de 
cola) definida por el nivel de significación, se rechaza la hipótesis nula en favor 
de la hipótesis alternativa. De lo contrario, no se rechaza la hipótesis nula.

6.	 Interpretación de los resultados: se interpreta el resultado de la prueba en el 
contexto del problema de investigación, teniendo en cuenta las implicaciones 
prácticas y teóricas.

Tipos de pruebas de hipótesis estadísticas

Las pruebas de hipótesis estadísticas se pueden clasificar en dos categorías principales: pa-
ramétricas y no paramétricas. La diferencia fundamental entre ellas radica en las suposicio-
nes que hacen sobre la distribución subyacente de los datos.
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Pruebas paramétricas
Estas pruebas suponen que los datos provienen de una población con una distribución 
normal (Normalidad) y que la variabilidad de los errores debe ser constante en todos los 
niveles de la variable independiente (Homocedasticidad).

Para verificar si los datos cumplen con estos supuestos, se han desarrollado varios aná-
lisis específicos. Para evaluar la normalidad de los datos, se puede emplear la prueba de 
Shapiro-Wilk o la prueba de Kolmogorov-Smirnov. Estas pruebas permiten determinar si 
los datos siguen una distribución normal. Por otro lado, para evaluar la homogeneidad de 
varianza entre grupos, se pueden aplicar pruebas como la prueba de Levene o la prueba 
de Bartlett. Estas pruebas ayudan a verificar si las varianzas de los datos son consistentes 
en todos los grupos que se están comparando. Si se cumplen estos supuestos, se pueden 
realizar las pruebas paramétricas. 

Algunas de las pruebas más comunes usadas en ecología son:

Prueba t de Student
Es una herramienta estadística fundamental para comparar las medias de dos grupos 
independientes o para comparar la media de una muestra con una media poblacional 
conocida cuando la desviación estándar de la población es desconocida. La prueba t de 
Student se basa en la distribución t de Student, que es una distribución de probabilidad 
que tiene en cuenta la variabilidad de las muestras pequeñas. Esta distribución es similar 
a la distribución normal, pero tiene colas más anchas, lo que la hace adecuada para mues-
tras pequeñas.

La prueba t de Student tiene estadísticos importantes para la interpretación, t-value, 
t-critical y p-value.

•	 Estadística t (t-value): se calcula como la diferencia entre las medias de dos 
grupos (o entre la media de una muestra y una media poblacional conocida) 
dividida por una medida de variabilidad, como el error estándar.

•	 Valor crítico de la distribución t (t-critical): es el valor de la distribución t que 
se utiliza como punto de corte para determinar si se rechaza o no la hipótesis 
nula. Este valor depende del nivel de significancia (generalmente 0.05 o 0.01) 
y los grados de libertad, que a su vez dependen del tamaño de las muestras.

•	 Valor p (p-value): es la probabilidad de obtener una estadística t igual o más 
extrema que la observada en la muestra si la hipótesis nula es cierta. Un valor p 
bajo indica que hay evidencia suficiente para rechazar la hipótesis nula. El valor 
p se compara con el nivel de significancia elegido (generalmente 0.05) para 
tomar una decisión sobre la hipótesis nula.

Toma de decisión. Si la estadística t calculada es mayor que el valor crítico (o si el valor p 
es menor que el nivel de significancia), se rechaza la hipótesis nula, lo que indica que hay 
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una diferencia significativa entre las medias de los grupos. Es importante tener en cuenta 
que la prueba t asume que los datos son aproximadamente normales y que las muestras 
son aleatorias e independientes. Si estos supuestos no se cumplen, pueden surgir proble-
mas en la interpretación de los resultados.

Análisis de Varianza (ANOVA)
Es utilizada para comparar las medias de tres o más grupos independientes. Su objetivo 
principal es determinar si al menos uno de los grupos difiere significativamente de los de-
más en términos de la variable que se está estudiando. El ANOVA se basa en la compara-
ción de las variaciones entre grupos (variabilidad intergrupal), con las variaciones dentro 
de los grupos (variabilidad intragrupal). Si la variabilidad entre los grupos es significativa-
mente mayor que la variabilidad dentro de los grupos, esto sugiere que al menos uno de 
los grupos es estadísticamente diferente de los demás.

Hay diferentes tipos de ANOVA, dependiendo del diseño experimental y el número de 
factores que se están estudiando:

•	 ANOVA de un factor: se utiliza cuando se compara la media de una variable 
entre tres o más grupos independientes. Por ejemplo, se podría utilizar para 
comparar la diversidad de especies en diferentes tipos de hábitats (bosque, 
pradera, desierto).

•	 ANOVA de dos factores: se utiliza cuando se tienen dos variables independien-
tes (factores) y se desea evaluar su efecto en una variable dependiente. Por 
ejemplo, se podría utilizar para estudiar cómo la temperatura (factor 1) y la 
dieta (factor 2) afectan la tasa de crecimiento (variable dependiente) de una 
especie de insecto.

•	 ANOVA de medidas repetidas: se utiliza cuando las mismas unidades experi-
mentales son medidas en diferentes momentos o bajo diferentes condiciones. 
Por ejemplo, se podría utilizar para comparar la tasa de supervivencia de una 
misma población de animales antes y después de un evento climático extremo.

El ANOVA produce dos estadísticas principales: F-value y p-value. 

•	 F-value: compara la variabilidad entre grupos con la variabilidad dentro de los 
grupos. Si el valor F es grande, indica que la variación entre las medias de los 
grupos es significativamente mayor que la variación dentro de los grupos, lo 
que sugiere que al menos un grupo es estadísticamente diferente de los demás.

•	 p-value: es la probabilidad de obtener una estadística F igual o más extrema 
que la observada en la muestra, si la hipótesis nula es cierta. En el contexto del 
ANOVA, el valor p indica la probabilidad de que las diferencias entre las medias 
de los grupos sean debidas únicamente al azar.
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Toma de decisión. Si el valor p es menor que un nivel de significancia predefinido (gene-
ralmente 0.05), se rechaza la hipótesis nula y se concluye que existen diferencias signi-
ficativas entre los grupos. Es importante tener en cuenta que el ANOVA sólo determina 
si existen diferencias significativas entre los grupos, pero no identifica específicamente 
cuáles grupos son diferentes entre sí cuando se trabaja con más de dos grupos. En estos 
casos, al obtener un resultado significativo en el ANOVA, se pueden realizar pruebas de 
comparaciones múltiples, como la prueba de Tukey o la prueba de Scheffé. Estas pruebas 
permiten realizar comparaciones entre todos los pares de grupos para identificar cuáles 
presentan diferencias estadísticamente significativas, brindando una comprensión más 
detallada de las relaciones entre los grupos.

Regresión lineal 
Utilizada para determinar si existe una relación significativa entre una variable depen-
diente y una o más variables independientes. Su objetivo principal es entender y predecir 
cómo cambia una variable dependiente en función de una o más variables independien-
tes. El modelo de regresión lineal asume que la relación entre las variables es lineal, lo que 
significa que los cambios en la variable dependiente están linealmente relacionados con 
los cambios en las variables independientes.

Según el número de variables independientes usadas, se pueden clasificar las regresio-
nes lineales en dos tipos:

•	 Regresión lineal simple: se emplea cuando solo hay una variable independiente 
que influye en la variable dependiente.

•	 Regresión lineal múltiple: se utiliza cuando hay dos o más variables indepen-
dientes que afectan a la variable dependiente.

La regresión lineal tiene cinco estadísticas: coeficiente de regresión, coeficiente de de-
terminación, error estándar de la estimación, F-value y p-value.

•	 Coeficientes de regresión (β): representan la magnitud y dirección de la rela-
ción entre las variables independientes y la variable dependiente en el modelo 
de regresión lineal. Cada coeficiente indica cuánto cambia la variable depen-
diente por cada unidad de cambio en la variable independiente correspon-
diente, manteniendo constantes las demás variables. Un coeficiente positivo 
(β>0) indica que a medida que aumenta el valor de la variable independiente, 
también aumenta el valor de la variable dependiente. Por el contrario, un coe-
ficiente negativo (β<0) indica que a medida que aumenta el valor de la varia-
ble independiente, el valor de la variable dependiente disminuye.

•	 Coeficiente de determinación (R²): es una medida de la proporción de la varia-
bilidad de la variable dependiente que es explicada por el modelo de regresión. 
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Representa la bondad de ajuste del modelo y cuánto mejor se ajustan los datos 
observados a la línea de regresión. Este coeficiente varía entre 0 a 1, valores 
cercanos a 1 indican que el modelo explica una gran parte de la variabilidad de 
la variable dependiente, lo que sugiere un buen ajuste del modelo.

•	 Error Estándar de la Estimación (SEE): mide la variabilidad no explicada por el 
modelo y se utiliza para evaluar la precisión de las predicciones.

•	 Estadístico F (F-value): se utiliza para evaluar la significancia global del mode-
lo de regresión. Compara la variabilidad explicada por el modelo (debido a la 
regresión) con la variabilidad no explicada (debido al error).

•	 Estadístico p (p-value): el valor p asociado al estadístico F indica la probabili-
dad de obtener un valor F igual o más extremo que el observado, si la hipótesis 
nula de que todos los coeficientes de regresión son cero es cierta. 

Toma de decisión. Un valor p bajo (generalmente <0.05) sugiere que el modelo de regre-
sión es significativo y que al menos una de las variables independientes está relacionada 
de manera significativa con la variable dependiente.

Análisis Multivariante de Varianza (MANOVA) 
El Análisis Multivariante de Varianza es una técnica estadística utilizada para analizar la 
relación entre múltiples variables dependientes continuas y una o más variables inde-
pendientes categóricas. El MANOVA produce varios estadísticos que ayudan a evaluar la 
significancia global del modelo y a comprender la naturaleza de las diferencias entre los 
grupos en las variables dependientes.

•	 Estadístico F multivariado: es un estadístico que evalúa la diferencia global en-
tre los grupos en todas las variables dependientes simultáneamente. Un valor 
grande de F multivariado sugiere que al menos una de las variables dependien-
tes tiene diferencias significativas entre los grupos.

•	 Valores p asociados al estadístico f multivariado: indican la probabilidad de ob-
tener un valor del estadístico F multivariado igual o más extremo si la hipótesis 
nula de igualdad de medias en todas las variables dependientes es verdadera. 

Toma de decisión. Un valor p pequeño (<0.05) sugiere que al menos una de las variables 
dependientes tiene diferencias significativas entre los grupos.

Pruebas no paramétricas
Tienen suposiciones más flexibles que las pruebas paramétricas y no hacen suposiciones 
sobre la distribución subyacente de los datos. Son útiles cuando los datos no cumplen con 
los supuestos de las pruebas paramétricas. Algunas de las pruebas no paramétricas más 
comunes son:
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Prueba de Kruskal-Wallis
Es el equivalente no paramétrico del ANOVA, utilizada para comparar tres o más grupos 
independientes. Esta prueba estima un estadístico p (p-value) y permite determinar si las 
diferencias observadas entre los grupos son estadísticamente significativas o si podrían 
haber ocurrido por azar.

Prueba de correlación de Spearman
Es utilizada para evaluar la relación entre dos variables continuas cuando los datos no 
siguen una distribución normal. Esta prueba presenta dos estadísticos:

•	 Coeficiente de correlación de Spearman o Rho de Spearman (ρ): este coefi-
ciente varía entre -1 a 1. Indica la fuerza y la dirección de la relación entre las 
dos variables. Cuanto más cercano sea el valor de ρ a 1, esto indica una corre-
lación fuertemente positiva entre las dos variables. Es decir que, a medida que 
los valores de una variable aumentan, los valores de la otra variable también 
aumentan. Por otro lado, cuanto más cercano sea el valor de ρ a -1, existe una 
correlación fuertemente negativa entre las variables. Es decir que, a medida 
que los valores de una variable aumentan, los valores de la otra variable dismi-
nuyen. Sin embargo, cuando el valor de ρ es cercano a 0, indica la ausencia de 
una correlación monótona entre las dos variables.

•	 Valor p (p-value): indica la probabilidad de obtener un coeficiente de corre-
lación de Spearman igual o más extremo que el observado si la verdadera co-
rrelación entre las variables es cero. Un valor p pequeño (<0.05) sugiere una 
correlación significativa, mientras que un valor p grande (>0.05) sugiere que 
la correlación observada podría haber ocurrido por azar.

Prueba de Mann-Whitney U
Es utilizada para comparar las medianas de dos grupos independientes cuando los datos 
no son normalmente distribuidos. Es una alternativa a la Prueba t de Student cuando 
los datos no cumplen con los supuestos de normalidad o cuando se trabaja con datos 
ordinales. Esta prueba estima un estadístico p (p-value) que permite determinar si las 
diferencias observadas entre los grupos son estadísticamente significativas o si podrían 
haber ocurrido por azar.

Análisis de Variación Permutacional Multivariante de la Varianza (PERMANOVA) 
El Análisis de Variación Permutacional Multivariante de la Varianza es una extensión del 
MANOVA que utiliza técnicas de permutación para evaluar la significancia de las diferen-
cias entre grupos en un diseño experimental multivariante. A diferencia del MANOVA, 
que asume distribuciones normales y homogeneidad de varianzas, el PERMANOVA es 
una técnica no paramétrica que no hace suposiciones sobre la distribución de los datos.
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Esta prueba estima dos estadísticos, el valor pseudo-F y el p-value:

•	 Estadístico pseudo-F: mide la magnitud de las diferencias entre los grupos en 
la estructura multivariante de los datos. Es similar al estadístico F utilizado en 
el ANOVA, pero adaptado para datos multivariantes.

•	 Valor p (p-value): indican la probabilidad de obtener un estadístico de prueba 
igual o más extremo bajo la hipótesis nula de que no hay diferencias entre los 
grupos. Un valor p pequeño sugiere que las diferencias observadas son es-
tadísticamente significativas.

Tendencias en ecología 

En las últimas décadas, en ecología se ha extendido el uso de los Modelos Lineales Gene-
ralizados (GLM, por sus siglas en inglés). Estos modelos son una herramienta estadística 
ampliamente utilizada para analizar datos que pueden no cumplir con los supuestos de los 
modelos lineales tradicionales, como la normalidad y la homogeneidad de varianzas. Los 
GLM permiten modelar relaciones entre variables predictoras y una variable de respuesta 
que pueden ser no normales, como datos de conteo, presencia/ausencia, proporciones 
o variables categóricas. Además, para enfrentar desafíos particulares en el análisis de da-
tos ecológicos, se han desarrollado extensiones y variantes de los GLM, tales como los 
Modelos Lineales Mixtos (GLMM) y los Modelos Lineales Generalizados Aditivos (GAM). 
Profundizar conceptualmente en estos modelos excede los alcances de este libro; sin em-
bargo, es esencial mencionarlos y brindar al menos una explicación básica sobre la ejecu-
ción de los Modelos Lineales Generalizados (GLM) en R.

Medir e interpretar las pruebas de hipótesis en R

Es importante destacar que la interpretación de estos análisis se respalda principalmente 
en los p valores. Generalmente, los valores de p menor a 0.05 expresan significancia es-
tadística. 

Pruebas paramétricas
En las pruebas de hipótesis paramétricas es importante evaluar la normalidad y la ho-
mocedasticidad. Estos parámetros en R pueden ser evaluados con las siguientes pruebas 
estadísticas y gráficos. En todos estos análisis se busca evaluar si existen diferencias sig-
nificativas observadas. Es decir, si el valor p es menor que un nivel de significancia prede-
finido (generalmente 0.05).
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Prueba de Shapiro-Wilk
Utilizada para verificar la normalidad de los datos, se puede realizar a través de una fun-
ción incluida en R base, por lo que no es necesario descargar librerías adicionales.

Input

Paso 1. Para esta prueba y para todas las presentes en este capítulo, se usarán tablas con 
distintos datos, pero todas corresponden al tipo matriz para modelos. 

Paso 2. Supóngase que se tiene una variable llamada datos que se desea evaluar para la 
normalidad, usar la prueba de Shapiro-Wilk para evaluar la normalidad:

resultado_shapiro <- shapiro.tesshapt(datos)

Output

Paso 1. Visualizar los resultados:

print(resultado_shapiro)

        Shapiro-Wilk normality test

data:  datos$Taxa_S

W = 0.96155, p-value = 0.6319

Paso 2. Para visualizar la normalidad, usar el gráfico Q-Q (cuantil-cuantil) si los datos 
siguen una distribución normal:

qqnorm(datos)

qqline(datos)

Paso 3. Interpretar la prueba de Shapiro-Wilk:

•	 Valor p: si el valor p es mayor que el nivel de significancia elegido (general-
mente 0.05), no hay suficiente evidencia para rechazar la hipótesis nula de 
que los datos provienen de una distribución normal. Es decir, una p-value alta 
sugiere que los datos siguen una distribución normal.

•	 Gráfico de Q-Q (cuantil-cuantil): si los puntos del gráfico Q-Q se ajustan 
aproximadamente a la línea diagonal, sugiere que los datos se ajustan a una 
distribución normal. Sin embargo, si los puntos se desvían significativamente 
de la línea diagonal, podría indicar que los datos no siguen una distribución 
normal.
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Prueba de Levene
Nos permite verificar la homogeneidad de la varianza, en este caso es preciso instalar la 
librería «car».

Input

Paso 1. Supóngase que se tienen dos grupos (A y B) y se quiere evaluar la homocedasticidad.

Paso 2. Usar la prueba de Levene para evaluar la homocedasticidad:

library(car)

resultado_levene <- leveneTest(datos ~ grupo, data = datos)

Output

Paso 1. Imprimir el resultado:

print(resultado_levene)

Levene’s Test for Homogeneity of Variance (center = 

median)

      Df F value Pr(>F)

group  2  2.1094 0.1559

      15               

Paso 2. Usar el gráfico de Residuos vs. Ajustes para visualizar la homocedasticidad:

modelo <- lm(datos ~ grupo, data = datos)

plot(modelo, which = 1)

Paso 3. Para interpretar la prueba de Levene:

•	 Valor p: si el valor p es mayor que el nivel de significancia elegido (general-
mente 0.05), no hay suficiente evidencia para rechazar la hipótesis nula de 
que las varianzas son iguales en todos los grupos. Es decir, una p-value alta 
sugiere homocedasticidad.

•	 Gráfico de Residuos vs. Ajustes: en el gráfico de Residuos vs. Ajustes, si los 
puntos están dispersos aleatoriamente alrededor de la línea horizontal en 
cero, sugiere que la varianza es constante en todos los niveles de la variable 
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independiente. Sin embargo, si los puntos forman un patrón específico (por 
ejemplo, un embudo), sugiere que la homocedasticidad podría no cumplirse.

Paso 4. Si cumplen estos supuestos, se puede realizar alguna de las siguientes pruebas 
paramétricas.

Prueba t de Student
Adecuada para comparar dos grupos de muestras pequeñas e incluida en R base a través 
de la función t.test().

Input

Paso 1. Supóngase que se tienen dos conjuntos de datos que se quieren comparar, llamé-
moslos grupo1 y grupo2. 

Paso 2. Cargar estos datos desde un archivo CSV, TXT, una base de datos u otro origen de 
datos. Por ejemplo, si se tienen los datos en un archivo CSV llamado datos.csv, se pueden 
cargar de la siguiente manera:

datos <- read.csv(“datos.csv”)

Paso 3. Para realizar la prueba t de Student en R, emplear la función t.test():

resultado <- t.test(grupo1, grupo2)

Paso 4. Los vectores grupo1 y grupo2 contienen los datos. Si los datos no están en un for-
mato adecuado para comparar directamente (por ejemplo, si están en un marco de datos 
y se necesita seleccionar una columna específica), se puede realizar así:

resultado <- t.test(datos$columna_grupo1, datos$columna_grupo2)

Output

Paso 1.  Una vez realizada la prueba t de Student, ver los resultados al imprimir el objeto 
resultado, lo que mostrará los resultados, con el valor de t, el valor p y otros detalles re-
levantes:

print(resultado)

        Welch Two Sample t-test

data:  datos$Taxa_S[datos$TRATAMIENTO == “ECB”] and 

datos$Taxa_S[datos$TRATAMIENTO == “ECD”]
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t = 3.3651, df = 8.6431, p-value = 0.008815

alternative hypothesis: true difference in means is not 

equal to 0

95 percent confidence interval:

  3.181152 16.485515

sample estimates:

mean of x mean of y 

 26.16667  16.33333

Paso 2. Si se desea visualizar los resultados de la prueba t de Student, hacerlo mediante 
gráficos. Por ejemplo, se puede crear un diagrama de caja para mostrar la distribución de 
los datos en cada grupo. Esto creará un diagrama de caja con los datos de los dos grupos, 
donde cada caja representa la distribución de los datos en cada grupo:

boxplot(grupo1, grupo2, names = c(“Grupo 1”, “Grupo 2”), col = 

c(“blue”, “red”))

ANOVA
Utilizar ANOVA para comparar las medias de tres o más grupos independientes.

Input

Paso 1. Cargar los datos. Supóngase que se tiene un conjunto de datos en el que se quiere 
realizar un ANOVA. Se pueden cargar los datos desde un archivo CSV, una base de datos u 
otro origen de datos. Por ejemplo, si se tiene los datos en un archivo CSV llamado datos.

datos <- read.csv(“datos.csv”)

Paso 2. Para el cálculo del ANOVA, realizar un ANOVA en R y usar la función aov(). Esta 
función ajusta un modelo lineal a los datos y realiza un ANOVA para comparar las medias 
de varios grupos:

modelo_anova <- aov(respuesta ~ tratamiento, data = datos)

Paso 3. Respuesta es la variable dependiente, es decir, la variable que se quiere analizar, y 
tratamiento es la variable independiente, variable que define los grupos.

Output

Paso 1. Una vez que se haya realizado el ANOVA, ver los resultados imprimiendo el objeto 
modelo_anova. Esto mostrará un resumen del ANOVA, que incluye la tabla de análisis de 
varianza con los valores F, los valores p y otras estadísticas relevantes:
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print(summary(modelo_anova))

            Df Sum Sq Mean Sq F value Pr(>F)  

TRATAMIENTO  2  293.4  146.72   4.079 0.0385 *

Residuals   15  539.5   35.97                 

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Paso 2. En caso de que el ANOVA muestre diferencias significativas entre los grupos, es 
posible que se quieran realizar pruebas post hoc para determinar cuáles grupos difieren 
entre sí. Para realizar pruebas post hoc en R, usar funciones como TukeyHSD() o pairwi-
se.t.test(). Por ejemplo, con TukeyHSD(), se calculará las diferencias entre los grupos y 
sus intervalos de confianza:

posthoc <- TukeyHSD(modelo_anova)

Paso 3. Si se desea visualizar los resultados del ANOVA, hacerlo mediante gráficos. Por 
ejemplo, crear un diagrama de barras para mostrar las medias de cada grupo. Esto creará 
un diagrama de barras con las medias de cada grupo en el eje y, y los tratamientos en el 
eje x:

barplot(tapply(datos$respuesta, datos$tratamiento, mean), 

        names.arg = levels(datos$tratamiento),

        ylab = “Media de respuesta”,

        xlab = “Tratamiento”,

        col = “lightblue”)

Regresión lineal
Para llevar a cabo una regresión lineal se utiliza la función lm(), disponible en R base. 
Nótese, en el paso 2, el primer argumento de la función; este se conoce como fórmula e 
indica «variable dependiente ~ variable independiente».

Input

Paso 1. Cargar los datos. Supóngase que se tiene un conjunto de datos en el que se quiere 
realizar una regresión lineal, se cargan los datos desde un archivo CSV, una base de datos 
u otro origen de datos. Por ejemplo, si se tiene los datos en un archivo CSV llamado datos.
csv, puede cargarse así:

datos <- read.csv(“datos.csv”)
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Paso 2. Para ajustar un modelo de regresión lineal en R, usar la función lm(). Esta función 
ajusta una línea recta a los datos que minimiza la suma de los cuadrados de las diferencias 
entre los valores observados y los valores predichos por el modelo:

modelo <- lm(respuesta ~ tratamiento, data = datos)

Paso 3. Respuesta es la variable dependiente, es decir, la variable que se quiere analizar, y 
tratamiento, la variable independiente que define los grupos.

Output

Paso 1. Para la interpretación del modelo, una vez que se haya ajustado el modelo de re-
gresión lineal, ver un resumen del modelo imprimiendo el objeto modelo. Esto mostrará 
un resumen del modelo de regresión lineal, que incluye los coeficientes de regresión, los 
valores p, el coeficiente de determinación (R-cuadrado) y otras estadísticas relevantes:

print(summary(modelo))

Call:

lm(formula = Taxa_S ~ TRATAMIENTO, data = datos)

Residuals:

    Min      1Q  Median      3Q     Max 

-10.333  -4.083   0.250   4.542   7.833 

Coefficients:

               Estimate Std. Error t value     Pr(>|t|)    

(Intercept)      26.167      2.448  10.687 0.0000000207 ***

TRATAMIENTOECD   -9.833      3.462  -2.840       0.0124 *  

TRATAMIENTOECI   -5.833      3.462  -1.685       0.1127    

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.997 on 15 degrees of freedom

Multiple R-squared:  0.3523,    Adjusted R-squared:  0.2659 

F-statistic: 4.079 on 2 and 15 DF,  p-value: 0.03849

Paso 2. Si se desea visualizar el modelo de regresión lineal, hacerlo mediante un diagrama 
de dispersión junto con la línea de regresión ajustada. Por ejemplo, crear un diagrama 
de dispersión para visualizar la relación entre la variable independiente y la variable de-
pendiente, junto con la línea de regresión. Esto creará un diagrama de dispersión con los 
datos y la línea de regresión ajustada en rojo: 
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plot(datos$variable_independiente, datos$variable_dependiente, 

     xlab = “Variable independiente”, 

     ylab = “Variable dependiente”, 

     main = “Regresión lineal”)

abline(modelo, col = “red”)

MANOVA
Prueba también incluida en R base, mediante la función manova(). Aquí también se utiliza 
la notación de fórmula (paso 2) para establecer la relación entre las variables.

Input

Paso 1. Crear un diagrama de dispersión con los datos y la línea de regresión ajustada en 
rojo. 

Paso 2. Cargar los datos. Supóngase que se tiene un conjunto de datos en el que se quiere 
realizar un MANOVA, cargar estos datos desde un archivo CSV, una base de datos u otro 
origen de datos. Por ejemplo, si se tiene los datos en un archivo CSV llamado datos.csv, 
pueden cargarse así:

datos <- read.csv(“datos.csv”)

Paso 3. Para ajustar un modelo MANOVA en R, usar la función manova(). Esta función 
ajusta un modelo multivariante que evalúa la relación entre múltiples variables depen-
dientes y una o más variables independientes:

modelo_manova <- manova(cbind(variable_dependiente1, variable_

dependiente2) ~ variable_independiente, data = datos)

Paso 4. variable_dependiente1 y variable_dependiente2 son las variables que se quiere 
analizar, y variable_independiente es la variable que define los grupos.

Output

Paso 1. Una vez que se haya ajustado el modelo MANOVA, ver un resumen del modelo 
imprimiendo el objeto modelo_manova. Esto mostrará un resumen del modelo MANO-
VA, que incluye las estadísticas multivariadas como Pillai’s trace, Wilks’ lambda, Hote-
lling-Lawley trace y Roy’s largest root, junto con los valores p y otras estadísticas rele-
vantes:
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print(summary(modelo_manova))

            Df Pillai approx F num Df den Df Pr(>F)

TRATAMIENTO  2  0.385   1.7879      4     30 0.1573

Residuals   15                                     

Paso 2. En caso de que el MANOVA muestre diferencias significativas entre los grupos, 
realizar pruebas post hoc para determinar cuáles grupos difieren entre sí en cada va-
riable dependiente. Para realizar pruebas post hoc en R, se puede usar funciones como 
TukeyHSD() o pairwise.manova(). Por ejemplo, con TukeyHSD(). Esto calculará las di-
ferencias entre los grupos y sus intervalos de confianza para cada variable dependiente:

posthoc <- TukeyHSD(modelo_manova)

Paso 3. Si se desea visualizar los resultados del MANOVA, hacerlo mediante gráficos. Por 
ejemplo, crear un gráfico de barras para mostrar las medias de cada variable dependiente 
por grupo. Esto creará un diagrama de barras con las medias de las variables dependientes 
para cada grupo en el eje y, y las categorías de la variable independiente en el eje x:

barplot(colMeans(datos[, c(“variable_dependiente1”, 

“variable_dependiente2”)]), 

        names.arg = levels(datos$variable_independiente),

        ylab = “Media de variables dependientes”,

        xlab = “Variable independiente”,

        col = “lightblue”)

Pruebas no paramétricas
En los análisis no paramétricos también se busca evaluar si existen diferencias significa-
tivas. Es decir, si el valor p es menor que un nivel de significancia predefinido (general-
mente 0.05).

Prueba de Kruskal-Wallis
Nos permite comparar tres o más grupos independientes y es posible llevarla a cabo sin 
necesidad de instalar librerías mediante kruskal.test().

Input

Paso 1. Cargar los datos. Supóngase que se tiene un conjunto de datos en el que se quiere 
realizar una prueba de Kruskal-Wallis, cargar estos datos desde un archivo CSV, una base 
de datos u otro origen de datos. Por ejemplo, si se tienen los datos en un archivo CSV 
llamado datos.csv, pueden cargarse así:
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datos <- read.csv(“datos.csv”)

Paso 2. Para realizar la prueba de Kruskal-Wallis en R, usar la función kruskal.test(). Esta 
función realiza una prueba no paramétrica para determinar si hay diferencias significati-
vas entre las medianas de dos o más grupos:

resultado_kruskal <- kruskal.test(variable_dependiente ~ 

variable_independiente, data = datos)

Paso 3. variable_dependiente es la variable que se quiere analizar y variable_indepen-
diente, la variable que define los grupos.

Output

Paso 1. Una vez que se haya realizado la prueba de Kruskal-Wallis, ver los resultados im-
primiendo el objeto resultado_kruskal. Esto mostrará los resultados de la prueba de Krus-
kal-Wallis, incluyendo el valor de estadístico de la prueba y el valor p:

print(resultado_kruskal)

        Kruskal-Wallis rank sum test

data:  Taxa_S by TRATAMIENTO

Kruskal-Wallis chi-squared = 6.3117, df = 2, p-value = 0.0426

Paso 2. Si la prueba de Kruskal-Wallis muestra diferencias significativas entre los grupos, 
realizar pruebas post hoc para determinar cuáles grupos difieren entre sí. Algunas opcio-
nes para pruebas post hoc incluyen pruebas de comparaciones múltiples como Dunn’s 
test o la prueba de Conover-Iman. Por ejemplo, con la prueba de Dunn’s test (usando el 
paquete dunn.test):

install.packages(“dunn.test”)

library(dunn.test)

resultado_dunn <- dunn.test(datos$variable_dependiente, 

g = datos$variable_independiente, method = “bonferroni”)

Prueba de correlación de Spearman
En datos con una distribución distinta a la normal, podemos llevar a cabo una prueba de 
correlación utilizando cor.test(), disponible en R base.
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Input

Paso 1. Cargar los datos. Supóngase que se tienen dos variables que se quieren correlacio-
nar, cargar estos datos desde un archivo CSV, una base de datos u otro origen de datos. Por 
ejemplo, si se tienen los datos en un archivo CSV llamado datos.csv, pueden cargarse así:

datos <- read.csv(“datos.csv”)

Paso 2. Para la ejecución de la prueba de Correlación de Spearman, usar la función cor.
test() con el método Spearman. Esta función calcula la correlación de rango de Spearman 
entre dos variables:

resultado_spearman <- cor.test(datos$variable1, 

datos$variable2, method = “spearman”)

Paso 3. variable1 y variable2 son las dos variables que se quieren correlacionar. Por ejem-
plo, si estás tratando de correlacionar el IHH con la riqueza:

resultado_spearman <- cor.test(datos$tRiqueza, datos$IHH, 

method = “spearman”)

Output

Paso 1. Una vez que se haya realizado la prueba de correlación de Spearman, ver los resul-
tados imprimiendo el objeto resultado_spearman. 

Paso 2. Se mostrarán los resultados de la prueba de correlación de Spearman, incluyendo 
el coeficiente de correlación de Spearman, el valor p y otras estadísticas relevantes:

print(resultado_spearman)

        Spearman’s rank correlation rho

data:  datos_moscas$Riqueza and datos_moscas$IHH

S = 4934.1, p-value = 0.6076

alternative hypothesis: true rho is not equal to 0

sample estimates:

        rho 

-0.09768012
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Prueba de Mann-Whitney U
Es una prueba no paramétrica para determinar si hay diferencias significativas entre las 
distribuciones de dos grupos.

Input

Paso 1. Cargar los datos. Supóngase que se tienen dos grupos y se quiere comparar las 
distribuciones de una variable entre estos grupos, cargar estos datos desde un archivo 
CSV, una base de datos u otro origen de datos. Por ejemplo, si se tienen los datos en un 
archivo CSV llamado datos.csv, pueden cargarse así:

datos <- read.csv(“datos.csv”)

Paso 2. La ejecución de la prueba de Mann-Whitney U usa la función wilcox.test(): 

resultado_mann_whitney <- wilcox.test(variable_dependiente ~ 

grupo, data = datos)

Paso 3. variable_dependiente es la variable que se quiere comparar entre los dos grupos, 
y grupo es la variable que define los grupos.

Output

Paso 1. Para ver los resultados e imprimir el objeto resultado_mann_whitney. 

Paso 2. Se mostrarán los resultados de la prueba de Mann-Whitney U e incluirá el estadís-
tico U de Mann-Whitney, el valor p y otras estadísticas relevantes:

print(resultado_mann_whitney)

        Wilcoxon rank sum test with continuity correction

data:  Taxa_S by TRATAMIENTO

W = 33.5, p-value = 0.01612

alternative hypothesis: true location shift is not equal to 0
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PERMANOVA (Permutational Multivariate Analysis of Variance)

Input

Paso 1. Cargar los datos. Supóngase que se tiene un conjunto de datos multivariados en 
el que se desea realizar una PERMANOVA, cargar estos datos desde un archivo CSV, una 
base de datos u otro origen de datos. Por ejemplo, si se tiene los datos en un archivo CSV 
llamado datos.csv, pueden cargarse así:

datos <- read.csv(“datos.csv”)

Paso 2. Para la carga de paquetes y realizar la PERMANOVA, es necesario cargar el pa-
quete vegan en R, que proporciona funciones para análisis de ecología de comunidades:

library(vegan)

Paso 3. Para realizar la PERMANOVA en R, se puede usar la función adonis() del paquete 
vegan. Esta función realiza una PERMANOVA basada en distancias, que es útil para datos 
multivariados:

resultado_permanova <- adonis(datos ~ grupo, data = datos, 

permutations = 999)

Paso 4. Datos es una matriz o un marco de datos que contiene las variables multivariadas, 
y grupo es la variable que define los grupos.

Output

Paso 1. Una vez que se haya realizado la PERMANOVA, ver los resultados imprimiendo el 
objeto resultado_permanova. 

Paso 2. Se mostrarán los resultados de la PERMANOVA, incluyendo la estadística F, el 
valor p y otras estadísticas relevantes:

print(resultado_permanova)

Permutation: free

Number of permutations: 999

Terms added sequentially (first to last)
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            Df SumsOfSqs  MeanSqs F.Model      R2 Pr(>F)  

TRATAMIENTO  2   0.15135 0.075674  3.4418 0.31456  0.046 *

Residuals   15   0.32980 0.021987         0.68544         

Total       17   0.48115                  1.00000         

---

Signif. Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

...

Modelo Lineal Generalizado (GLM)

Input

Paso 1. Cargar los datos. Supóngase que se tiene un conjunto de datos en el que se quiere 
ajustar un GLM, cargar estos datos desde un archivo CSV, una base de datos u otro origen 
de datos. Por ejemplo, si se tienen los datos en un archivo CSV llamado datos.csv, pueden 
cargarse así:

datos <- read.csv(“datos.csv”)

Paso 2. Para ajustar un GLM en R, usar la función glm(). Esta función permite especificar 
una función de enlace y una distribución de errores adecuada para los datos:

modelo <- glm(variable_dependiente ~ variable_independiente1 

+ variable_independiente2, 

              data = datos, family = family(distribution = 

“distribution_name”))

Paso 3. variable_dependiente es la variable de respuesta que se está tratando de modelar; 
variable_independiente1 y variable_independiente2 son las variables predictoras, y distri-
bution_name es la distribución de errores que se desea utilizar en el modelo. Por ejemplo, 
si se está ajustando un modelo con una distribución de errores binomial y una función de 
enlace logit:

modelo <- glm(variable_dependiente ~ variable_independiente1 + 

variable_independiente2, 

              data = datos, family = binomial(link = “logit”))
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Output

Paso 1. Una vez que se haya ajustado el modelo GLM, ver un resumen del modelo impri-
miendo el objeto modelo. Esto mostrará un resumen del modelo GLM, que incluye los co-
eficientes estimados, los errores estándar, los valores z, los valores p y otras estadísticas 
relevantes:

print(summary(modelo))

Paso 2. Para hacer gráficos de diagnóstico y evaluar la adecuación del modelo, algunos 
gráficos comunes incluyen gráficos de residuos y gráficos Q-Q.

•	 Gráfico de residuos: este comando genera un gráfico de residuos estandariza-
dos vs. los valores ajustados por el modelo. Los residuos estandarizados son 
los residuos divididos por su desviación estándar, lo que ayuda a identificar 
valores atípicos y patrones en los residuos:

plot(modelo, which = 1)

•	 Gráfico Q-Q: este comando genera un gráfico cuantil-cuantil (Q-Q plot) de los 
residuos estandarizados contra cuantiles teóricos de una distribución normal. 
Ayuda a evaluar si los residuos se distribuyen de manera aproximadamente 
normal:

plot(modelo, which = 2)

Paso 3. Para visualizar el gráfico de la relación entre variables, se puede hacer mediante 
un diagrama de dispersión con la línea de regresión ajustada. Este comando genera un 
diagrama de dispersión de los datos y traza la línea de regresión ajustada por el modelo 
GLM. Esto permite visualizar la relación entre la variable independiente y la variable de-
pendiente, teniendo en cuenta el modelo ajustado:

plot(datos$variable_independiente, datos$variable_dependiente)

abline(modelo, col = “red”)

Recapitulando

Al finalizar este capítulo, resulta fundamental que se sintetice y reflexione sobre las he-
rramientas y conceptos que se han abordado en relación con las pruebas de hipótesis es-
tadísticas en estudios ecológicos. El objetivo ha sido el de proporcionar una comprensión 
integral y aplicable de cómo estas pruebas se implementan y su relevancia en la investi-
gación ecológica.
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En primer lugar, se destacó la importancia de formular hipótesis claras y precisas, dis-
tinguiendo entre la hipótesis nula (H0) y la hipótesis alternativa (H1). Este proceso es 
fundamental para estructurar adecuadamente las pruebas estadísticas. Asimismo, se ha 
subrayado la relevancia de seleccionar un nivel de significancia apropiado y de elegir la 
prueba estadística correcta en función de los datos y el contexto de la investigación. Estas 
decisiones son cruciales para asegurar la validez y la fiabilidad de los resultados obtenidos.

Además, se abordaron los errores de tipo I y tipo II, conceptos clave que influyen en 
la interpretación de cualquier prueba de hipótesis. Comprender estos errores permite 
apreciar la importancia de equilibrar el riesgo de rechazar una hipótesis verdadera (error 
de tipo I) y el riesgo de no rechazar una hipótesis falsa (error de tipo II). Estos conceptos 
nos orientan a diseñar estudios que minimicen el impacto de estos errores y maximicen 
la potencia de las pruebas.

En la sección dedicada a las pruebas paramétricas y no paramétricas, se ha explicado 
cómo seleccionar la prueba adecuada según las características de los datos. Las pruebas 
paramétricas, como la prueba t de Student y ANOVA, requieren supuestos específicos so-
bre la distribución de los datos. Por otro lado, las pruebas no paramétricas, como la prue-
ba de Kruskal-Wallis y la prueba de Mann-Whitney U, ofrecen alternativas útiles cuando 
esos supuestos no se cumplen.

También se introdujo el PERMANOVA, una herramienta valiosa para el análisis multiva-
riante en ecología, y los Modelos Lineales Generalizados (GLM), que han revolucionado 
la forma en que se abordan los datos ecológicos. Estos modelos avanzados permiten ma-
nejar una amplia gama de tipos de datos y complejas relaciones entre variables, lo que es 
esencial en el análisis de fenómenos ecológicos multifacéticos.

Finalmente, al concluir este capítulo, es evidente que el dominio de las pruebas de hipó-
tesis estadísticas es indispensable para llevar a cabo investigaciones ecológicas robustas. 
La capacidad de seleccionar y aplicar adecuadamente estas pruebas, junto con una inter-
pretación cuidadosa de los resultados, proporciona herramientas poderosas para desen-
trañar los complejos patrones y relaciones en los ecosistemas. A medida que se avanza 
en la exploración de métodos estadísticos más sofisticados, es crucial mantener una com-
prensión sólida de los fundamentos discutidos aquí para seguir contribuyendo al avance 
del conocimiento en la disciplina.

«
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Capítulo 5
Índices para medir la diversidad biológica 

Matías I. Dufek y Darío D. Larrea

La diversidad biológica o biodiversidad1 hace referencia a la variedad de vida a nivel de 
genes, especies y ecosistemas. La complejidad de la estructura de las comunidades de un 
sitio en particular puede describirse mediante diferentes índices de diversidad, utilizados 
para analizar la magnitud de los cambios en la composición de especies entre sitios o a lo 
largo de gradientes temporales. Además, es una herramienta fundamental para evaluar 
los procesos de fragmentación ambiental producto de la actividad antrópica. En este sen-
tido, una adecuada comprensión de la biodiversidad de un área es indispensable para el 
diseño y gestión de programas de conservación.

Componentes de la diversidad biológica

La diversidad biológica tiene tres componentes: la diversidad alfa, beta y gamma. La alfa 
(α) es la diversidad de especies a nivel local, la beta (β) se entiende como las diferencias 
de composición entre las unidades de estudio de la diversidad alfa y, por último, la gam-
ma2 (γ) es la diversidad de especies a nivel regional.

Estos componentes se pueden medir con distintos índices y proporcionan información 
indispensable para comprender la estructura y dinámica de las comunidades y sus res-
puestas a perturbaciones naturales y disturbios antrópicos.

Diversidad alfa
Los métodos para medir la diversidad alfa pueden clasificarse en dos grandes grupos: 

1. La diversidad biológica debe ser tratada más seriamente como un recurso global para ser preserva-

do. Esto resulta indispensable ya que gran parte de la diversidad se está perdiendo de forma irreversible 

debido a la extinción causada por la destrucción de los hábitats naturales, especialmente en los trópicos.

2. La diversidad se puede calcular como la suma de la diversidad alfa promedio + la diversidad beta. «



. 70

1.	 Métodos basados en la medición del número de especies. En este grupo se en-
cuentran la riqueza específica (S), Chao de segundo orden (Chao 2), Jackknife 
de primer orden (Jack1), Jacknife de segundo orden (Jack 2), Bootstrapping, 
entre otros, siendo los índices mencionados los más utilizados actualmente en 
ecología.

2.	 Métodos basados en la estructura de la comunidad. Estos a su vez se pueden 
clasificar en dos subgrupos: 

a) Índices basados en dominancia, le dan más valor a la representatividad 
de las especies con mayor abundancia sin evaluar la contribución del 
resto de las especies, como el índice de Simpson y el índice de Ber-
ger-Parker.

b) Índices basados en la equidad, expresan la uniformidad de los valores 
de importancia a través de todas las especies de la unidad muestral, 
como los índices de Shannon-Wiener y de Pielou.

Índices basados en la dominancia
El índice de Simpson, simbolizado tradicionalmente con la letra D, es uno de los índices de 
dominancia más usado en los estudios de ecología. Este índice expresa la probabilidad de 
que dos individuos tomados al azar de una muestra sean de la misma especie. Los valores 
obtenidos varían entre cero y uno. Valores cercanos a uno representan la dominancia de 
una especie por sobre las demás, es decir, son ecosistemas con menos diversidad o con 
mayor homogeneidad de las especies.

En la fórmula, S representa el número de especies, y pi es la proporción de cada especie. 
Cuando el índice de dominancia de Simpson es menor a uno, indica mayores valores de 

diversidad. Esta relación inversa entre el valor del índice y el nivel de diversidad del área 
hace que la interpretación del índice resulte un poco confusa. Por esta razón, muchos 
autores sugieren el uso del inverso de Simpson, que se considera un buen indicador de la 
diversidad de un área. El inverso de Simpson se calcula empleando la siguiente fórmula: 

El índice de Berger Parker, simbolizado con la letra d, es un índice de dominancia que 
varía entre cero y uno; cuanto más se acerca a 1, significa que mayor es la dominancia y 
menor la equidad.
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En la fórmula, N
max 

representa el número de individuos de la especie más abundante, 
mientras que N

T
 es la abundancia total de individuos, contemplando todas las especies 

colectadas. 
Valores cercanos a 1 de este índice se interpretan como un aumento en la dominancia y 

una disminución de la equidad.
 Los valores altos de este índice, al igual que los obtenidos con el índice de Simpson, 

indican valores bajos de diversidad.

Índices basados en la equidad 
Los índices más utilizados en estudios ecológicos basados en la equidad son Shannon-Wie-
ner y de Pielou.

El índice Shannon-Wiener, simbolizado por la letra H´, es el índice de equidad más uti-
lizado en los estudios ecológicos. Este índice expresa la uniformidad de los valores de 
importancia a través de todas las especies de la muestra y presenta valores positivos que 
van desde cero hasta el logaritmo de S (riqueza de especies).

En la fórmula, S es el número de especies totales colectadas, mientras que pi es la abun-
dancia relativa de la especie i, que se calcula como la proporción de individuos de la es-
pecie i (ni) respecto del total de individuos (N), como se detalla en la siguiente fórmula:

Valores altos de este índice indican que los ambientes presentan una diversidad elevada. 

El índice de Pielou, por su parte, es simbolizado tradicionalmente con la letra J´. Se 
calcula por medio de la proporción de la diversidad observada con relación a la máxima 
diversidad esperada.

En la fórmula, H´ es el índice de Shannon-Wiener, y S es el número total de especies 
presentes (riqueza de especies). Este índice expresa el grado de uniformidad en la distri-
bución de las abundancias entre especies, es decir, valores altos de este índice indican que 
los ambientes presentan una diversidad elevada.
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Índices de diversidad verdadera 
La diversidad verdadera, también conocida como los índices de Hill, es una forma de medir 
la biodiversidad que se expresa en términos de órdenes de diversidad (Q). Los índices de 
Hill unifican varios índices de diversidad tradicionales en un solo marco teórico, lo que fa-
cilita la comparación entre diferentes comunidades o tratamientos. Asimismo, son sólidos 
matemáticamente y tienen una amplia aplicabilidad en diferentes contextos ecológicos, 
desde estudios locales hasta comparaciones a escala regional o global. Estos índices son 
herramientas valiosas en la ecología debido a su capacidad para proporcionar medidas 
claras, intuitivas y comparables de la diversidad biológica, además de su flexibilidad para 
enfatizar diferentes aspectos de la biodiversidad mediante la elección de diferentes valo-
res de q. Esto los convierte en una potente herramienta para los estudios ecológicos que 
evalúan la estructura y la función de las comunidades biológicas.

La diversidad de orden Q=0 (riqueza de especies) es un parámetro que simplemente 
cuenta el número de especies presentes (S) en la comunidad, sin tener en cuenta su 
abundancia. Este índice es equivalente a la riqueza de especies.

La diversidad de orden Q=1 (exponencial del índice de Shannon) es un parámetro que 
toma en cuenta tanto la riqueza de especies como la abundancia relativa de cada especie. 
Este índice es sensible a las especies raras y comunes y se calcula utilizando el exponencial 
del índice de Shannon. 

En la fórmula, pi es la proporción de la especie i.

La diversidad de orden Q=2 (índice de Simpson) es un enfoque da una mayor importan-
cia a las especies dominantes, es decir, a las más abundantes. Se calcula como el inverso 
del índice de Simpson.

Diversidad beta
La diversidad beta expresa el grado de diferencia entre unidades muestrales (disimilitud) 
y evidencia un cambio biótico a través de gradientes ambientales espaciales o temporales. 
Por esta razón, muchos de los índices de diversidad beta se construyen a partir de índices 
de similitud (s) y quedan relacionadas estas aproximaciones en la siguiente fórmula:
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Índices de similitud
Los índices de Jaccard y Sørensen son ampliamente utilizados para la valoración de la 
similitud en la composición de las comunidades y, en consecuencia, su complemento (la 
disimilitud) es la aproximación más usada para explicar la diversidad beta. Estos dos índi-
ces presentan fórmulas de calcular muy similares, diferenciándose solamente en la mayor 
importancia que le da el índice de Sørensen a las especies compartidas.

Fórmula del índice de Jaccard:

Fórmula del índice de Sørensen:

En las fórmulas, a es el número de especies exclusivas de la comunidad A, b es el número 
de especies exclusivas de la comunidad B, y c es el número de especies compartidas por 
las dos comunidades. Estos índices varían de cero a uno; valores cercanos a uno indican 
mayor similitud entre dos comunidades.

La variación de estos índices se puede dar por medio de dos procesos, en otros térmi-
nos, la diversidad beta se puede dividir o particionar en dos componentes: 

1.	 El recambio de especies, es decir que entre la comunidad A y B las diferen-
cias están mediadas por el reemplazo total o parcial de las especies. El ejemplo 
clásico de este proceso ocurre en ambientes muy contrastantes, como cuando 
comparamos bosques y pastizales.

2.	 La pérdida/ganancia (diferencias de riqueza), es decir que entre las comuni-
dades A y B lo que regula su diferencia es la pérdida/ganancia de especies entre 
las comunidades. Este componente es conocido como anidamiento, debido a 
que uno de los ambientes es producto de una simplificación de la estructura 
del otro ambiente. Ejemplos clásicos para evidenciar este componente de la 
diversidad beta son las comparaciones de un mismo ambiente en periodos de 
tiempos distintos o diferentes sitios con niveles de actividad antrópica (frag-
mentación del hábitat).

Estos elementos se relacionan de la siguiente forma: para beta en base Jaccard, βjtu 
es la diversidad beta explicada por el reemplazo de especies, y βjne es la diversidad beta 
explicada por la pérdida/ganancia de especies.
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Para beta en base Sørensen, betaSIM es la diversidad beta explicada por el reemplazo de 
especies, y betaSNE es la diversidad beta explicada por la pérdida/ganancia de especies.

Medir e interpretar los índices de diversidad alfa en R

En R se pueden estimar fácilmente todos los métodos basados en la medición del número 
de especies (riqueza específica, Chao 2, Jacknife de primer orden, Jacknife de segundo) 
empleando el siguiente script.

Input

Paso 1. Definir la carpeta donde se encuentran los datos:

Mydir = (“C:/Users/Desktop/Datos”)

setwd (Mydir)

Paso 2. Para cargar las bases de datos3 que se empleará para los análisis, se usan dos ta-
blas de datos, una de abundancia tipo 1 (datos-estudio) y otra de variables ambientales 
(variables):

datos-estudio = read.table(“Datos.txt”, header = TRUE, sep = 

“\t”, row.names = 1)

Variables = read.table(“Variables.txt”, header = TRUE, sep = 

“\t”, row.names = 1)

Paso 3. Para cargar la librería utilizada para los análisis, en este caso será vegan:

library(vegan)

attach(Variables)

3.  Es importante tener en cuenta que las filas en las dos bases de datos que se cargarán tienen que 

ser iguales.
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Paso 4. Correr el análisis para estimar la riqueza:

specpool(datos-estudio, Tratamiento)

Output

Paso 1. Observar la siguiente tabla:

Species Chao chao.se jack1 jack1.se jack2 boot boot.se n

Ambiente1 75 126.2 21.08 107 23.63 120.5 89.77 11.33 3 3

Ambiente2 52 93.48 19.59 76.66 18.049 87.16 63.37 8.55 3 3

Ambiente3 57 110.48 25.93 82.33 19.27 93.5 68.59 9.37 3

Paso 2. Interpretar los resultados. La interpretación de estos resultados es muy intuitiva. 
Los valores de species representan la riqueza de especies observadas para cada tratamien-
to, mientras que los valores de Chao, Jack1, Jack2 y Boot representan las estimaciones de 
la riqueza para cada tratamiento.

Medición de índices basados en dominancia
Los más utilizados en estudios ecológicos son el índice de Simpson y de Berger-Parker. El 
procedimiento para la estimación de estos índices se detalla a continuación.

Input

Paso 1. Definir la carpeta donde se encuentran los datos:

Mydir = (“C:/Users/Desktop/Datos”)

setwd (Mydir)

Paso 2. Para cargar las bases de datos que se empleará para los análisis, utilizar una matriz 
de datos de abundancia de tipo 1 (especies por sitio):

Datos = read.table(“Datos.txt”, header = TRUE, sep = “\t”, row.

names = 1)setwd (Mydir)

Paso 3. Para cargar la librería utilizada para los análisis, utilizar BiodiversityR y vegan:

library(BiodiversityR)

library(kableExtra) 
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D <- diversityresult(abundancia$conservacion, index = "Simpson", 

method = "each site")

Paso 4. Para correr el análisis y estimar los índices de diversidad basados en la equidad:

B = diversityresult(Datos, index=c(“Berger”), method=c(“each 

site”))

iD = diversityresult(Datos, index=c(“inverseSimpson”), 

method=c(“each site”))

Paso 5. Para confeccionar una tabla con los índices calculados:

	 indicesdomi = data.frame(D, iD, B)

kable(indicesdomi, format = “markdown”, col.names = c(“Simpson”, 

“Inverso de Simpson”, “Berger”))

Output

Paso 1. Observar la siguiente tabla:

Simpson Inverso de Simpson Berger

Ambiente1 0.93077829 14.4463356 0.12946191

Ambiente2 0.87280776 7.862115 0.27067995

Ambiente3 0.83436931 6.0375284 0.34324554

Paso 2. Interpretar los resultados. El valor de Simpson varía entre 0 y 1. Un valor de cero 
(0) indica una diversidad infinita (todos los individuos son de diferentes especies). Si el 
valor es uno (1), indica mayor diversidad (todos los individuos son de una misma especie).

El valor del inverso de Simpson (1/D) varía desde 1 hasta el número total de especies 
en la muestra. En este índice, el valor de uno (1) indica que toda la comunidad está com-
puesta por una sola especie. Un valor alto indica una alta diversidad y significa que hay 
muchas especies presentes y que los individuos están distribuidos más equitativamente 
entre estas especies.

El valor de Berger-Parker varía de 0 a 1. Un valor de cero (0) indica que todas las espe-
cies tienen la misma abundancia (alta diversidad), mientras que un valor uno (1) indica 
que una sola especie domina completamente la comunidad (baja diversidad).
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El inverso del índice de Berger-Parker (1/d) también se usa a veces para facilitar la in-
terpretación, donde un valor más alto indica mayor diversidad.

Medición de los índices basados en la equidad
Estos índices se calculan mediante el siguiente procedimiento.

Input

Paso 1. Definir la carpeta donde se encuentran los datos:

Mydir = (“C:/Users/Desktop/Datos”)

setwd (Mydir)

Paso 2. Para cargar las bases de datos que se emplearán para los análisis, y de la misma 
forma que en los análisis de dominancia, usar una tabla de abundancia tipo 1:

Datos = read.table(“Datos.txt”, header = TRUE, sep = “\t”, 

row.names = 1)

Paso 3. Para cargar la librería utilizada para los análisis, utilizar BiodiversityR y vegan:

library(BiodiversityR)

library(kableExtra) 

Paso 4. Para correr el análisis y estimar los índices de diversidad basados en la equidad:

H = diversityresult(Datos, index=c(“Shannon”), method=c

(“each site”))

JP = H/log(specnumber(Datos))

Paso 5. Para confeccionar una tabla con los índices calculados:

indicesequi = data.frame(H, JP)

kable(indicesequi, format = “markdown”, col.names = c(“H, 

Shannon”, “JP, Pielou”, “iD, inverseSimpson”))
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Output

Paso 1. Observar la siguiente tabla:

H, Shannon JP, Pielou

Ambiente1 3.0597763 0.71315819

Ambiente2 2.6244421 0.64912413

Ambiente3 2.5077268 0.63162278

Paso 2. Interpretar los resultados. El valor de Shannon (H) generalmente varía entre 1.5 y 
3.5 para la mayoría de las comunidades ecológicas, aunque puede ser menor o mayor en 
casos extremos. Valores bajos (cercanos a 0) indican baja diversidad, donde una o pocas 
especies predominan. Valores altos indican alta diversidad, donde hay muchas especies 
con una distribución más equitativa de individuos.

El valor de Pielou (J) varía entre 0 y 1. Un valor de cero (0) indica que la comunidad está 
completamente dominada por una sola especie (mínima equitatividad), mientras que un 
valor de uno (1) indica que todas las especies tienen la misma abundancia (máxima equi-
tatividad).

Medición de los índices de diversidad verdadera
Para calcular la diversidad verdadera de órdenes Q=0, Q=1 y Q=2, se necesitan las matri-
ces de abundancia. A continuación, se describe cómo calcular estos índices:

Input

Paso 1. Definir la carpeta donde se encuentran los datos:

Mydir <- (“C:/Users/Desktop/Datos”)

setwd (Mydir)

Paso 2. Para cargar las bases de datos que se emplearán para los análisis, usar una tabla 
de abundancia de tipo 1:

Datos <- read.table(“abundancia.txt”, header = TRUE, 

sep = “\t”, row.names = 1)
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Paso 3. Para cargar la librería utilizada para los análisis:

library(vegan)

library(ggplot2)

library(reshape2)

Paso 4. Función para calcular diversidad verdadera de orden Q:

diversidad_q <- function(Datos, q) {

  if (q == 0) {

    return(specnumber(Datos))

  } else if (q == 1) {

    return(exp(diversity(Datos, index = “shannon”)))

  } else if (q == 2) {

    return(diversity(Datos, index = “invsimpson”))

  } else {

    # Calcular la diversidad verdadera para cualquier 

otro valor de q

    return((rowSums(Datos^q))^(1/(1 - q)))

  }

}

# Calcular diversidades para Q=0, Q=1, Q=2, Q=3

diversidad_q0 <- diversidad_q(Datos, 0)

diversidad_q1 <- diversidad_q(Datos, 1)

diversidad_q2 <- diversidad_q(Datos, 2)

Output

Paso 1. Crear una tabla con los resultados: 

 resultados <- data.frame(Categoria = rownames(Datos),
  Q0 = diversidad_q0,

  Q1 = diversidad_q1,

  Q2 = diversidad_q2,

  

# Mostrar la tabla

print(resultados)
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Paso 2. Observar la tabla de resultado:

Q0 Q1 Q2

ECB 73 21.32279 14.446336

ECI 55 13.36206 7.717607

ECD 51 12.16131 6.017080

Paso 3. Convertir la tabla a formato largo para ggplot2:

resultados_melt <- melt(resultados, id.vars = “Categoria”, 

variable.name = “OrdenQ”, value.name = “Diversidad”)

resultados_melt$OrdenQ <- as.numeric(sub(“Q”, “”, resultados_

melt$OrdenQ))

Paso 4. Crear una gráfica con ggplot2:

ggplot(resultados_melt, aes(x = OrdenQ, y = Diversidad, color = 

Categoria, group = Categoria)) +

  geom_line(size = 1.2) +

  geom_point(size = 3) +

  labs(title = “Diversidad Verdadera por Orden Q y Categoría”,

       x = “Orden Q”,

       y = “Diversidad Verdadera”,

       color = “Categoría”) +

  theme_minimal()
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Figura 1. Gráfico de diversidad para tres ambientes en distintos estados de conservación: bueno (ECB), 

intermedio (ECI) y degradado (ECD).

De este modo se calcula la diversidad verdadera observada, lo que no debería presen-
tar ningún problema en la mayoría de los casos, pero a veces, sobre todo en muestreos 
biológicos, el esfuerzo muestral entre sitios no es el mismo y dificulta la comparación de 
estos índices observados. Para solucionarlo, puede valerse de la función estimadeD(), de 
la librería iNext, para calcular índices mediante rarefacción y extrapolación, basándose en 
un mismo tamaño de muestra o en una misma cobertura muestral (esta última es la más 
usada en ecología). Aquí también se puede usar una matriz de abundancia, pero de tipo 
2 (sitios por especies):

library(iNEXT)

estimateD(datos, datatype = “abundance”, base = “coverage”, 

level = NULL)

Con level = NULL, la función calcula automáticamente el nivel de cobertura de muestra, 
pero también puede tomar un valor entre 0 y 1.
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	  m      Method     Order.q     SC        qD    qD.LCL     

qD.UCL

ECB 3754.000 Extrapolation  0 0.993636 96.460124 71.921513 

120.998735

ECB 3754.000 Extrapolation  1 0.993636 22.128519 20.732545  

23.524492

ECB 3754.000 Extrapolation  2 0.993636 14.555693 13.720227  

15.391159

ECI 1822.372   Rarefaction  0 0.993636 54.307913 49.632720  

58.983106

ECI 1822.372   Rarefaction  1 0.993636 13.741831 13.030140  

14.453521

ECI 1822.372   Rarefaction  2 0.993636  7.855878  7.390363   

8.321393

ECD 2068.921 Extrapolation  0 0.993636 61.495989 47.443440  

75.548537

ECD 2068.921 Extrapolation  1 0.993636 12.478139 11.415921  

13.540358

ECD 2068.921 Extrapolation  2 0.993636  6.048698  5.443428   

6.653969

En estos resultados, el valor de nuestros índices se encuentra en la columna qD, y como se 
observa en Method. Para los sitios ECB y ECD, se realizó una extrapolación, lo que signi-
fica que la cobertura muestral de nuestros datos era menor que la elegida (SC = 0,99) en 
estos sitios y en ECI, una rarefacción porque en este sitio la cobertura muestral era mayor 
a la elegida para el cálculo.

Paso 5. Interpretar los resultados. La interpretación de los índices de diversidad verdadera 
de órdenes Q0, Q1 y Q2 se realiza de la siguiente manera:

•	 Orden 0 (𝑞=0): mide solo la riqueza de especies. Es útil cuando se quiere saber 
cuántas especies hay en total, sin considerar la abundancia de estas. Tomando 
como ejemplo los resultados obtenidos, se puede decir que los ambientes ECB 
tienen mayor diversidad de orden Q0 (73).

•	 Orden 1 (𝑞=1): mide una combinación de riqueza y equitatividad. Es útil para 
obtener una medida equilibrada de diversidad que refleje tanto el número de 
especies como su distribución equitativa. Es sensible tanto a especies comunes 
como raras. En los resultados se aprecia que la comunidad ECB tiene una di-
versidad equivalente a una comunidad con aproximadamente 21.32 especies 
equitativamente distribuidas.
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•	 Orden 2 (𝑞=2): pone más énfasis en las especies abundantes. Es útil para en-
tender la diversidad en términos de dominancia, es decir, cómo las especies 
más comunes afectan la estructura de la comunidad. En el ejemplo, la comuni-
dad tiene una diversidad equivalente a una comunidad con aproximadamente 
14.44 especies dominantes.

Medir e interpretar los índices de diversidad beta en R

En R, los índices de Jaccard y Sørensen se utilizan para la valoración de la similitud en la 
composición de las comunidades y, en consecuencia, su complemento (la disimilitud).

Input

Paso 1. Definir la carpeta donde se encuentran los datos:

Mydir = (“C:/Users/Desktop/Datos”)

setwd (Mydir)

Paso 2. Para cargar las bases de datos que se emplearán para los análisis, se utilizará una 
matriz de abundancia de tipo 1.

Datos = read.table(“Datos.txt”, header = TRUE, sep = “\t”, row.

names = 1)

Paso 3. Para cargar la librería utilizada para los análisis, se usará betapart:

library(betapart)

Paso 4. Para convertir la matriz de datos de abundancia en matriz de datos de incidencia 
(presencia ausencia):

Datos = ifelse(Datos>0, 1, 0)

Paso 5. Para calcular las medidas de diversidad beta de sitios múltiples y las matrices de 
disimilitud por pares:

Beta.coreAM = betapart.core(Datos)
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Paso 6. Los siguientes comandos permiten calcular la beta partición de los distintos índi-
ces de diversidad beta:

•	 Beta partición en base Jaccard:

Multi.jac = beta.multi(Beta.coreAM, index.family=”jac”)

Dist.jac = beta.pair(Beta.coreAM, index.family=”jac”)

•	 Beta partición en base Sørensen:

Multi.sor = beta.multi(Beta.coreAM, index.family=”sor”)

Dist.sor = beta.pair(Beta.coreAM, index.family=”sor”)

Paso 7. Para visualizar los resultados en tablas:

Multi.jac

Dist.jac

Multi.sor

Dist.sor

Output 

Paso 1. Beta partición en base Jaccard:

Multi.jac

$beta.JTU

[1] 0.62311558

$beta.JNE

[1] 0.063076891

$beta.JAC

[1] 0.68619247

Dist.jac

$beta.jtu

		  Ambiente1 Ambiente2

Ambiente2	 0.48000000           

Ambiente3	 0.54794521 0.62337662
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$beta.jne

		  Ambiente1 Ambiente2

Ambiente2 	 0.091428571            

Ambiente3	  0.097216085 0.018598685

$beta.jac

		  Ambiente1 Ambiente2

Ambiente2 	 0.57142857           

Ambiente3 	 0.64516129 0.64197531

Paso 2. Beta partición en base Sørensen:

Multi.sor

$beta.SIM

[1] 0.45255474

$beta.SNE

[1] 0.069738249

$beta.SOR

[1] 0.52229299

Dist. sor

$beta.sim

		  Ambiente1 Ambiente2

Ambiente2	 0.31578947           

Ambiente3	 0.37735849 0.45283019

$beta.sne

		  Ambiente1 Ambiente2

Ambiente2	 0.084210526            

Ambiente3	 0.098831986 0.019897084

$beta.sor

		  Ambiente1 Ambiente2

Ambiente2	 0.40000000           

Ambiente3	 0.47619048 0.47272727

Paso 3. Interpretar los resultados. Aunque los valores específicos pueden diferir ligera-
mente entre los índices de diversidad beta en base Jaccard y Sørensen, ambos proporcio-
nan una medida de la disimilitud entre dos comunidades. Valores más cercanos a 1 indican 
mayor disimilitud, mientras que valores más cercanos a 0 indican mayor similitud.
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•	 Sensibilidad: el índice de diversidad beta en base Sørensen tiende a ser más 
sensible a la presencia de especies comunes que el índice de beta en base Jac-
card, ya que le da más importancia a las especies compartidas (multiplicando 
C por 2 en el numerador).

•	 Beta partición: valores altos del componente de reemplazo de especies (βjtu 
o betaSIM) indican un alto grado de reemplazo de especies entre las comu-
nidades, es decir, las comunidades tienen especies diferentes. Por otro lado, 
valores altos de anidamiento (βjne o betaSNE) indican que la estructura de 
las comunidades está altamente anidada, es decir, las comunidades con menos 
especies son subconjuntos de aquellas con más especies.

La interpretación conjunta de estos componentes proporciona una visión más comple-
ta de la estructura de la diversidad beta en un paisaje, permitiendo identificar las causas 
subyacentes de las diferencias en la composición de especies entre las comunidades.

Recapitulando

Este capítulo exploró de manera exhaustiva los diversos índices utilizados para medir la 
diversidad biológica, así como desglosó sus aplicaciones en la evaluación de la riqueza de 
especies y la equidad dentro de las comunidades ecológicas. 

Los tres componentes esenciales de la biodiversidad (alfa, beta y gamma), cada uno 
representado por métodos y fórmulas específicos que proporcionaron una visión integral 
sobre la estructura y dinámica de las comunidades biológicas. 

Desde los índices de dominancia como el de Simpson y Berger-Parker hasta los enfo-
ques basados en la equidad como Shannon-Wiener y Pielou, este capítulo ofreció una guía 
detallada para interpretar estos índices en el análisis de la biodiversidad. Además, detalló 
el uso de R para medir y analizar estos índices, facilitando su aplicación en estudios ecoló-
gicos y proporcionando herramientas prácticas para la investigación. 

En resumen, el capítulo resaltó la importancia de seleccionar y aplicar adecuadamente 
estos índices para una comprensión profunda de la biodiversidad y su gestión efectiva en 
contextos de conservación.

«
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Capítulo 6
Otras formas de medir la biodiversidad

Lucas J. Mina y Darío D. Larrea

En el capítulo anterior se discutió qué es la biodiversidad, sus componentes y algunos mé-
todos clásicos para medirla, como la riqueza específica, los índices de Shannon y Simpson, 
entre otros. Estas formas de medir la diversidad se consideran neutrales, lo que significa 
que consideran de forma igual a todas las especies de una comunidad. Sin embargo, esto 
puede presentar limitaciones, ya que no tienen en cuenta diferencias entre especies como 
sus rasgos ecológicos, morfológicos, fisiológicos, biogeográficos o funcionales.

Diversidad taxonómica

La diversidad taxonómica1 es una forma de medir la biodiversidad que reconoce las di-
ferencias entre las categorías taxonómicas anidadas de las especies. Es decir, el valor de 
diversidad de la comunidad estará en función de su estructura taxonómica. Las comuni-
dades con especies pertenecientes a distintos géneros tendrán una mayor diversidad que 
aquellas cuyas especies pertenecen al mismo género. Esta diversidad será aún mayor si 
estos géneros pertenecen a distintas familias.

Para medir la diversidad taxonómica, en general, es necesario contar con información 
filogenética de los grupos estudiados. Sin embargo, a pesar de los avances en áreas como 
la sistemática y la biología molecular, esta información no siempre está disponible. Por 
ello, destaca el índice de distintividad taxonómica propuesto por Warwick y Clarke, ya 

1.  El término diversidad taxonómica tiene dos acepciones en ecología. Originalmente, hacía referencia 

a la composición de especies en un área. Sin embargo, a partir de los trabajos de Clarke y Warwick, este 

concepto define análisis que consideran la estructura de las relaciones taxonómicas entre las especies, lo 

que resulta en la generación de índices específicos de diversidad taxonómica. Para evitar confusiones en 

el uso de la terminología, lo ideal sería hablar de diversidad taxonómica únicamente cuando se utiliza el 

enfoque de Clarke y Warwick. «
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que para su cálculo no se requieren distancias filogenéticas, sino únicamente conocer las 
jerarquías taxonómicas.

Medir e interpretar la distintividad taxonómica en R
A continuación, se verán los pasos necesarios para la medición de la distintividad taxo-
nómica en R, utilizando funciones disponibles en la librería BiodiversityR. Para ello, son 
necesarias dos matrices, una de abundancia y otra taxonómica.

Input

Paso 1. Cargar las librerías necesarias:

library(BiodiversityR)

library(ggplot)

library(ggrepel)

Las dos últimas librerías son usadas para producir gráficos, no son estrictamente nece-
sarias para los cálculos de diversidad.

Paso 2. Para cargar los datos necesarios, una tabla de abundancia de especies con sitios 
de estudio (matriz de abundancia tipo 1) y otra con la jerarquía taxonómica (matriz taxo-
nómica), es importante que la tabla de jerarquía taxonómica tenga una primera columna 
de identificación que coincida con los nombres de las columnas de la tabla de abundancia:

abundancia <- read.table(“tabla_abundancia.txt”, header = 

TRUE, row.names = 1, sep = “\t”)

taxonomia <- read.table(“tabla_taxa.txt”, header = TRUE, 

row.names = 1, sep = “\t”)

Paso 3. Para calcular las distancias taxonómicas. La función plot nos muestra un dendo-
grama de las distancias taxonómicas:

dist_taxonomia <- taxa2dist(taxonomia)

plot(hclust(dist_taxonomia), hang = 1)

Paso 4. Cálculo diversidad taxonómica:

div_taxonómica <- taxondive(abundancia, dist_toxonomica)

div_taxonomica
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Output

Paso 1. Observar el resultado:

         Species   Delta  Delta* Lambda+  Delta+ S Delta+

ESC-T1    28.000  84.330  89.959 454.219  89.220   2498.1

ESC-T2    34.000  87.580  90.763 429.166  91.310   3104.5

PCII-T1   25.000  86.111  90.435 385.076  91.083   2277.1

PCII-T2   20.000  83.502  89.190 416.707  92.237   1844.7

RCH-T1    31.000  83.227  87.412 485.796  88.548   2745.0

RCH-T2    19.000  79.832  85.113 572.869  87.719   1666.7

ESQ-T1    14.000  87.765  93.715 330.576  93.132   1303.8

ESQ-T2    10.000  78.947  87.097 816.667  85.000    850.0

EBA-T1    28.000  88.078  92.744 511.341  89.815   2514.8

EBA-T2    24.000  86.908  91.069 590.212  88.406   2121.7

PCI-T1    28.000  88.558  94.218 450.177  90.146   2524.1

PCI-T2    18.000  82.119  86.681 401.341  87.418   1573.5

VED-T1    19.000  85.747  88.389 614.420  85.965   1633.3

VED-T2    12.000  78.333  84.794 458.706  88.258   1059.1

PAN-T1    22.000  81.698  89.600 475.511  89.827   1976.2

PAN-T2    18.000  77.192  84.548 645.318  86.438   1555.9

PIN-T1    14.000  74.160  82.323 524.846  89.011   1246.2

PIN-T2    13.000  72.348  79.253 810.733  77.564   1008.3

Expected          96.727  85.969          89.482

Paso 2. Interpretar los resultados. Como resultado de la función taxondive, se obtiene una 
tabla con la cantidad de especies y los valores de Delta, Delta*, Lambda+ y Delta+ para 
cada sitio.

•	 Delta o diversidad taxonómica: indica la distancia taxonómica entre dos indivi-
duos elegidos al azar, toma en cuenta la abundancia y puede incluir individuos 
de la misma especie. Esto significa que es sensible al esfuerzo de muestreo e 
indica qué tan relacionados están los individuos entre sí.

•	 Delta* o distintividad taxonómica: es el promedio de las distancias taxonó-
micas entre todos los individuos de un sitio, exceptuando a los de la misma 
especie. Con esto se elimina parcialmente su dependencia en la abundancia y 
representa las relaciones taxonómicas entre especies de los sitios sin conside-
rar su riqueza o abundancia.

•	 Delta+ o distintividad taxonómica promedio: calculada como el promedio de 
la distancia taxonómica entre cualquier especie en el sitio, dividido entre el 
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número total de rutas taxonómicas. Este índice es equivalente a los anteriores, 
pero considera únicamente la incidencia de las especies, lo que lo hace menos 
sensible al esfuerzo de muestreo.

•	 Lambda+ o variación de la distintividad taxonómica: es la varianza del prome-
dio de las distancias taxonómicas entre especies. Expresa la variación de las 
distancias que conectan a cada par de especies en la estructura taxonómica. 
Refleja la equitatividad taxonómica, por lo que nos indica si ciertos taxones 
están sobre o subrepresentados.

En el caso de Delta, Delta* y Delta+, un valor más alto indica una mayor diversidad en 
el sitio, ya que refleja una mayor separación taxonómica entre los individuos. Por otro 
lado, en el caso de Lambda+, valores altos indican que la mayoría de las especies están 
concentradas en pocos taxones, mientras que valores bajos sugieren una distribución más 
equitativa de las especies entre los taxones.

Paso 3. Para graficar la diversidad taxonómica:

ggplot(div_taxonomica, aes(x = Species, y = Dplus)) +

  geom_point() +

  ylab(“Δ+”) +
  xlab(“Riqueza”) +

  geom_hline(aes(yintercept = EDplus), linetype = “dotted”) +

  geom_ribbon(aes(ymax = EDplus + sd.Dplus * 2, ymin = EDplus - sd.

Dplus * 2), fill = NA, color = “black”)+

  geom_text_repel(aes(label = row.names(div_taxonomica)), size = 

3.5, color = “blue3”) +

  theme_classic()
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Figura 1. Gráfico de diversidad taxonómica.

En la figura 1, el gráfico muestra la diversidad taxonómica (Delta+) de cada sitio en 
relación con su riqueza de especies. La línea de puntos representa el valor esperado de 
diversidad, mientras que el embudo indica el intervalo de confianza. Es interesante obser-
var que se puede tener mayor diversidad taxonómica en sitios con menor riqueza de es-
pecies. Esto sugiere que, a pesar de tener menos especies, estos sitios poseen una mayor 
variedad de géneros y/o familias.

Para el gráfico anterior, se usó la librería ggplot, que es un poco más completa de uti-
lizar que los gráficos base, pero permite mayor flexibilidad para modificar el gráfico a 
nuestro gusto. También es posible hacerlo utilizando gráficos base de R con plot(div_ta-
xonomica).

Diversidad funcional

La diversidad funcional es una medida no neutral de la diversidad, pero en este caso no se 
tienen en cuenta las relaciones filogenéticas, sino los rasgos funcionales.

Los rasgos funcionales son características fenotípicas o de comportamiento observa-
bles que afectan el desempeño de las especies y/o los procesos del ecosistema. La diversi-
dad funcional mide el grado en el que las especies de una comunidad varían en sus rasgos. 
Aunque se mencionó que no se tienen en cuenta las relaciones filogenéticas, vale la pena 
destacar que los rasgos funcionales suelen estar relacionados con la taxonomía, por lo que 
existe algo de similitud en los métodos numéricos usados por ambos índices.
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Los índices más comunes para medir la diversidad funcional se detallan a continuación:

•	 Riqueza funcional (FRic). Es el volumen o área de espacio funcional ocupa-
do por las especies de la comunidad. En el caso de dos rasgos, es el área del 
polígono cuyos vértices son las especies más extremas (con más distancias 
entre rasgos). Debido a esto, un aumento de este índice nos indica un aumen-
to de la diversidad funcional. Cabe aclarar que, para su cálculo, es necesario al 
menos una especie más que rasgos funcionales.

•	 Uniformidad funcional (FEve). Este índice combina la uniformidad del espacia-
do entre especies en el espacio funcional y la uniformidad de sus abundancias. 
Mide la consistencia del largo de las ramas del MST (Minimun Spanning Tree 
o árbol de expansión mínimo) luego de ponderarlas por la suma de las abun-
dancias relativas. Varía entre 1 y 0; un valor de 1 nos indica que la comunidad 
es perfectamente uniforme con una baja diversidad funcional. Por otro lado, 
valores cercanos a 0 indican que la uniformidad disminuye y la diversidad fun-
cional aumenta.

•	 Divergencia funcional (FDiv). Es el grado en que las especies más abun-
dantes están alejadas del centroide del ensamble en ese espacio funcional, 
estandarizado al promedio de la distancia al centroide no ponderado de las 
especies en el perímetro del polígono. Su valor se incrementa al aumentar la 
diversidad y es más alto cuando las especies más abundantes tienen rasgos 
extremos. Es independiente del volumen de rasgos.

•	 Dispersión Funcional (FDis). Mide la distancia promedio al centroide del en-
samble en el espacio funcional, ponderada por las abundancias relativas. Con-
ceptualmente es similar a FDiv, pero los mecanismos de medición son diferen-
tes. Por último, a medida que la diversidad aumenta, también lo hace el valor 
de este índice.

Medir e interpretar los índices diversidad funcional en R
Ahora que ya se sabe qué es lo que se entiende por diversidad funcional, en esta sec-
ción se verá cómo calcularla e interpretar los resultados arrojados por las funciones de la 
librería FD. Para esto, se volverá a utilizar la tabla de abundancia, pero esta vez junto con 
una de rasgos.

Input

Paso 1. Para el cálculo de los índices de diversidad funcional en R, usar la librería FD dis-
ponible en CRAN:
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library(FD)

Paso 2. En cuanto a los datos, como ya se mencionó, se necesita una matriz de abundan-
cia de tipo 1 y una matriz de rasgos. En estas, los nombres de las especies (filas en la tabla 
de rasgos y columnas en la de abundancia) deben ser iguales y estar en el mismo orden.

# ---- Carga de datos ----

selva_01 <- read.table(“data/selva_1b.txt”, header = TRUE, sep = 

“\t”)

selva_02 <- read.table(“data/selva_2b.txt”, header = TRUE, sep = 

“\t”)

selva_03 <- read.table(“data/selva_3b.txt”, header = TRUE, sep = 

“\t”)

Paso 3. Para el análisis, se utiliza la función dbFD. Esta función nos brinda una lista que 
contiene los valores de los distintos índices de diversidad funcional (FRic, FEve, FDiv y 
FDis). Más adelante, nos detendremos en cada uno de los índices y su interpretación. 
Por ahora, se transformarán estas listas en una tabla para observar los resultados más 
fácilmente:

# Diversidad funcional ambiente 1

resultados_ambiente1 <- dbFD(selva_01)

resultados_ambiente1

# Diversidad funcional ambiente 2

resultados_ambiente2 <- dbFD(selva_02)

resultados_ambiente2

# Diversidad funcional para el ambiente 3

resultados_ambiente3 <- dbFD(selva_03)

resultados_ambiente3

Output

Paso 1. Observar el resultado:

df_datos <- data.frame(

  Ambiente = c(“Ambiente1”, “Ambiente2”, “Ambiente3”),

  FEve = c(resultados_ambiente1$FEve, resultados_ambiente2$FEve, 

resultados_ambiente3$FEve),

  FDiv = c(resultados_ambiente1$FDiv, resultados_ambiente2$FDiv, 
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resultados_ambiente3$FDiv),

  FDis = c(resultados_ambiente1$FDis, resultados_ambiente2$FDis, 

resultados_ambiente3$FDis),

  FRic = c(resultados_ambiente1$FRic, resultados_ambiente2$FRic, 

resultados_ambiente3$FRic)

)

df_datos

Paso 2. Obtener el siguiente data.frame:

   Ambiente      FEve      FDiv      FDis                      FRic

1 Ambiente1 0.9189994 0.8540726 0.2855491 0.00000000000116613814307

2 Ambiente2 0.8687807 0.8795479 0.2865776 0.00000002346762775835205

3 Ambiente3 0.9191980 0.8592282 0.2668836 0.00000000000000004207213

Paso 3. Interpretar los resultados. En su mayoría, excepto para el caso de uniformidad 
funcional (FEve), un aumento numérico en el valor del índice revela una mayor diversidad 
funcional. Es decir que las áreas con valores más altos de Fdiv, FDis y FRic indican lugares 
con mayor diversidad funcional. Por otro lado, valores bajos de FEve, mayor diversidad 
funcional al comparar distintas áreas.

Recapitulando

En este capítulo, se amplió la comprensión de la biodiversidad al explorar formas adi-
cionales y complementarias de medirla, más allá de los métodos clásicos de diversidad. 
Mientras que en capítulos anteriores se abordaron la riqueza específica y los índices de 
diversidad clásicos, como Shannon y Simpson, aquí se ha enfocado en medidas que pro-
porcionan una visión más matizada y enriquecida.

Primero, se introdujo la diversidad taxonómica, una métrica que va más allá de la simple 
riqueza de especies al considerar las relaciones filogenéticas entre ellas. Y se ha detallado 
el proceso para calcular e interpretar la diversidad taxonómica utilizando herramientas en 
R, proporcionando un paso a paso práctico para aplicar estos conceptos en estudios reales. 

En adición se ha explorado la diversidad funcional, una medida crucial que se enfoca en 
los rasgos funcionales de las especies en lugar de su filiación taxonómica. Este enfoque 
nos proporciona una perspectiva diferente sobre la biodiversidad al considerar cómo las 
especies afectan y participan en los procesos ecosistémicos. La diversidad funcional, a 
diferencia de la taxonómica, no se basa en relaciones filogenéticas, sino en las caracterís-
ticas observables que determinan el desempeño ecológico de las especies. 

En conjunto, estas metodologías avanzadas enriquecen nuestra capacidad para medir 
e interpretar la biodiversidad. Esta perspectiva multifacética es fundamental para diseñar 
estrategias de conservación efectivas y para estudiar la dinámica de los ecosistemas con 
mayor profundidad. «
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Capítulo 7
Estudio de la estructura de la comunidad

Lucas J. Mina y Matías I. Dufek

Hasta este punto, se han explorado distintos tipos y formas de calcular índices de diversi-
dad. Entre todos ellos, la riqueza de especies, junto con los índices clásicos de diversidad, 
que permiten reconocer aspectos importantes de las comunidades biológicas. Sin embar-
go, estos últimos no logran mostrar qué especies contribuyen más a esa diversidad. Esto 
se debe a que en la gran mayoría de las comunidades siempre habrá especies dominantes 
(muy abundantes) y especies raras.

Este capítulo explorará algunos análisis que permitan conocer esa estructura, como las 
curvas de Whittaker, así como otros para comparar la composición de dos o más comu-
nidades, como el Escalado multidimensional no métrico (NMDS por sus siglas en inglés, 
Non-metric multidimensional scaling). Se usará como ejemplo a las comunidades de hor-
migas clasificadas según su estado de conservación (alto, medio o bajo).

Curvas de Whittaker

También conocidas como curvas de rango-abundancia, permiten ver, de forma gráfica, 
los patrones de distribución de las especies de una comunidad. En estas curvas, las espe-
cies se ordenan de mayor a menor abundancia, asignándoles un rango dependiente de 
esta ordenación, de ahí su nombre rango-abundancia.

Construir e interpretar curvas de Whittaker en R
Ahora se verá cómo elaborar estas curvas mediante la librería BiodiversityR. Para su con-
fección, se necesitan dos tablas: una que contenga las especies por sitio de muestreo y 
otra que indique a qué clasificación corresponde cada sitio; en este caso, como se men-
cionó anteriormente, se usará el estado de conservación.

«
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Input

Paso 1. Las librerías necesarias son las siguientes:

library(tidyverse) 

library(readxl) 

library(ggrepel) 

library(BiodiversityR)

library(datosEcoR)

Paso 2. Para este análisis, se usarán los datos de «abundancia» y «ambiente» del paquete, 
que contienen tablas con los formatos que se ven en la figura 1, que se corresponden con 
una matriz de abundancia de tipo 1 y una matriz ambiental.

data(abundancia)

data(ambiente)

Figura 1. A) Tabla de especies por sitio; B) Tabla de clasificación de sitios.

Output

Paso 1. Una vez que se tengan estas tablas, se puede comenzar el análisis y realizar una 
curva de Whittaker para todas las especies, sin tener en cuenta la clasificación de los si-
tios. En este caso, esto se hace únicamente con fines exploratorios:

# ---- Rangos de abundancia ---- 

 

rank_abundancia <- rankabundance(abundancia$localidad) 

 

rankabunplot(rank_abundancia, scale = “abundance”)  #Fig. 7.2
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Figura 2. Curva de Whittaker generada con la función rankabunplot.

Paso 2. Como se puede ver en la figura 2, este gráfico no resulta muy atractivo y tampoco 
aporta la información que se estaba buscando, que era comparar las composiciones de los 
tres sitios. A continuación, se verá cómo solucionar ambos problemas.

Primero, se empieza por correr la función rankabundcomp, que permite calcular las 
curvas de rango-abundancia para distintos subconjuntos (en este caso, para cada estado 
de conservación). Esta función genera un gráfico automáticamente, pero se lo ignorará y 
almacenarán los resultados en una variable:

rank_abundancia_amb <- rankabuncomp( 

  abundancia$localidad, 

  y = ambiente, 

  factor = “estado_conservacion”, 

  legend = FALSE 

)

Paso 3. En este caso, la tabla de abundancias por sitio, denominada especies, contiene la 
información sobre la frecuencia de las especies en cada ambiente. El argumento ambiente 
indica la clasificación de los sitios, mientras que el argumento factor especifica qué co-
lumna de la tabla ambiente se utilizará para generar los subconjuntos (esta columna debe 
ser un factor, sino lo fuera, la función arroja un error). Con estos resultados, se dispone 
de todo lo necesario para crear los gráficos. Sin embargo, se puede agregar una columna 
para marcar las especies únicas de cada comunidad, con el siguiente fragmento de código 
(esto es completamente opcional):
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# Marcamos especies únicas 

especies_unicas <- lapply( 

  unique(levels(ambiente$estado_conservacion)), 

  function(group) { 

    setdiff(subset(rank_abundancia_amb, Grouping == group)$species, 

            subset(rank_abundancia_amb, Grouping != group)$species) 

  } 

) 

especies_unicas <- unlist(especies_unicas) 

 

rank_abundancia_amb$unique <- ifelse( 

  rank_abundancia_amb$species %in% especies_unicas, TRUE, FALSE 

)

Paso 4. Confeccionar tres gráficos, uno para cada estado de conservación, y se empieza 
por definir una función para no repetir el código, ya que los tres gráficos son similares:

curva_whittaker <- function(x, group, scale, color, mark.unique = 

FALSE) { 

  if (“unique” %in% names(x)) { 

    unique_num <- nrow( 

      subset(x, Grouping == group & unique == TRUE) 

    ) 

  } 

   

  label <- sprintf(“%s especies únicas”, unique_num) 
  xmax <- max(x[[“rank”]]) 

  ymax <- max(x[[scale]]) 

 

  plot <- ggplot(x, aes(x = rank, y = .data[[scale]])) + 

    coord_cartesian( 

      xlim = c(0, xmax), 

      ylim = c(0, ymax) 

    ) + 

    geom_point( 

      data = subset(x, Grouping == group), 

      size = 3, 

      shape = 1, 

      color = color 

    ) + 

    scale_shape_manual( 

      name = NULL, 
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      breaks = c(“unique”), 

      label = c(label), 

      values = c(19) 

    ) + 

    geom_line( 

      data = subset(x, Grouping == group), 

      color = color 

    ) + 

    geom_text_repel( 

      data = subset(x, Grouping == group & labelit == TRUE), 

      aes(label = species), 

      hjust = 0, 

      nudge_x = 3, 

      size = 3 

    ) + 

    theme_classic() 

   

  if (mark.unique) { 

    plot <- plot + 

      geom_point( 

      data = subset(x, Grouping == group & unique == TRUE), 

      aes(shape = “unique”), 

      color = color, 

      size = 3, 

    ) + 

    theme(legend.position = c(.7, .5)) 

  } 

  return(plot) 

}

Paso 5. Esta función permite hacer los gráficos de la siguiente forma:

curva_whittaker(x, group, scale, color, mark.unique = FALSE)

Paso 6. Donde: x son los resultados de rankabunplot, que se calculó más arriba; group 
es el subconjunto que se desea graficar, en este caso, alguno de los estados de con-
servación; scale indica qué escala1 usar, puede ser abundance, proportion, accumfreq, 

1.  La escala abundance usa la abundancia de especies; proportion, la abundancia proporcional; accum-

freq, la acumulación de la abundancia proporcional y logabun, el logaritmo en base 10 de la abundancia.
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logabun, rankfreq; color es el color de la curva; mark.unique, con valores TRUE o FALSE, 
permite elegir si se quiere indicar o no las especies únicas, el valor por defecto es FALSE.

Paso 7. Graficar las tres curvas y guardarlas basta con:

curva_ecb <- curva_whittaker(rank_abundancia_amb, “ECB”, 

“abundance”, “darkgreen”, mark.unique = TRUE) 

curva_eci <- curva_whittaker(rank_abundancia_amb, “ECI”, 

“abundance”, “orange”, mark.unique = TRUE) 

curva_ecd <- curva_whittaker(rank_abundancia_amb, “ECD”, 

“abundance”, “red”, mark.unique = TRUE) 

 

curva_ecb   # Fig. 7.3.A 

curva_eci   # Fig. 7.3.B 

curva_ecd   # Fig. 7.3.C 

 

ggsave(“./plots/curva_ecb.png”, plot = curva_ecb) 

ggsave(“./plots/curva_eci.png”, plot = curva_eci) 

ggsave(“./plots/curva_ecd.png”, plot = curva_ecd)

Figura 3. Curvas de Whittaker, estado de conservación bueno (ECB).
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Figura 4. Curvas de Whittaker, estado de conservación intermedio (ECI).

Figura 5. Curvas de Whittaker, estado de conservación degradado (ECD)
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Paso 8. Confeccionar un gráfico con todas las curvas juntas:

ggplot(rank_abundancia_amb, aes(x = rank, y = abundance, color = 

Grouping)) + 

  geom_line() + 

  geom_point(size = 2.5) + 

  labs(color = “”, shape = “”) + 

  scale_color_manual(breaks = c(“ECB”, “ECI”, “ECD”), values = 

c(“darkgreen”, “orange”, “red”))+ 

  theme_classic() + 

  theme(legend.position = “top”)

Figura 6. Curvas de Whittaker para ambientes con estados de conservación bueno, intermedio y 

degradado.

Paso 9. Interpretar los resultados. Como se mencionó anteriormente, las curvas de Whit-
taker o de rango-abundancia permiten observar gráficamente la estructura de las comu-
nidades en estudio y ofrecen una sencilla interpretación. Comunidades uniformes ten-
drán curvas más «planas», similares a la observada en la figura 3A. En cambio, si existen 
especies dominantes, adquirirá la forma que se puede ver en las figuras 3B y C, a veces 
conocida como forma de «palo de golf». Cuanto mayor sea la dominancia de esa o esas 



. 103

especies, más acentuada estará dicha forma. Por ejemplo, en nuestro caso, si bien tanto 
en ambientes ECI y ECD hay dominancia de especies, se puede ver que en ambientes ECI 
(figura 3B) es mayor que en los ambientes ECD (figura 3C).

Curvas de acumulación

Las curvas de acumulación son un tipo de gráfico que relaciona la cantidad de especies (o 
riqueza) con una unidad de esfuerzo de muestreo como, por ejemplo, número de sitios de 
muestreo. Estas curvas permiten estimar la cantidad máxima de especies de un ambiente, 
así como también evaluar y comparar nuestros esfuerzos de muestreo.

Construir e interpretar las curvas de acumulación en R
Para su confección, sólo es necesaria una tabla con la abundancia de especies por unidad 
de muestreo, en este caso, la unidad serán los sitios de recolección. Y, como se verá, el 
script es bastante sencillo.

Input

Paso 1. Utilizar una matriz de abundancia de tipo 1:

# ---- Librerias ----  

 

library(BiodiversityR) 

library(ggplot2) 

 

# ---- Carga de datos ---- 

 

abundancia_esp <- read.csv(“./data/datos_abundancia.csv”, 

row.names = 1) 

 

# ---- Curva de acumulación ---- 

 

# Dimensiones de los datos 

dim(abundancia_esp) 

 

curva <- specaccum(abundancia_esp)
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Paso 2. La función specaccum devuelve el siguiente objeto, donde sites es el número de 
sitios (unidad de muestra), richness corresponde a la riqueza de especies correspondiente 
al número de sitios y sd, la desviación estándar:

Sites     1.00000  2.00000  3.00000  4.00000  5.00000  6.00000  

7.00000   8.00000   9 

Richness 30.33333 48.47222 62.05952 73.23810 82.92857 91.61905 

99.58333 107.00000 114 

sd        8.74325  9.49255  9.60442  9.33264  8.76685  7.87409  

6.49098   4.37163   0

Paso 3. Para graficar la curva, es posible hacerlo usando los gráficos base de R, con la 
función plot(), pero en este caso se usará ggplot. Antes, se debe convertir el resultado 
anterior en un data.frame:

datos_sp <- data.frame( 

  Sitios = curva$sites, 

  Riqueza = curva$richness, 

  SD = curva$sd 

)

Output

Paso 1. Graficar:

ggplot(datos_sp, aes(x = Sitios, y = Riqueza)) + 

  geom_ribbon(aes(ymin = Riqueza - SD, ymax = Riqueza + SD), fill = 

“grey90”) + 

  scale_x_continuous(breaks = datos_sp$Sitios) + 

  geom_line(color = “blue”) + 

  theme_classic()

Con esto obtenemos el siguiente gráfico.
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Figura 7. Curva de acumulación.

Paso 2. Interpretar los resultados. Como se ve en el gráfico, a medida que aumenta la can-
tidad de sitios (o lo que es lo mismo, el esfuerzo de muestreo), la curva tiende a ascender. 
Esto indica que se están recolectando especies nuevas con cada sitio de muestreo. Ge-
neralmente, estas curvas comienzan con un rápido ascenso, debido a que al principio se 
recolectan las especies más comunes y, a medida que aumenta el esfuerzo de muestreo, 
se comienzan a recolectar especies más raras, por lo que el ascenso de la curva disminu-
ye, llegando a un punto en el que adquiere un comportamiento asintótico. Esto último 
indica que, sin importar cuánto aumente el muestreo, no estará añadiendo una cantidad 
significativa de especies al inventario. Es por esto por lo que estas curvas son muy valiosas 
para ayudar a determinar la fiabilidad de muestreo y también para estimar el esfuerzo de 
muestreo necesario para obtener un inventario de especies representativo.

Curvas de rarefacción

Aunque las curvas de acumulación que se han visto anteriormente son una herramienta 
valiosa, no están exentas de problemas. Uno de ellos es que, al usar sitios como medida 
de esfuerzo muestral, no se tiene en cuenta las diferencias entre estos sitios que puedan 
afectar la colecta (como, por ejemplo, la estructura vegetal o variables microclimáticas).

Aquí es donde entran en juego las curvas de rarefacción, las cuales establecen una re-
lación entre el número de especies y el número de individuos. Esta corrección facilita una 
comparación de la riqueza de muestras con distinto tamaño.
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Construir e interpretar las curvas de rarefacción en R
Confeccionar curvas de rarefacción en R es bastante sencillo, gracias a la librería iNext, 
como se verá, con un par de líneas de código es suficiente para obtener resultados. Lo 
más importante, como se mencionó en capítulos anteriores, es el formato de los datos de 
entrada. La función admite datos tanto de abundancia como de incidencia.

Input

Paso 1. Para realizar estas curvas en R, se usará el paquete iNext:

library(iNEXT)

Paso 2. Este ejemplo compara las curvas de rarefacción, de diversidad verdadera, entre 
tres ambientes, con distintos estados de conservación: bueno, intermedio y degradado. 
La función iNEXT() admite dos tipos de datos para el cálculo, de abundancia e incidencia. 
En este caso se usarán datos de abundancia, que consisten simplemente en una tabla 
donde las filas corresponden a cada especie, las columnas a cada uno de los ambientes y 
los valores a la abundancia (matriz de abundancia de tipo 2):

abundancia_ec <- read.csv(“./data/abundancia_ec.csv”, 

row.names = 1)

Output

Paso 1. Cargados estos datos, ahora basta con:

inext_abundancia <- iNEXT(abundancia_ec, q = c(0, 1, 2), 

datatype = “abundance”)

Paso 2. El argumento q permite elegir qué orden q de los números de Hill se quiere calcu-
lar. Recuérdese que se está trabajando con la diversidad verdadera, por lo que se calcula 
q de orden 0 (riqueza), 1 (Shannon) y 2 (inverso de Simpson). Con estos datos, se reali-
zarán dos tipos de gráficos, uno separando las curvas por ambiente (figura 6A), compa-
rando los órdenes q, y otro separando los gráficos por orden q (figura 6B), comparando 
los ambientes.
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Paso 3. Para el gráfico por ambiente, estado de conservación en este caso:

plot_ec <- ggiNEXT(inext_abundancia, type = 1, facet.var = 

“Assemblage”) +

  theme_classic(base_size = 10) +

  theme(legend.position = “bottom”)

plot_ec

Paso 4. Para el gráfico por orden q:

plot_orderq <- ggiNEXT(inext_abundancia, type = 1, facet.var 

= “Order.q”) +

  theme_classic(base_size = 10) +

  theme(legend.position = “bottom”)

plot_orderq

Figura 8. Curvas de rarefacción, la zona sombreada corresponde al intervalo de confianza. A) divididas 

por ambiente; B) divididas por orden q.

Paso 5. Interpretar los resultados. La interpretación de estas curvas es similar a las de las 
curvas de acumulación. Recuérdese que con la rarefacción se hace una relación por el 
número de individuos. Aquí también se observa que las curvas ascienden rápidamente 
en un principio, pero a medida que aumentan los individuos colectados, este ascenso se 
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desacelera. Al usar iNEXT, también se estima una extrapolación (línea punteada en los 
gráficos de la figura 5), lo que permite estimar cuántos individuos se deberían capturar 
para tener un inventario fiable de la diversidad del ambiente. Esta estimación permite 
comprobar cuándo la curva comienza a tener un comportamiento asintótico, como se 
puede observar en la curva de orden q 0 del ambiente ECI.

Escalado multidimensional no métrico (NMDS)

NMDS es una técnica de ordenación. Este análisis utiliza como base a las matrices de 
distancia y su objetivo principal es representar gráficamente en un número predetermi-
nado de ejes, generalmente dos, datos con relaciones complejas o con gran cantidad de 
ellas. No pretende conservar las distancias entre los elementos, pero sí sus relaciones de 
ordenación.

Estimar e interpretar los NMDS en R
Ahora se verá un ejemplo de cómo realizar un análisis NMDS, utilizando funciones de la 
librería BiodiversityR. Para lo cual se utilizan dos tablas, una de abundancia y otra con 
datos ambientales. Y se construirán gráficos utilizando ggplot, en vez de los gráficos base 
de R.

Input

Paso 1. Las librerías necesarias son las siguientes:

library(BiodiversityR) 

library(ggrepel) 

library(ggforce) 

library(concaveman)

Paso 2. Para este análisis, se necesitan dos tablas de datos. En ambas, las filas corres-
ponden a la unidad muestral (en este caso, transectas compuestas por 20 trampas cada 
una). En la primera tabla, las columnas representan las especies capturadas (matriz de 
abundancia tipo 1) y en la segunda, las variables ambientales (matriz ambiental). Es muy 
importante que en ambas tablas los nombres de las filas sean los mismos y estén en el 
mismo orden. Ahora se procede a cargar los datos:

sitios <- read.csv(“./datos/sitios.csv”, row.names = 1, 

header = TRUE) 

ambiente <- read.csv(“./datos/ambiente.csv”, row.names = 1, 

header = TRUE)
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Paso 3. Se pasa al análisis, pero antes se establece un número de seed para asegurar que 
los resultados sean reproducibles. Se pueden probar distintos números para observar 
cómo afecta esto al resultado.

set.seed(19950922) 

 

resultado_nmds <- metaMDS(sitios, distance = “bray”, K = 2)     

#(1) 

resultado_nmds$stress   #(2)

Paso 4. El argumento K es la cantidad de dimensiones que se quiere, en la gran mayoría 
de casos se utilizan dos, ya que facilita la interpretación; la línea (2) devuelve el valor de 
stress del análisis y permite juzgar qué tan buena es la solución alcanzada por el NMDS. 
Valores menores a 0.102 son perfectamente aceptables, entre 0.10 y 0.20 se pueden dar 
errores y mayores a 0.20, su interpretación no es confiable.

Este análisis se puede complementar con anosim, que permite conocer si existen di-
ferencias significativas entre las comunidades en estudio. Para este ejemplo, entre los 
ambientes con distintos estados de conservación:

dist_sitios <- vegdist(sitios) 

anosim_sitios <- anosim(dist_sitios, ambiente$estado_

conservacion, distance = “bray”) 

summary(anosim_sitios)

Output

Paso 1. Esto da como resultado un valor de significancia (p). Si este es menor a 0.05, sig-
nifica que sí existen diferencias significativas entre los sitios; de lo contrario, si p es mayor 
a 0.05, no hay diferencias significativas. En este caso el resultado es:

Call: 

anosim(x = dist_sitios, grouping = ambiente$estado_conservacion,      

distance = “bray”)  

Dissimilarity: bray

  

ANOSIM statistic R: -0.00218  

      Significance: 0.454 

...

2.  Un valor de estrés menor a 0.05 indicaría una representación excelente, pero esto es muy difícil de 

lograr con datos de muestreo que no sean representativos.
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Paso 2. Graficar el NMDS utilizando ggplot:

# Creamos un data.frame con los resultados 

puntos_nmds <- as.data.frame(resultado_nmds$points) 

puntos_nmds$CONSERVACION <- ambiente$estado_conservacion 

 

# Agregamos siglas para nombres de los sitios y guardamos el valor 

de stress 

puntos_nmds$SITIO <- c( 

  “EBA-T1”, “EBA-T2”, “EQN-T1”, “ESC-T1”, “ESC-T2”, “PIN-T1”, 

“PCHI-T1”, “PCHI-T1”, 

  “PCHII-T1”, “PCHII-T2”, “PANT-T1”, “PANT-T2”, “RCH-T1”, “RCH-T2”, 

“VED-T1” 

) 

estres <- sprintf(“Stress = %s”, round(resultado_nmds$stress, 2)) 

 

# Graficamos 

plot_nmds <- ggplot(puntos_nmds, aes(x = MDS1, y = MDS2)) + 

  ggtitle(“NMDS”) + 

  geom_point(aes(shape = CONSERVACION), size = 3) + 

  scale_shape_manual( 

    name = “”, 

    breaks = c(“ECB”, “ECI”, “ECD”), 

    labels = c(“Conservado”, “Intermedio”, “Degradado”), 

    values = c(15, 16, 17) 

  ) + 

  geom_mark_hull( 

    aes(group = CONSERVACION, linetype = CONSERVACION), 

    concavity = 10, 

    radius = 0, 

    expand = 0, 

    show.legend = FALSE 

  ) + 

  scale_linetype_manual(values = c(“solid”, “dashed”, “dotted”)) + 

  annotate(“text”, x = +Inf, y = +Inf, label = estres, hjust = 1, 

vjust = 1) + 

  theme_classic() 

plot_nmds 

 

# Opcionalmente podemos añadir el nombre de los sitios 

plot_nmds + 

  geom_text_repel( 
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    aes(label = SITIO), 

    box.padding = 0.5, 

    size = 3.5, 

    colour = “blue”, 

  )

Figura 9. Gráfico NMDS.

Paso 3. Interpretar los resultados. En el gráfico se puede ver que el valor de estrés es 0.16, el 
cual no es excelente pero aun así es aceptable. Sin embargo, lo más relevante que se puede 
notar es cómo los polígonos, que representan cada estado de conservación, se superponen. 
Esto sugiere que no hay diferencias significativas entre estos sitios. En el caso de que las 
hubiera, los polígonos estarían alejados unos de otros o su superposición sería relativamen-
te pequeña. Esta interpretación se respalda con los resultados obtenidos con anosim (p = 
0.454), lo que también indica que no hay diferencias significativas entre sitios.

Recapitulando

Este capítulo abordó el estudio de la estructura de las comunidades biológicas mediante 
técnicas avanzadas de análisis de diversidad. 

Primero, introdujo las curvas de Whittaker, que visualizan la distribución de especies según 
su abundancia y permiten identificar patrones de dominancia. Estas curvas proporcionan 
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una perspectiva detallada de cómo se distribuyen las especies dentro de una comunidad y 
facilitan la comparación entre diferentes ambientes.

Continuó con las curvas de acumulación, que relacionan el número de especies con el 
esfuerzo de muestreo, permitiendo evaluar la efectividad de este esfuerzo y estimar la ri-
queza total de especies. A diferencia de estas, las curvas de rarefacción ajustan la riqueza 
de especies según el número de individuos, corrigiendo las diferencias en el tamaño de 
las muestras.

Finalmente, el NMDS (Escalado multidimensional no métrico) se presentó como una 
herramienta para representar gráficamente relaciones complejas entre comunidades, fa-
cilitando la interpretación de la estructura comunitaria a través de múltiples dimensiones. 

Cada técnica complementa a las otras, ofreciendo una comprensión integral de la diver-
sidad y distribución de las especies en diversos contextos de conservación.

«
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Capítulo 8
Evaluación de variables ambientales

Darío D. Larrea y Lucas J. Mina

Las variables ambientales son factores determinantes (físicos, químicos y/o biológicos) 
que modelan la estructura, función y dinámica de los ecosistemas. Pueden ser tanto fac-
tores abióticos (como temperatura, humedad, luz, pH, salinidad) como factores bióticos 
(como la estructura de la vegetación). Estas variables pueden modificarse a lo largo del 
tiempo y el espacio, determinando la abundancia de las especies y sus patrones de distri-
bución. 

Las variables ambientales de temperatura, presión, viento, humedad, precipitación y 
fotoperiodo definen condiciones limitantes de una determinada área o región, es decir, 
el clima, al que se adaptan los organismos. En otras palabras, los organismos evolucionan 
y se adecuan a condiciones específicas del entorno, por lo que ciertos factores pueden 
limitar su distribución geográfica.

Existen otras variables del entorno importantes para los organismos como las condi-
ciones edáficas e hídricas. Las condiciones edáficas se refieren a las características del 
suelo, como la textura, la composición química, la estructura y la capacidad de retención 
de agua. El tipo de suelo influye en la disponibilidad de nutrientes para las plantas, la 
filtración del agua y la estabilidad del hábitat para la fauna del suelo. Por otro lado, las 
condiciones hídricas hacen referencia a la disponibilidad y calidad del agua. Las variables 
hídricas incluyen el volumen de precipitación, la humedad del suelo, la disponibilidad de 
agua superficial y la salinidad. Estas variables influyen en la distribución de especies acuá-
ticas y terrestres, así como en los patrones de migración y reproducción.

Estas variables proporcionan el contexto necesario para entender cómo los organismos 
interactúan con su entorno y cómo los ecosistemas responden a los cambios ambientales.

En algunos estudios ecológicos resulta fundamental comprender cómo las variables 
ambientales afectan a los organismos. En el análisis estadístico de estos estudios existen 
varias técnicas que permiten evaluar la relación entre variables ambientales y la estructu-
ra de las comunidades biológicas, de los cuales se hablará en este capítulo.

«
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•	 Análisis de regresión.

•	 Análisis de correlación. 

•	 Análisis de componentes principales (PCA).

•	 Análisis de correspondencia canónica (CCA).

•	 Test de Mantel. 

A continuación, se mostrará cómo llevar a cabo los distintos análisis mencionados en R, 
y cómo interpretar sus resultados.

Análisis de regresión

Este método permite cuantificar la relación entre una o más variables ambientales (como 
temperatura, humedad, pH del suelo, etc.) y las características de las comunidades bioló-
gicas (como diversidad, riqueza de especies, biomasa, etc.).

Input

Paso 1. Cargar los datos. Supóngase que se tiene un conjunto de datos en un archivo CSV 
llamado datos_ecologicos.csv, al que se pueden cargar los datos en R utilizando la función 
read.csv(). Esta tabla es una matriz para modelos:

datos <- read.csv(“datos_ecologicos.csv”)

Paso 2. Visualizar los datos. Se pueden crear gráficos para visualizar la relación entre las 
variables utilizando la función plot().

plot(datos$variable_independiente, datos$variable_dependiente)

La variable independiente pueden ser la diversidad, riqueza de especies, biomasa. La 
variable dependiente pueden ser temperatura, humedad, pH del suelo.

Paso 3. Ajustar el modelo de regresión. Para ajustar un modelo de regresión lineal, se 
puede utilizar la función lm(), donde lm significa modelo lineal:

modelo <- lm(variable_dependiente ~ variable_independiente, 

data = datos)
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Output

Paso 1. Evaluar el modelo. Se puede obtener un resumen del modelo utilizando la función 
summary():

summary(modelo)

Paso 2. Interpretar los resultados. El resumen del modelo proporciona información sobre 
los coeficientes de regresión, la significancia estadística y la bondad de ajuste del modelo.

Paso 3. Visualizar el modelo. Crear gráficos para visualizar el ajuste del modelo utilizando 
la función plot():

plot(datos$variable_independiente, datos$variable_dependiente)

abline(modelo, col = “red”) 

Paso 4. Los coeficientes de regresión estimados se encuentran bajo la columna Estimate 
en el resumen del modelo. Cada coeficiente representa la magnitud del efecto de la va-
riable independiente sobre la variable dependiente. Por ejemplo, un coeficiente de 2.5 
significa que, en promedio, la variable dependiente aumenta en 2.5 unidades por cada 
unidad de cambio en la variable independiente, manteniendo constantes todas las demás 
variables.

La columna Pr(>|t|) muestra los valores p asociados a cada coeficiente. Estos valores p 
indican la significancia estadística del coeficiente. Un valor p menor que el nivel de signi-
ficancia (usualmente 0.05) sugiere que el coeficiente es significativamente diferente de 
cero.

Análisis de correlación

Se utiliza para determinar si existe una relación estadísticamente significativa entre dos 
variables, como la temperatura del agua y la densidad de población de un organismo 
acuático. La correlación de Pearson y la correlación de Spearman son métodos comunes 
para este propósito.

Input

Paso 1. Cargar los datos. Supóngase que se tiene un conjunto de datos en un archivo CSV 
llamado datos_ecologicos.csv, cargar los datos en R utilizando la función read.csv():

datos <- read.csv(“datos_ecologicos.csv”)
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Paso 2. Calcular la matriz de correlación. Para calcular la matriz de correlación entre las 
variables, utilizar la función cor():

matriz_cor <- cor(datos)

Output

Paso 1. Visualización de datos:

a)	 Visualizar la matriz de correlación. Para visualizar la matriz de correlación, uti-
lizar la función corrplot() del paquete corrplot:

install.packages(“corrplot”)  

library(corrplot)             

corrplot(matriz_cor, method = “circle”) 

b) Otras formas de visualización, como un mapa de calor:

corrplot(matriz_cor, method = “color”)   

Paso 2. Identificar relaciones significativas. Para identificar relaciones significativas, ob-
servar los coeficientes de correlación y su significancia estadística. Calcular la significan-
cia utilizando la función cor.test():

resultado_prueba <- cor.test(datos$variable1, datos$variable2)

resultado_prueba  

Paso 3. Interpretar los resultados. La matriz de correlación muestra los coeficientes de 
correlación entre pares de variables. Los valores pueden variar entre -1 y 1, donde un 
valor de 1 indica una correlación positiva perfecta y un valor de -1 indica una correlación 
negativa perfecta. Por otor lado, un valor cercano a 0 indica una correlación débil o nula.

Análisis de Componentes Principales (PCA)

Este análisis se utiliza para reducir la dimensionalidad de un conjunto de datos, lo que 
permite identificar patrones y tendencias en la relación entre múltiples variables ambien-
tales y la estructura de las comunidades biológicas. El PCA puede ayudar a identificar qué 
variables ambientales explican la mayor parte de la variabilidad observada en las comuni-
dades biológicas.
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Input

Paso 1. Cargar los datos. Supóngase que se tiene un conjunto de datos en un archivo CSV 
llamado datos_ecologicos.csv, cargar los datos en R utilizando la función read.csv(). En 
este caso, usar una matriz para modelos únicamente con valores numéricos:

datos <- read.csv(“datos_ecologicos.csv”)

Paso 2. Seleccionar las variables para el PCA. En el PCA es común estandarizar las varia-
bles para que tengan una media de cero y una desviación estándar de uno. Usar la función 
scale() para estandarizar las variables:

datos_estandarizados <- scale(datos)

Paso 3. Realizar el PCA. Para realizar el PCA, utilizar la función prcomp():

pca <- prcomp(datos_estandarizados, scale = TRUE)

Output

Paso 1. Explorar los resultados del PCA y obtener información sobre las componentes 
principales y su contribución a la variabilidad total utilizando la función summary():

summary(pca)

Paso 2. Visualizar los resultados del PCA, así como la proporción de la variabilidad explica-
da por cada componente principal, utilizando un gráfico de barras.

plot(pca)

Paso 3. Seleccionar componentes principales. Para seleccionar un número determinado 
de componentes principales que expliquen una cantidad suficiente de la variabilidad total, 
por ejemplo, se pueden seleccionar los primeros k PC que expliquen, en conjunto, al me-
nos el 70-80% de la variabilidad total.

Paso 4. Proyectar los datos en el espacio de las componentes principales. Utilizar la fun-
ción predict() para proyectar los datos originales en el espacio de las componentes prin-
cipales:

datos_proyectados <- predict(pca, newdata = 

datos_estandarizados)
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Paso 5. Interpretar los resultados. Las componentes principales (PC) representan las 
direcciones de máxima variabilidad en los datos. La proporción de variabilidad explicada 
por cada PC se encuentra en la salida del resumen del PCA (esta proporción esta expli-
cada como un porcentaje). Pueden interpretarse los PC en función de las variables ori-
ginales para entender qué características de los datos contribuyen más a la variabilidad 
observada.

Análisis de Correspondencia Canónica (CCA)

En los estudios ecológicos a menudo se investigan gradientes ambientales, como la alti-
tud, la latitud o la disponibilidad de nutrientes. El análisis de correspondencia canónica 
(CCA) permite evaluar cómo varían las comunidades biológicas a lo largo de estos gra-
dientes y cómo estas variaciones están relacionadas con las variables ambientales.

Input

Paso 1. Cargar los datos. Usar dos tablas, una matriz de abundancia de tipo uno y una 
matriz ambiental.

abundancia <- read.csv(“abundancia.csv”)

ambiente <- read.csv(“ambiente.csv”)

Paso 2. Ejecución del CCA. Para realizar el CCA, utilizar la función cca() del paquete vegan:

install.packages(“vegan”)

library(vegan)             

cca_resultado <- cca(abundancia ~ ., ambiente)

Output

Paso 1. Explorar los resultados del CCA. Obtener información sobre la importancia de las 
variables ambientales y biológicas utilizando la función summary():

summary(cca_resultado)

Paso 2. Visualizar los resultados del CCA. Para visualizar la relación entre las variables 
ambientales y biológicas, utilizar gráficos de ordenación (ordination plots):

plot(cca_resultado)
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Paso 3. Seleccionar variables ambientales significativas. Para identificar las variables am-
bientales más importantes, utilizar pruebas de significancia, como el test de permutación:

anova_resultado <- anova.cca(cca_resultado)

significativas <- anova_resultado$ANOVA[,”Pr(>F)”] < 0.05

variables_ambientales_significativas <- rownames(anova_

resultado$ANOVA)[significativas]

Paso 4. Interpretar los resultados. El CCA identifica las variables ambientales que explican 
la mayor parte de la variabilidad en las variables biológicas. Pueden interpretar las relacio-
nes entre las variables ambientales y biológicas en función de la proximidad en el gráfico 
de ordenación.

Test de Mantel en R

Este test evalúa la relación entre dos matrices de distancia, como una matriz de distancia 
biológica (basada en la similitud entre comunidades biológicas) y una matriz de distancia 
ambiental (basada en la similitud entre las variables ambientales). El test de Mantel deter-
mina si estas dos matrices están correlacionadas, lo que sugiere que las variables ambien-
tales están relacionadas con la estructura de las comunidades biológicas. Este enfoque 
es especialmente útil cuando se investigan múltiples variables ambientales y se busca 
identificar cuáles tienen el mayor impacto en las comunidades biológicas estudiadas.

Input

Paso 1. Cargar los datos. Supóngase que se tienen dos matrices de distancia: una matriz 
de distancia biológica y una matriz de distancia ambiental. Cargar estas matrices en R.

a)	 Matriz biológica (matriz de abundancia de tipo 1):

matriz_biologica <- read.csv(“matriz_biologica.csv”, header = 

TRUE, row.names = 1)

b)  Matriz de distancia ambiental (matriz geográfica):

matriz_ambiental <- read.csv(“matriz_ambiental.csv”, header = 

TRUE, row.names = 1)

Paso 2. Calcular las matrices de distancia:
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dist_abundancia <- vegdist(matriz_biologica, method = “bray”)

dist_geografica <- as.dist(distm(matriz_ambiental, fun = 

distHaversine))

Paso 3. Calcular la matriz de correlación entre las matrices de distancia. Utilizar la función 
mantel() del paquete vegan para calcular el coeficiente de correlación de Mantel entre 
las dos matrices:

install.packages(“vegan”)

library(vegan)

resultado_mantel <- mantel(dist_abundancia, dist_geografica, 

method = “pearson”, permutations = 999)

Output

Paso 1. Explorar los resultados del test de Mantel y obtener información sobre el coefi-
ciente de correlación de Mantel y su significancia estadística:

resultado_mantel

Paso 2. Visualizar los resultados (opcional). Para visualizar las matrices de distancia y la 
relación entre ellas, utilizar gráficos de dispersión o mapas de calor.

Paso 3. Interpretar los resultados. El coeficiente de correlación de Mantel (rM) proporcio-
na una medida de la asociación entre las dos matrices de distancia. Un valor de rM cerca-
no a 1 indica una correlación positiva perfecta, mientras que un valor cercano a -1 indica 
una correlación negativa perfecta. Además, el valor p asociado al test de Mantel indica la 
significancia estadística de la correlación observada. Un valor p bajo (por ejemplo, < 0.05) 
sugiere que la correlación es significativa.

Recapitulando

Este capítulo examinó la influencia crucial de las variables ambientales en la estructura y 
dinámica de los ecosistemas. Estas variables, tanto abióticas como bióticas, como tempe-
ratura, humedad, pH y salinidad, determinan la distribución y abundancia de las especies, 
y su comprensión es esencial para la ecología.

Así también, abordó diversas técnicas estadísticas para analizar estas relaciones. El 
análisis de regresión y la correlación permiten cuantificar e identificar relaciones signi-
ficativas entre variables ambientales y características de las comunidades. El Análisis de 
Componentes Principales (PCA) y el Análisis de Correspondencia Canónica (CCA) facili-
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tan la reducción de la dimensionalidad y la evaluación de patrones en la variabilidad de los 
ecosistemas. Además, el test de Mantel ayuda a evaluar la asociación entre matrices de 
distancia biológica y ambiental.

La aplicación práctica de estos métodos en R, desde la carga y visualización de datos 
hasta la interpretación de resultados, ha demostrado cómo realizar análisis rigurosos. Es-
tos enfoques son fundamentales para comprender cómo las variables ambientales afec-
tan la organización y distribución de las especies, y son herramientas clave para la gestión 
y conservación de la biodiversidad.

«
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Capítulo 9
Modelado de nicho ecológico

Néstor G. Valle y Lucas J. Mina

Este capítulo describe los pasos para construir un modelo de nicho ecológico utilizan-
do el paquete ellipsenm1, junto con otros paquetes complementarios (raster, kuenm, rgl, 
ggplot2), en el lenguaje de programación R. La elección de este paquete se debe a su 
sencillez a la hora de estimar la amplitud del nicho y por no requerir otras técnicas de 
modelización, ya que utiliza sólo registros de ocurrencia de especies. 

Nicho ecológico

El término nicho ecológico ha sido utilizado por numerosos autores; sin embargo, su defi-
nición es muy discutida y se ha reformulado varias veces a lo largo del tiempo. El concepto 
de nicho fue empleado por primera vez por el ecólogo estadounidense Joseph Grinnell 
(1924), quien se refiere al papel de una especie en su comunidad y su respuesta a factores 
abióticos y bióticos en su entorno. Más tarde, Charles Elton (1927) lo definió como el lu-
gar en el ambiente biótico, su relación con el alimento y su interacción con otros organis-
mos. Por lo tanto, estos dos autores califican el nicho ecológico como el lugar que ocupa 
o el papel que desempeña una especie en el medio. 

Treinta años después, Evelyn Hutchinson (1957) estableció que el nicho de una especie se 
define como un «hipervolumen n-dimensional» que describe todas las condiciones ambien-
tales y los recursos que permiten a una especie sobrevivir y reproducirse. En otras palabras, 
el nicho ecológico de una especie abarca todos los aspectos de su interacción con el medio, 
incluida su dieta, hábitat, tolerancias ambientales y relaciones con otras especies (compe-
tencia, depredación y mutualismo). Distinguió además entre nicho fundamental y nicho 

1.  Ellipsenm es un paquete de R para la caracterización de nichos ecológicos mediante elipsoides. In-

cluye opciones de calibración y selección de modelos, réplicas y proyecciones, además de la superposición 

de nichos. «
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realizado: el nicho fundamental se refiere al conjunto completo de condiciones abióticas 
en las que puede vivir una especie, mientras que el nicho realizado está constituido por las 
condiciones ambientales existentes en el área más las interacciones biológicas.

Diagrama BAM 

En el contexto de la modelización de nichos, Soberón y Peterson (2005) utilizan un dia-
grama de Venn para representar el espacio geográfico y ecológico y explicar cómo in-
fluyen en la distribución la interacción de factores bióticos y abióticos y la accesibilidad 
de una región (figura 1). La región A representa el espacio ecológico donde se dan las 
condiciones abióticas adecuadas para la supervivencia de una especie; es la expresión de 
lo que Hutchinson (1957) definió como nicho fundamental (NF). La región B representa 
las relaciones bióticas interespecíficas positivas o negativas que influyen en la presencia 
de una especie, y la región M es la región accesible a la especie, ya sea por la capacidad 
de dispersión intrínseca de los individuos o por la introducción deliberada o accidental 
resultante de actividades antropogénicas. En resumen, la presencia de una especie será 
más probable en aquellos lugares donde se cumplan determinados requisitos, como la 
accesibilidad para la llegada y donde las condiciones bióticas y abióticas sean favorables 
para el incremento poblacional de dicha especie. 

El diagrama está delimitado por la intersección de B, A y M, que corresponde al nicho 
realizado (NR), el espacio geográfico y ecológico donde la especie está presente; la inter-
sección de A y B (G1) representa la existencia de factores bióticos y abióticos favorables, 
pero no es accesible.

Figura 1. Diagrama de Venn ilustrando las interacciones de los factores que determinan la distribución 

geográfica de una especie. (A) Área abiótica idónea; (B) Área biótica idónea; (M) Área accesible para 

la especie; (GI) Área con condiciones ambientales y bióticas favorables, pero fuera de la accesibilidad 

de la especie; (G0) Área de distribución ocupada, que cuenta con condiciones ambientales y bióticas 

favorables y accesible, con presencia efectiva de la especie (Soberón y Peterson, 2005; Soberón, Osorio-

Olvera, L. y Townsend Peterson, 2017).
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Modelo de nicho ecológico 

El área de distribución de una especie se documenta con base en la información proce-
dente de publicaciones, de bases de datos disponibles en la red y de ejemplares recolec-
tados en campañas y depositados en colecciones científicas. Esta área puede estimarse 
utilizando modelos predictivos de distribución (MDS) o de nicho ecológico (MNE) que 
relacionan las ocurrencias puntuales conocidas con un conjunto de variables indepen-
dientes, generalmente climáticas, y mediante un algoritmo se obtiene una representación 
del espacio ecológico que luego se proyecta en un espacio geográfico, prediciendo así el 
grado de idoneidad de los lugares y delimitando el área de distribución potencial de la 
especie, incluso en localidades donde aún no ha sido detectada (figura 2).

Figura 2. Representación del proceso de modelado del nicho ecológico y de la distribución geográfica de 

las especies. A) Registros de variables ambientales y lugares donde se ha registrado la especie. B) Espacio 

ecológico, donde se utilizan algoritmos matemáticos para combinar la distribución real conocida y un 

conjunto de variables independientes con el fin de proyectar la distribución pasada o futura de la especie. 

C) Modelo creado por el algoritmo, trasladado al espacio geográfico. Los círculos amarillos representan 

los registros de ocurrencia de la especie en la provincia del Chaco y en rojo el área de idoneidad climática.

Los modelos de distribución y nicho ecológico generan una estimación del área de pre-
sencia real o potencial. La modelización suele incluir sólo factores abióticos, y rara vez 
incorpora factores de dispersión o interacciones bióticas como predictores, pero estos 
también afectan a la distribución de las especies. Por ejemplo, para las especies fitófagas, 
la vegetación constituye una parte importante de su nicho ecológico; la presencia de su 
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planta huésped es esencial para el desarrollo satisfactorio del ciclo vital y el estableci-
miento de una población. La implementación de estos modelos de distribución ha tenido 
un incremento significativo en los últimos años, ya que tienen una amplia aplicación dada 
su utilidad para abordar distintas problemáticas. Así, los modelos predictivos se utilizan 
para resolver cuestiones relacionadas con la evaluación, planificación y toma de decisio-
nes en materia de conservación y protección de especies amenazadas, en programas de 
manejo ambiental, en el hallazgo de especies endémicas y raras, en la evaluación del ries-
go asociado a la ampliación de la distribución de las especies invasoras que puedan causar 
graves daños económicos y en el diseño de reservas. 

Modelización de nichos ecológicos (MNE) en R

Para realizar el análisis de modelización, es necesario llevar a cabo una búsqueda exhaus-
tiva de registros de ocurrencia de especies y variables ambientales en función de sus re-
querimientos ecológicos. Los datos de ocurrencia son recopilados de diferentes fuentes 
bibliográficas, colecciones de museos, herbarios, plataformas digitales (ejemplo, GBIF, 
speciesLink, etc.), que permiten un acceso rápido y hacen factible el análisis de taxones 
a gran escala en periodos de tiempo relativamente acotados. Respecto a las variables 
ambientales, existen varias fuentes o plataformas que proporcionan datos climáticos 
(ejemplo, WorldClim2, CHELSA, EarthEnv, etc.). Si bien el cambio climático puede tener 
efectos directos sobre la abundancia y distribución específica, es necesario considerar a 
los factores bióticos (ejemplo, plantas hospederas).

En este capítulo, el espécimen utilizado para ejemplificar los pasos de modelado de ni-
cho ecológico es Lepturges (Lepturges) limpidus Bates, 1872, un cerambícido exclusivo del 
Neotrópico, distribuido desde México hasta el sur del Paraguay (Valle y Simões, 2022). 

Input

Paso 1. Descargar los datos. Las variables climáticas pueden descargarse directamente 
de WorldClim u obtenerlas desde de R. Se utilizan variables con escenario para el pre-
sente, con una resolución espacial de 2,5 arcmin (~4,6 km en el Ecuador) proyectadas en 
WGS84. Además, se consideró a su única planta hospedera, Catostemma fragrans Benth., 
especie nativa de las Guayanas, como predictor biótico.

El shapefile de la región Neotropical propuesto por Morrone (2014) se utilizó como 
capa de proyección y se descargó mediante la función download.file. Las variables climáti-
cas de WorldClim se ajustaron para esta región biogeográfica en respuesta a los registros 
de ocurrencia:

2.  WorldClim es el repositorio más conocido y ampliamente utilizado en ecología predictiva.
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# Variables ambientales

mapas_worldclim <- “https://biogeo.ucdavis.edu/data/worldclim/

v2.1/base/wc2.1_2.5m_bio.zip”

tmp <- tempfile()

download.file(mapas_worldclim, destfile = tmp)

unzip(tmp, exdir = file.path(“data/base/worldclim”, bio_all))

unlink(tmp)

# Shapefile neotropico

tmp <- tempfile()

download.file(

  “https://figshare.com/ndownloader/articles/3569361/versions/2”,

  destfile = tmp

)

unzip(tmp, exdir = “data/base/mascara_neotropico”)

unlink(tmp) 

Paso 2. Separar las variables. De las 19 variables extraídas de WorldClim, 4  (bio 8, bio 9, 
bio 18 y bio 19) fueron  excluidas con el siguiente script por artificios espaciales conocidos 
entre celdas de cuadrícula adyacentes, y las capas en tres grupos: bio_all, con todas las 
capas; bio_temp, con las capas de variables de temperatura y bio_prec, con las capas de 
variables de precipitación:

for(i in c(8, 9, 18, 19)) {

  path <- file.path(“./data/base/worldclim/bio_all”, sprint-

f(“wc2.1_2.5m_bio_%s.tif”, i))

  file.remove(path)

}

dir.create(“./data/base/worldclim/bio_temp”)

dir.create(“./data/base/worldclim/bio_prec/”)

for (i in c(1:11)) {

  if (i == 8 || i == 9) {

    next

  }

  path <- file.path(“./data/base/worldclim/bio_all”, sprint-

f(“wc2.1_2.5m_bio_%s.tif”, i))

  file.copy(from = path, to = “./data/base/worldclim/bio_temp/”)

}

for (i in c(12:17)) {

  path <- file.path(“./data/base/worldclim/bio_all”, sprint-

f(“wc2.1_2.5m_bio_%s.tif”, i))

  file.copy(from = path, to =”./data/base/worldclim/bio_prec/”)

}
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Paso 3. Preparar los datos necesarios (mapas, tablas, PCAs y máscaras):

# ---- Librerias ----

library(raster)

library(kuenm) # https://github.com/marlonecobos/kuenm

library(ellipsenm) # https://github.com/marlonecobos/ellipsenm/

Paso 4. Depurar los datos. En los siguientes fragmentos de código se definen dos fun-
ciones que se utilizan para la depuración de los datos de ocurrencias (limpieza) y para la 
eliminar las áreas de calibración (cortar_mapas):

# ---- Limpieza ----

limpieza <- function(datos, region, thin_dist) {

  dentro <- data.frame(

    datos,

    inside = !is.na(raster::extract(region, datos[-1]))

  )

  dentro <- dentro[dentro$inside == TRUE, ][1:3]

  dentro <- dentro[!is.na(dentro$Lat) & !is.na(dentro$Long), ]

  unicos <- unique(dentro)

  thin_data(unicos, longitude = “Long”, latitude = “Lat”, thin_

distance = thin_dist)

}

# ---- Máscara ----

mascara <- function(ocurrencias, variables, salida, distancia) {

  variables <- raster::stack(

    list.files(file.path(variables, “Initial”), pattern = “pc_”, full.

names = TRUE)

  )

  buffer_oc <- buffer_area(

    ocurrencias,

    longitude = “Long”,

    latitude = “Lat”,

    buffer_distance = distancia

  )
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  mascara <- raster::mask(raster::crop(variables, buffer_oc), 

buffer_oc)

  dir.create(salida)

  raster::writeRaster(mascara, filename = file.path(salida, “pc”), 

format = “ascii”, bylayer = TRUE)

}

Paso 5. Representar. El conjunto de datos recopilados para identificar las áreas de idonei-
dad climática de L. limpidus alcanzó un total de 98 registros de presencia y para su planta 
hospedadora se recopilaron 177 ocurrencias. Todas las locaciones se deben representar 
en una matriz de datos que muestre este orden: nombre de la especie, longitud y latitud 
(figura 3).

Figura 3. Ventana de RStudio donde se muestran las tablas de registro de presencia de Lepturges limpidus 

y Catostemma fragrans cargadas en formato CSV. 

# ---- Limpieza ocurrencias ---- 

# Carga de datos

oc_l_limpidus <- read.csv(“./data/base/ocurrencias_l_limpidus.csv”)

oc_c_fragrans <- read.csv(“data/base/ocurrencias_c_fragrans.csv”)

region_neo <- raster(“./data/bio/bio_all.tif”, lyrs = 1)

plot(region_neo, col = “grey70”, legend = FALSE)

# Limpieza

oc_l_limpidus_neot <- limpieza(oc_l_limpidus[1:3], region_neo, 10)

points(oc_l_limpidus_neot$Long, oc_l_limpidus_neot$Lat)

write.csv(oc_l_limpidus_neot, file = “data/ocurrencias/l_limpidus.

csv”)
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oc_c_fragrans_neot <- limpieza(oc_c_fragrans, region_neo, 10)

points(oc_c_fragrans_neot$Long, oc_c_fragrans_neot$Lat, col = 

“seagreen”)

write.csv(oc_c_fragrans_neot, file = “data/ocurrencias/c_fragrans_

hp.csv”)

Paso 6. Al depurar el número de registros de ocurrencia se obtuvo como resultado final 
un total de 42 registros para L. limpidus y 28 presencias para C. fragrans. Se utilizó una 
distancia de adelgazamiento espacial de 10 km (figura 4). 

Figura 4. Capa de proyección mostrando las locaciones depuradas de L. limpidus (círculos negros) y C. 

fragrans (círculos verdes).

Paso 7. Con la finalidad de mejorar la eficiencia y precisión del modelo, se realizó un aná-
lisis de componentes principales (en español ACP, en inglés PCA), lo que permite reducir 
la dimensionalidad de los datos y eliminar los problemas de multicolinealidad. 

Paso 8. Se probaron tres conjuntos ambientales distintos para evitar sesgos en la combi-
nación de variables empleadas para caracterizar la centralidad de nicho de las especies. El 
conjunto 1 incluyó 15 variables, el conjunto 2 sólo variables de temperatura y el conjunto 
3, únicamente variables de precipitación. Los resultados del PCA se guardaron en formato 
ascii, un archivo de texto plano que puede abrirse en cualquier editor de texto:

# ---- PCA ----

# Todas las variables

kuenm_rpca(

  variables = raster::stack(“./data/bio/bio_all.tif”),

  var.scale = TRUE,
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  write.result = TRUE,

  out.format = “ascii”,

  out.dir = “./data/pcs_all”,

  n.pcs = 3 )

# Temperatura

kuenm_rpca(

  variables = raster::stack(“./data/bio/bio_temp.tif”),

  var.scale = TRUE,

  write.result = TRUE,

  out.format = “ascii”,

  out.dir = “./data/pcs_temp”,

  n.pcs = 3 )

# Precipitación

kuenm_rpca(

  variables = raster::stack(“./data/bio/bio_prec.tif”),

  var.scale = TRUE,

  write.result = TRUE,

  out.format = “ascii”,

  out.dir = “./data/ pcs_prec”,

  n.pcs = 3 )

Paso 9. Como resultado se conservaron los tres primeros componentes de cada conjunto, 
ya que explicaban acumulativamente > 88% de la varianza. Asímismo, para delimitar el 
área de calibración (es decir, «M», la región accesible a la especie), se enmascararon y 
recortaron las capas de componentes principales incluyendo un buffer3 (50 km) que ro-
deaba los registros de presencia conocidos:

# ---- Máscara ---- 

pcs <- c(“./data/pcs_all”, “./data/pcs_prec”, “./data/pcs_temp”)

for (carpeta in pcs) {

  salida <- file.path(carpeta, “l_limpidus”)

  mascara(oc_l_limpidus_neot, carpeta, salida, 50)

}

for (carpeta in pcs) {

  salida <- file.path(carpeta, “c_fragrans”)

  mascara(oc_c_fragrans_neot, carpeta, salida, 50)

}

3.  El tamaño del buffer se define en relación con la capacidad de dispersión conocida de la especie en 

estudio.
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Paso 10. Construcción de los elipsoides. Para caracterizar los nichos ambientales de L. lim-
pidus y C. fragans, se utilizaron elipsoides como modelos de nicho climático. Este método 
resulta óptimo al momento de interpretar el espacio de parámetros multidimensional de 
las variaciones del hábitat y establecer una clasificación aproximada de los registros según 
pertenezcan a poblaciones fuente o sumidero4. 

Paso 11. Con el fin de comprobar si la planta hospedadora podría estar limitando la dis-
tribución de L. limpidus, se calculó la superposición de nichos elipsoidales considerando 
la unión de las condiciones ambientales relevantes tanto para L. limpidus como para C. 
fragans5. El proceso se replicó 1.000 veces, y los valores de superposición observados se 
compararon con los encontrados para pares de elipsoides aleatorios:

# Definición funcion para leer los pcs generados anteriormente

leer_pcs <- function(carpeta, tipo = NULL) {

  carpetas <- list.files(carpeta, full.names = TRUE)

  nombres <- list.files(carpeta)

  raster_list <- lapply(carpetas, function(x) {

    raster <- raster::stack(

      list.files(x, pattern = “pc_”, full.names = TRUE)

    )

    names(raster) <- paste0(names(raster), tipo)

    raster

  })

  names(raster_list) <- nombres

  raster_list

}

#Definición función para calculo de elipses

superposicion <- function(ocs_hp, ocs_cb, vars_hp, vars_cb) {

  

  nicho_1 <- overlap_object(

    ocs_hp, species =  “species”,

    longitude = “Long”, latitude = “Lat”,

    method = “covmat”, level = 95,

    variables = vars_hp)

4.  El concepto de población fuente y sumidero es importante en la conservación de especies, ya que 

puede influir en las estrategias de gestión y conservación.

5.  Existen diferentes tipos de superposición: all, full y back_union. Se optó por la tercera opción porque 

se pretende medir la superposición de nichos elipsoidales considerando sólo la unión de las condiciones 

ambientales relevantes para las dos especies en estudio.
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  nicho_2 <- overlap_object(

    ocs_cb, species =  “species”,

    longitude = “Long”, latitude = “Lat”,

    method = “covmat”, level = 95,

    variables = vars_cb)

  

  ellipsoid_overlap(

    nicho_1, nicho_2, overlap_type = “back_union”,

    significance_test = TRUE, replicates = 1000,

    confidence_limit = 0.05)

}

# ---- Elipsoides ----

# Variables

pcs_all <- leer_pcs(“data/pcs_all/”)

pcs_prec <- leer_pcs(“data/pcs_prec/”)

pcs_temp <- leer_pcs(“data/pcs_temp/”)

# Ocurrencias 

oc_l_limpidus <- read.csv(“./data/ocurrencias_L_limpidus.csv”)

oc_c_fragrans <- read.csv(“./data/ocurrencias_c_fragrans.csv”)

# Superposición con prueba de significación

overlap_all <- superposicion(

  ocs_hp = oc_c_fragrans_neot,

  ocs_cb = oc_l_limpidus_neot,

  vars_hp = pcs_all$c_fragrans,

  vars_cb = pcs_all$l_limpidus

)

overlap_prec <- superposicion(

  ocs_hp = oc_c_fragrans_neot,

  ocs_cb = oc_l_limpidus_neot,

  vars_hp = pcs_prec$c_fragrans,

  vars_cb = pcs_prec$l_limpidus

)

overlap_temp <- superposicion(

  ocs_hp = oc_c_fragrans_neot,

  ocs_cb = oc_l_limpidus_neot,

  vars_hp = pcs_temp$c_fragrans,

  vars_cb = pcs_temp$l_limpidus
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)

dir.create(“./output/overlaps”, recursive = TRUE)

saveRDS(overlap_all, “./output/overlaps/overlap_all.rds”)

saveRDS(overlap_prec, “./output/overlaps/overlap_prec.rds”)

saveRDS(overlap_temp, “./output/overlaps/overlap_temp.rds”)

Paso 12. Proyección del modelo:

# ---- Carga de datos ----

# Se agraga un sufijo a cada capa del raster (_all, _prec, _temp)

# dependiendo del conjunto de predictors climáticos. 

pcs_all <- leer_pcs(“./data/pcs_all”, tipo = “_all”)

pcs_prec <- leer_pcs(“./data/pcs_prec”, tipo = “_prec”)

pcs_temp <- leer_pcs(“./data/pcs_temp”, tipo = “_temp”)

# ---- Preparación para análisis ----

dir.create(“./output/projection_model/splits”, recursive = TRUE)

data_split <- split_data(

  oc_cerambicido, method = “random”, longitude = “Long”,

  latitude = “Lat”, train_proportion = 0.75,

  save = TRUE, name = “./output/projection_model/splits/ocurren-

cias”

)

# Juntando las variables de cerambicido

# para luego armar los sets

vars_cerambicido <- raster::stack(

  pcs_all$l_limpidus, pcs_prec$l_limpidus, pcs_temp$l_limpidus

)

sets <- list(

  set_1 = c(“pc_1_all”, “pc_2_all”, “pc_3_all”),

  set_2 = c(“pc_1_prec”, “pc_2_prec”, “pc_3_prec”),

  set_3 = c(“pc_1_temp”, “pc_2_temp”, “pc_3_temp”)

)

sets_vars_cerambicido <- prepare_sets(vars_cerambicido, sets)
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# ---- Calibracion ----

metodos <- c(“covmat”, “mve1”)

calibracion <- ellipsoid_calibration(

  data_split, species = “species”, longitude = “Long”,

  latitude = “Lat”, variables = sets_vars_cerambicido,

  methods = metodos, level = 99, selection_criteria = “S_OR_P”,

  error = 5, iterations = 500, percentage = 50,

  output_directory = “output/projection_model/calibration_pcs”

)

res_calibracion <- read.csv(

  “./output/projection_model/calibration_pcs/selected_

parameterizations.csv”

)

res_calibracion

Paso 13. Para construir los modelos elipsoidales, existen diferentes métodos disponibles: 
covmat, mve1 y mve2. En este ejemplo se utilizó covmat, basado en el centroide y una 
matriz de covarianzas de las variables, y mve1, que genera un elipsoide que minimiza el 
volumen sin perder datos.

Por otra parte, el rendimiento de los modelos se evaluó en función de la significación 
estadística «ROC parcial», la tasa de omisión (E = 5%) y la prevalencia. Para calcular la 
métrica ROC parcial, se utilizaron 500 iteraciones Bootstrap, con un 50% de los datos de 
prueba y un 5% de error de incertidumbre. La prevalencia se calculó en el espacio geográ-
fico y ambiental. 

Los parámetros finales se eligieron basándose en los modelos mejor evaluados, se pro-
dujeron 10 réplicas utilizando el 75% de los datos.

Paso 14. Por último, para convertir el modelo de idoneidad continuo de Maxent en un 
mapa binario de «presencia-ausencia» de condiciones ambientales idóneas, se utilizó un 
valor umbral basado en la presencia mínima de entrenamiento, asumiendo un porcentaje 
de error en las ocurrencias del 5%:

# ---- Modelo ----

modelo <- ellipsoid_model(

  data = oc_cerambicido, species = “species”,

  longitude = “Long”, latitude = “Lat”,

  raster_layers = pcs_temp$Initial, method = “covmat”, level = 99,

  replicates = 10, prediction = “suitability”,
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  return_numeric = TRUE, format = “GTiff”, overwrite = FALSE,

  output_directory = “output/projection_model/model_pcs”

)

# Umbral del modelo

modelo_mean <- raster(

“./output/projection_model/model_pcs/mean_suitability_

calibration_l_limpidus.tif”

)

# Threshold del 5%

# Se tomó el valor más bajo recuperado y se utilizó para 

transformar el modelo en binario.

puntos_cerambicido <- extract(modelo_mean, oc_cerambicido[-1])

modelo_mean_binario <- (modelo_mean > min(puntos_cerambicido))

plot(modelo_mean_binario)

writeRaster(

  modelo_mean_binario,

  “./output/projection_model/final_model_thrs_5.tif”,

)

library(readr)

nuevo <- read_csv(“data/ocurrencias/l_limpidus_nr.csv”)

View(l_limpidus_nr)

points(oc_l_limpidus_neot$Long, oc_l_limpidus_neot$Lat, col = 

“black”, cex = 0.3)

points(nuevo$Long, nuevo$Lat, col = “red”, cex = 0.3)

Paso 15. La distancia de Mahalanobis calcula la distancia entre ocurrencias, siendo un mé-
todo sencillo para detectar errores espaciales. Los valores de idoneidad en los modelos de 
envoltura elipsoidal representan la distancia de Mahalanobis desde el óptimo (es decir, el 
centroide del elipsoide), de modo que los valores máximos estarán cerca del centroide y 
los mínimos cerca de la periferia del elipsoide:

# Crear tabla de especies alien y native de l_limpidus

# ---- Ocurrencias con status ----

l_limpidus_nr <- read.csv(“./data/base/l_limpidus_nr.csv”)

l_limpidus_nr$status  <- “alien”

oc_l_limpidus_neot$status <- “native”

l_limpidus_status <- rbind(oc_l_limpidus_neot, l_limpidus_nr)

write.csv(l_limpidus_status, file = “./data/ocurrencias/l_limpidus_

status.csv”, row.names = FALSE)
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# ---- Distancia Mahalanobis ----

cb_dist <- data.frame(

  l_limpidus_status,

  dist = extract(modelo_mean, l_limpidus_status[2:3])

)

cb_dist <- na.omit(cb_dist)

write.csv(cb_dist, file = “./output/dist_mahalanobis.csv”)

Output

Paso 1. Construcción de los gráficos:

# ---- Librerias ----

library(rgl)

library(ggplot2)

# ---Gráficos ---

# Overlaps

plot_over <- function(overlap) {

  plot_overlap(

  overlap, niche_col = c( “brown1”, “deepskyblue”),

  data_col = c(“brown1”, “deepskyblue”), background = FALSE,

  change_labels = TRUE, xlab = “”, ylab = “”, zlab = “”, legend= T)

  

}

plot_over(overlap_all) rgl.snapshot( “plots/overlap_all.png”, fmt = 

“png”, top = TRUE )

plot_over(overlap_prec) rgl.snapshot( “plots/overlap_prec.png”, fmt 

= “png”, top = TRUE )

plot_over(overlap_temp) rgl.snapshot( “plots/overlap_temp.png”, fmt 

= “png”, top = TRUE )

# Histogramas

# La función plot_hist crea gráficos usando R base.

# La función gg_hist lo hace utilizando ggplot2

plot_hist <- function(overlap){
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  hist(overlap@significance_results$union_random$Niche_1_vs_2$over-

lap,

    breaks = 5, main = “Overlap HP x Cb”, xlab = “Overlap”,

    xlim = c(0, 1), ylim = c(0, 650)

  )

  abline(v = quantile(overlap@significance_results$union_random$Ni-

che_1_vs_2$overlap, 0.05),

    col = “red”, lwd = 2, lty = 2

  )

  abline(v = overlap@union_overlap$overlap[1], col = “lightblue”, 

lwd = 2)

  legend(“topright”, bty = “n”, legend = c(“Observed”, “5% CL”),

    col = c(“lightblue”, “red”), lty = c(1, 2), lwd = 2

  )

}

plot_hist(overlap_all)

plot_hist(overlap_prec)

plot_hist(overlap_temp)

gg_hist <- function(overlap, file) {

  datos <- data.frame(

    Overlap = overlap@significance_results$union_random$Niche_1_

vs_2$overlap

  )

  observado <- overlap@union_overlap$overlap

  cl <- quantile(overlap@significance_results$union_random$Niche_1_

vs_2$overlap, 0.05)

  plot <- ggplot(datos) +

    ylab(“Frequency”) +

    coord_cartesian(xlim = c(0, 1), ylim = c(0,650)) +

    geom_histogram(aes(x = Overlap), bins = nclass.Sturges(da-

tos[,1]), color = “black”, fill = “gray85”) +

    geom_vline(

      aes(xintercept = cl, linetype = “5% CL”, color = “5% CL”)

    ) +

    geom_vline(

      aes(xintercept = observado, linetype = “Observed”, color = 

“Observed”)

    ) +

    scale_color_manual(

      name = “”,

      values = c(“red”, “blue”)
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    ) +

    scale_linetype_manual(

      name = “”,

      values = c(“dashed”, “solid”)

    ) +

    theme_classic()

  ggsave(file, plot = plot, width = 7, height = 7)

  plot

}

gg_hist(overlap_all, “plots/overlap_all.svg”)

gg_hist(overlap_prec, “plots/overlap_prec.svg”)

gg_hist(overlap_temp, “plots/overlap_temp.svg”)

# Mahalanobis

hist(cb_dist$dist)

abline(v = cb_dist$dist[cb_dist$status == “alien”], col = “red”, lwd 

= 1)

maha_plot <- ggplot(cb_dist, aes(x = dist)) +

  ylab(“Frequency”) +

  xlab(“Distance”) +

  geom_histogram(bins = nclass.Sturges(cb_dist $dist), color = 

“black”, fill = “gray”) +

  geom_vline(data = subset(cb_dist, status == “alien”), aes(xinter-

cept = dist), color = “red”) +

  theme_classic()

maha_plot

ggsave(“./plots/mahalanobis_hist.svg”, plot = maha_plot, height = 7, 

width = 7)
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Paso 2. Láminas que se obtienen del output:

Figura 5. Cálculo de la distancia entre ocurrencias de Mahalanobis. 

Figura 6. Elipsoides representando el nicho de C. fragans, en rojo, y L. limpidus en azul para A) todas las 

variables bioclimáticas, B) las variables de precipitación y C) las variables de temperatura.
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Figura 7. Mapa de idoneidad. Zonas idóneas en celeste y no idóneas en blanco. Los puntos en rojo indican 

los nuevos registros de L. limpidus.

Paso 3. Interpretación de los resultados. Estos modelos permiten no sólo entender la dis-
tribución actual de las especies, sino también prever su expansión futura y evaluar las 
posibles áreas de riesgo. Comprender la interacción entre las condiciones climáticas y los 
factores ecológicos es fundamental para diseñar estrategias efectivas de conservación y 
control, especialmente en el contexto de la creciente propagación de especies no nativas 
y/o exóticas.

Teniendo en cuenta el ejemplo, se puede concluir que la construcción de modelos elip-
soidal reveló una amplia idoneidad climática para Lepturges (Lepturges) limpidus en la 
región Neotropical, sugiriendo que los nuevos registros en Argentina no son anomalías 
climáticas, sino indicativos de un potencial establecimiento. Además, la falta de depen-
dencia exclusiva de su planta huésped conocida sugiere una mayor plasticidad ecológica 
de la especie, lo que podría facilitar su expansión a nuevas áreas. Estos hallazgos subrayan 
la necesidad de realizar encuestas sistemáticas y aplicar medidas de control para prevenir 
una mayor propagación y posibles impactos ecológicos negativos.

Recapitulando

El modelado de nicho ecológico es una herramienta fundamental para comprender la dis-
tribución de las especies en función de sus interacciones con el medio ambiente. A lo 
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largo de la historia, el concepto de nicho ecológico ha evolucionado, desde las primeras 
definiciones centradas en el papel de una especie en su comunidad hasta la concepción 
moderna de un «hipervolumen n-dimensional» que integra todas las condiciones abióti-
cas y bióticas necesarias para la supervivencia y reproducción de una especie. 

El uso de modelos de nicho ecológico permite estimar la distribución potencial de una 
especie, lo que es crucial para la conservación, el manejo ambiental y la predicción de 
la expansión de especies invasoras. Al emplear técnicas como el análisis de componen-
tes principales y la superposición de elipsoides, se pueden generar representaciones más 
precisas del nicho ecológico, lo que mejora la eficacia de las acciones de conservación. 
La capacidad de integrar datos climáticos, de ocurrencia y de interacciones bióticas en 
modelos predictivos hace que esta metodología sea indispensable en la biogeografía y en 
la toma de decisiones ambientales.

«
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Capítulo 10
La importancia de los análisis ecológicos con R 

Florencia Monti Areco, Matías I. Dufek y Darío D. Larrea

La ecología, como disciplina científica, ha experimentado una evolución significativa des-
de su definición por Ernst Haeckel en 1869. Originalmente, centrada en la observación y la 
descripción de los organismos y sus ambientes, la ecología se enfocaba en registrar y cla-
sificar la biodiversidad a partir de observaciones directas. Este enfoque descriptivo, aun-
que crucial en sus inicios, resultaba limitado para abordar la complejidad de las interac-
ciones entre especies y los procesos ecológicos subyacentes. Con el tiempo, la necesidad 
de una comprensión más profunda y cuantitativa llevó a la incorporación de herramientas 
estadísticas y modelos matemáticos en la investigación ecológica.

Durante la segunda mitad del siglo XX, los ecólogos comenzaron a integrar métodos 
estadísticos para analizar grandes volúmenes de datos, lo que permitió una compren-
sión más precisa de los patrones y procesos ecológicos. El uso de técnicas estadísticas 
avanzadas, como la regresión, el análisis de varianza y las pruebas de hipótesis, facilitó la 
validación de teorías y modelos ecológicos, y ofreció herramientas para identificar patro-
nes en la diversidad de especies y las dinámicas poblacionales. La capacidad de analizar 
datos de manera rigurosa permitió a los ecólogos no sólo describir la biodiversidad, sino 
también comprender cómo los factores bióticos y abióticos interactúan para dar forma a 
los ecosistemas.

El advenimiento de la informática trajo consigo una nueva era de análisis ecológicos. 
Con la llegada de softwares especializados, como Past, EstimateS y PRIMER-e, los ecó-
logos tuvieron acceso a herramientas avanzadas para analizar la diversidad de especies, 
modelar nichos ecológicos y evaluar patrones espaciales. Estos programas ofrecieron so-
luciones específicas para preguntas ecológicas complejas, aunque a menudo requerían 
licencias costosas y estaban limitados a un rango específico de análisis.

En este contexto, R emergió como una alternativa poderosa y accesible. R es un software 
de código abierto que proporciona una plataforma flexible para el análisis de datos, con una 
amplia gama de paquetes estadísticos desarrollados por la comunidad científica. La capaci-
dad de R para realizar desde análisis simples hasta modelos complejos ha revolucionado la 

«
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investigación ecológica, permitiendo a los investigadores personalizar y adaptar sus análisis 
según las necesidades específicas de sus estudios.

Una de las principales ventajas de R es su capacidad para promover la transparencia y la 
reproducibilidad en la investigación científica. Al ser un software de código abierto, R per-
mite a los investigadores compartir sus scripts y datos, facilitando la revisión y la repro-
ducción de resultados. Esta apertura es esencial para garantizar la validez de los hallazgos 
científicos y fomentar la colaboración en la comunidad ecológica global.

A pesar de su creciente popularidad, la mayoría de los recursos y documentación de 
R están disponibles en inglés, lo que representa una barrera significativa para muchos 
investigadores de habla hispana. La falta de recursos en español limita la capacidad de los 
investigadores noveles para acceder y utilizar eficazmente este software, lo que puede 
ralentizar el progreso en la investigación ecológica en comunidades hispanohablantes. 
Un manual detallado en español no sólo facilitaría el aprendizaje y el uso de R, sino que 
también promovería una mayor inclusión y diversidad en la ciencia, permitiendo que un 
mayor número de investigadores participen en la investigación ecológica.

Además de facilitar el acceso a R, la creación de recursos en español fomentaría una 
mayor colaboración entre investigadores de diferentes regiones y contextos lingüísticos. 
La diversidad en la investigación ecológica es crucial para abordar desafíos globales, como 
la pérdida de biodiversidad y el cambio climático. Un enfoque inclusivo y colaborativo 
permitirá a los ecólogos compartir conocimientos, intercambiar ideas y desarrollar solu-
ciones innovadoras para proteger y conservar nuestros ecosistemas.

La importancia de los análisis ecológicos con R se manifiesta en la capacidad de este 
software para abordar preguntas complejas sobre la biodiversidad y la dinámica de los 
ecosistemas. Desde el análisis de la estructura de comunidades y la evaluación de patro-
nes espaciales hasta la modelización de las dinámicas poblacionales y la predicción de 
cambios ambientales, R ofrece herramientas poderosas para comprender y gestionar la 
biodiversidad en un mundo en constante cambio. La disponibilidad de recursos en español 
y la promoción de la participación inclusiva en la ciencia son pasos esenciales para avan-
zar en la investigación ecológica y enfrentar los desafíos ambientales globales de manera 
efectiva.

En conclusión, R se ha consolidado como una herramienta esencial para la investigación 
ecológica, proporcionando a los científicos la capacidad de realizar análisis detallados y 
personalizados. La creación de recursos en español y la promoción de la colaboración 
internacional son cruciales para maximizar el impacto de R en la ciencia ecológica y ga-
rantizar que la investigación sobre la biodiversidad y los ecosistemas sea accesible, trans-
parente y efectiva en todo el mundo.

«
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Anexo

A continuación, se compilan todos los scripts desarrollados en los distintos capítulos de 
esta obra, permitiendo una revisión completa y accesible de los contenidos presentados. 
Cada capítulo ofrece una visión profunda y técnica sobre el tema tratado, proporcionan-
do al lector herramientas y conocimientos valiosos.

Capítulo 4. Pruebas de hipótesis estadísticas en estudios ecológicos

Prueba de normalidad de Shapiro-Wilk

resultado_shapiro <- shapiro.tesshapt(datos) 

 

print(resultado_shapiro) 

 

qqnorm(datos) 

qqline(datos)

Prueba de Levene

library(car) 
 
resultado_levene <- leveneTest(datos ~ grupo, data = datos) 
print(resultado_levene) 
 
# Gráfico de residuos vs. ajustes 
modelo <- lm(datos ~ grupo, data = datos) 
plot(modelo, which = 1) «
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Prueba t de Student

datos <- read.csv(“datos.csv”) 

 

resultado <- t.test(grupo1, grupo2) 

resultado 

 

boxplot(grupo1, grupo2, names = c(“Grupo 1”, “Grupo 2”), col = c(“-

blue”, “red”))

ANOVA

datos <- read.csv(“datos.csv”) 

 

modelo_anova <- aov(respuesta ~ tratamiento, data = datos) 

summary(modelo_anova) 

 

# Prueba posthoc 

posthoc <- TukeyHSD(modelo_anova) 

 

barplot( 

    tapply(datos$respuesta, datos$tratamiento, mean),  

    names.arg = levels(datos$tratamiento), 

    ylab = “Media de respuesta”, 

    xlab = “Tratamiento”, 

    col = “lightblue” 

)

Regresión lineal

datos <- read.csv(“datos.csv”) 

 

modelo <- lm(respuesta ~ tratamiento, data = datos) 

summary(modelo) 

 

plot( 

    datos$variable_independiente, datos$variable_dependiente,  

    xlab = “Variable independiente”,  

    ylab = “Variable dependiente”,  

    main = “Regresión lineal” 

) 

 

abline(modelo, col = “red”)



. 146

MANOVA (Multivariate Analysis of Variance)

datos <- read.csv(“datos.csv”) 

 

modelo_manova <- manova(cbind(variable_dependiente1, variable_depen-

diente2) ~ variable_independiente, data = datos) 

summary(modelo_manova) 

 

# Prueba posthoc 

posthoc <- TukeyHSD(modelo_manova) 

 

barplot( 

    colMeans(datos[, c(“variable_dependiente1”, “variable_dependien-

te2”)]),  

    names.arg = levels(datos$variable_independiente), 

    ylab = “Media de variables dependientes”, 

    xlab = “Variable independiente”, 

    col = “lightblue” 

)

Prueba de Kruskal-Wallis

datos <- read.csv(“datos.csv”) 

 

resultado_kruskal <- kruskal.test(variable_dependiente ~ variable_

independiente, data = datos) 

resultado_kruskal 

 

# Prueba posthoc 

install.packages(“dunn.test”) 

library(dunn.test) 

 

resultado_dunn <- dunn.test(datos$variable_dependiente, g = datos$-

variable_independiente, method = “bonferroni”)

Prueba de correlación de Spearman

datos <- read.csv(“datos.csv”) 
 
resultado_spearman <- cor.test(datos$variable1, datos$variable2, 
method = “spearman”) 

resultado_spearman
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Prueba de Mann-Whitney U

datos <- read.csv(“datos.csv”) 

resultado_mann_whitney <- wilcox.test(variable_dependiente ~ grupo, 

data = datos) 

resultado_mann_whitney

PERMANOVA (Permutational Multivariate Analysis of Variance)

datos <- read.csv(“datos.csv”) 

 

library(vegan) 

 

resultado_permanova <- adonis(datos ~ grupo, data = datos, permuta-

tions = 999) 

resultado_permanova

Modelo lineal generalizado (GLM)

datos <- read.csv(“datos.csv”) 

 

modelo <- glm( 

    variable_dependiente ~ variable_independiente1 + variable_inde-

pendiente2,  

    data = datos, family = binomial(link = “logit”) 

) 

summary(modelo) 

 

plot(modelo, which = 1)     # Gráfico de residuos 
plot(modelo, which = 2)     # Gráfico Q-Q 
 

plot(datos$variable_independiente, datos$variable_dependiente) 

abline(modelo, col = “red”)
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Capítulo 5. Índices para medir la diversidad biológica

Diversidad alfa - Riqueza

Mydir = (“C:/Users/Desktop/Datos”) 

setwd (Mydir) 

 

datos-estudio = read.table(“Datos.txt”, header = TRUE, sep = “\t”, 

row.names = 1) 

variables = read.table(“Variables.txt”, header = TRUE, sep = “\t”, 

row.names = 1) 

 

library(vegan) 

attach(variables) 

 

specpool(datos-estudio, Tratamiento)    # Riqueza

Índices basados en dominancia

Mydir = (“C:/Users/Desktop/Datos”) 

setwd (Mydir) 

 

Datos = read.table(“Datos.txt”, header = TRUE, sep = “\t”, row.names 

= 1) 

 

library(BiodiversityR) 

library(kableExtra) 

 

D = diversityresult(Datos, index=c(“Simpson”), method=c(“each 

site”)) 

B = diversityresult(Datos, index=c(“Berger”), method=c(“each site”)) 

iD = diversityresult(Datos, index=c(“inverseSimpson”), method=-

c(“each site”)) 

 

indicesdomi = data.frame(D, iD, B) 

kable(indicesdomi, format = “markdown”, col.names = c(“Simpson”, 

“Inverso de Simpson”, “Berger”))
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Índices basados en equidad

Mydir = (“C:/Users/Desktop/Datos”) 

setwd (Mydir) 

 

datos = read.table(“Datos.txt”, header = TRUE, sep = “\t”, row.names 

= 1) 

 

library(BiodiversityR) 

library(kableExtra)  

 

H = diversityresult(datos, index=c(“Shannon”), method=c(“each 

site”)) 

JP = H/log(specnumber(datos)) 

 

indicesequi = data.frame(H, JP) 

kable(indicesequi, format = “markdown”, col.names = c(“H, Shannon”, 

“JP, Pielou”, “iD, inverseSimpson”))

Diversidad beta

Mydir = (“C:/Users/Desktop/Datos”) 

setwd (Mydir) 

 

datos = read.table(“Datos.txt”, header = TRUE, sep = “\t”, row.names 

= 1) 

 

library(betapart) 

 

datos = ifelse(datos>0, 1, 0) 

 

Beta.coreAM = betapart.core(Datos)

Beta partición en base Jaccard

Multi.jac = beta.multi(Beta.coreAM, index.family=”jac”) 

Dist.jac = beta.pair(Beta.coreAM, index.family=”jac”)

Beta partición en base Sørensen

Multi.sor = beta.multi(Beta.coreAM, index.family=”sor”) 

Dist.sor = beta.pair(Beta.coreAM, index.family=”sor”)
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Capítulo 6. Otras formas de medir la biodiversidad

Distintividad taxonómica

library(BiodiversityR) 

library(ggplot) 

library(ggrepel) 

 

abundancia <- read.table(“tabla_abundancia.txt”, header = TRUE, row.

names = 1, sep = “\t”) 

taxonomia <- read.table(“tabla_taxa.txt”, header = TRUE, row.names = 

1, sep = “\t”) 

 

dist_taxonomia <- taxa2dist(taxonomia) 

plot(hclust(dist_taxonomia), hang = 1) 

 

div_taxonómica <- taxondive(abundancia, dist_toxonomica) 

div_taxonomica 

 

ggplot(div_taxonomica, aes(x = Species, y = Dplus)) + 

    geom_point() + 

    ylab(“Δ+”) + 
    xlab(“Riqueza”) + 

    geom_hline(aes(yintercept = EDplus), linetype = “dotted”) + 

    geom_ribbon(aes(ymax = EDplus + sd.Dplus * 2, ymin = EDplus - 

sd.Dplus * 2), fill = NA, color = “black”) + 

    geom_text_repel(aes(label = row.names(div_taxonomica)), size = 

3.5, color = “blue3”) + 

    theme_classic()

Diversidad funcional

library(FD) 

 

selva_01 <- read.table(“data/selva_1b.txt”, header = TRUE, sep = 

“\t”) 

selva_02 <- read.table(“data/selva_2b.txt”, header = TRUE, sep = 

“\t”) 

selva_03 <- read.table(“data/selva_3b.txt”, header = TRUE, sep = 

“\t”) 
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# Diversidad funcional ambiente 1 

resultados_ambiente1 <- dbFD(selva_01) 

resultados_ambiente1 

 

# Diversidad funcional ambiente 2 

resultados_ambiente2 <- dbFD(selva_02) 

resultados_ambiente2 

 

# Diversidad funcional para el ambiente 3 

resultados_ambiente3 <- dbFD(selva_03) 

resultados_ambiente3 

 

df_datos <- data.frame( 

    Ambiente = c(“Ambiente1”, “Ambiente2”, “Ambiente3”), 

    FEve = c(resultados_ambiente1$FEve, resultados_ambiente2$FEve, 

resultados_ambiente3$FEve), 

    FDiv = c(resultados_ambiente1$FDiv, resultados_ambiente2$FDiv, 

resultados_ambiente3$FDiv), 

    FDis = c(resultados_ambiente1$FDis, resultados_ambiente2$FDis, 

resultados_ambiente3$FDis), 

    FRic = c(resultados_ambiente1$FRic, resultados_ambiente2$FRic, 

resultados_ambiente3$FRic) 

) 

df_datos

Capítulo 7. Estudio de la estructura de la comunidad

Curvas de Whittaker

library(tidyverse) 

library(readxl) 

library(ggrepel) 

library(BiodiversityR) 

 

base_datos <- Sys.getenv(“DB_LOCAL_HORMIGAS”) 

raw_data <- read_excel(base_datos, sheet = 1) 

 

# Primero se extrae lo que nos interesa todo junto así nos asegura-

mos de que 

# cuando se separen las tablas ambas tengan el mismo nombre y orden 

de filas 
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datos <- raw_data %>% 

    filter(estado_conservacion != “NA”) %>% 

    group_by(localidad, estado_conservacion, especie) %>% 

    summarise(ABUNDANCIA = sum(abundancia)) %>% 

    pivot_wider( 

      names_from = especie, 

      values_from = ABUNDANCIA, 

      values_fill = 0 

    ) %>% 

    column_to_rownames(“localidad”) 

 

especies <- datos %>% 

    select(!estado_conservacion) 

 

ambiente <- datos %>% 

    select(estado_conservacion) %>% 

    mutate(estado_conservacion = factor(estado_conservacion)) 

 

# ---- Rangos de abundancia ---- 

 

rank_abundancia <- rankabundance(especies) 

rankabunplot(rank_abundancia, scale = “abundance”)  #Fig. 7.2 

 

rank_abundancia_amb <- rankabuncomp( 

    especies, 

    y = ambiente, 

    factor = “estado_conservacion”, 

    legend = FALSE 

)

Marcamos especies únicas

especies_unicas <- lapply( 

    unique(levels(ambiente$estado_conservacion)), 

    function(group) { 

        setdiff(subset(rank_abundancia_amb, Grouping == group)$spe-

cies, 

            subset(rank_abundancia_amb, Grouping != group)$species) 

    } 

) 

especies_unicas <- unlist(especies_unicas) 
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rank_abundancia_amb$unique <- ifelse( 

    rank_abundancia_amb$species %in% especies_unicas, TRUE, FALSE 

) 

 

curva_whittaker <- function(x, group, scale, color, mark.unique = 

FALSE) { 

    if (“unique” %in% names(x)) { 

        unique_num <- nrow( 

            subset(x, Grouping == group & unique == TRUE) 

        ) 

    } 

   

    label <- sprintf(“%s especies únicas”, unique_num) 
    xmax <- max(x[[“rank”]]) 

    ymax <- max(x[[scale]]) 

 

    plot <- ggplot(x, aes(x = rank, y = .data[[scale]])) + 

        coord_cartesian( 

            xlim = c(0, xmax), 

            ylim = c(0, ymax) 

        ) + 

    geom_point( 

        data = subset(x, Grouping == group), 

        size = 3, 

        shape = 1, 

        color = color 

    ) + 

    scale_shape_manual( 

        name = NULL, 

        breaks = c(“unique”), 

        label = c(label), 

        values = c(19) 

    ) + 

    geom_line( 

        data = subset(x, Grouping == group), 

        color = color 

    ) + 

    geom_text_repel( 

        data = subset(x, Grouping == group & labelit == TRUE), 

        aes(label = species), 

        hjust = 0, 

        nudge_x = 3, 
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        size = 3 

    ) + 

    theme_classic() 

   

    if (mark.unique) { 

    plot <- plot + 

        geom_point( 

        data = subset(x, Grouping == group & unique == TRUE), 

        aes(shape = “unique”), 

        color = color, 

        size = 3, 

    ) + 

    theme(legend.position = c(.7, .5)) 

    } 

    return(plot) 

} 

curva_whittaker(x, group, scale, color, mark.unique = FALSE) 

 

curva_ecb <- curva_whittaker(rank_abundancia_amb, “ECB”, “abundan-

ce”, “darkgreen”, mark.unique = TRUE) 

curva_eci <- curva_whittaker(rank_abundancia_amb, “ECI”, “abundan-

ce”, “orange”, mark.unique = TRUE) 

curva_ecd <- curva_whittaker(rank_abundancia_amb, “ECD”, “abundan-

ce”, “red”, mark.unique = TRUE) 

 

curva_ecb 

curva_eci 

curva_ecd 

 

ggsave(“./plots/curva_ecb.png”, plot = curva_ecb) 

ggsave(“./plots/curva_eci.png”, plot = curva_eci) 

ggsave(“./plots/curva_ecd.png”, plot = curva_ecd) 

 

ggplot(rank_abundancia_amb, aes(x = rank, y = abundance, color = 

Grouping)) + 

    geom_line() + 

    geom_point(size = 2.5) + 

    labs(color = “”, shape = “”) + 

    scale_color_manual(breaks = c(“ECB”, “ECI”, “ECD”), values = 

c(“darkgreen”, “orange”, “red”))+ 

    theme_classic() + 

    theme(legend.position = “top”)
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Curvas de acumulación

# ---- Librerias ----  

 

library(BiodiversityR) 

library(ggplot2) 

 

# ---- Carga de datos ---- 

 

abundancia_esp <- read.csv(“./data/datos_abundancia.csv”, row.names 

= 1) 

 

# ---- Curva de acumulación ---- 

 

# Dimensiones de los datos 

dim(abundancia_esp) 

 

curva <- specaccum(abundancia_esp) 

 

datos_sp <- data.frame( 

    Sitios = curva$sites, 

    Riqueza = curva$richness, 

    SD = curva$sd 

) 

 

ggplot(datos_sp, aes(x = Sitios, y = Riqueza)) + 

    geom_ribbon(aes(ymin = Riqueza - SD, ymax = Riqueza + SD), fill = 

“grey90”) + 

    scale_x_continuous(breaks = datos_sp$Sitios) + 

    geom_line(color = “blue”) + 

    theme_classic()

Curvas de rarefacción

library(iNEXT) 

 

abundancia_ec <- read.csv(“./data/abundancia_ec.csv”, row.names = 1) 

 

inext_abundancia <- iNEXT(abundancia_ec, q = c(0, 1, 2), datatype = 

“abundance”) 

 

# Gráficos 
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# Separando por ambiente 

plot_ec <- ggiNEXT(inext_abundancia, type = 1, facet.var = “Assem-

blage”) + 

    theme_classic(base_size = 10) + 

    theme(legend.position = “bottom”) 

plot_ec 

 

# Separando por orden q 

plot_orderq <- ggiNEXT(inext_abundancia, type = 1, facet.var = “Or-

der.q”) + 

    theme_classic(base_size = 10) + 

    theme(legend.position = “bottom”) 

plot_orderq

NMDS (Escalado Multi-dimensional No Métrico)

library(BiodiversityR) 

library(ggrepel) 

library(ggforce) 

library(concaveman) 

 

sitios <- read.csv(“./datos/sitios.csv”, row.names = 1, header = 

TRUE) 

ambiente <- read.csv(“./datos/ambiente.csv”, row.names = 1, header = 

TRUE) 

 

set.seed(19950922) 

 

resultado_nmds <- metaMDS(sitios, distance = “bray”, K = 2)     #(1) 

resultado_nmds$stress   #(2) 

 

dist_sitios <- vegdist(sitios) 

anosim_sitios <- anosim(dist_sitios, ambiente$estado_conservacion, 

distance = “bray”) 

summary(anosim_sitios) 

 

# Creamos un data.frame con los resultados 

puntos_nmds <- as.data.frame(resultado_nmds$points) 

puntos_nmds$CONSERVACION <- ambiente$estado_conservacion 

 

# Agregamos siglas para nombres de los sitios y guardamos el valor 

de stress 
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puntos_nmds$SITIO <- c( 

    “EBA-T1”, “EBA-T2”, “EQN-T1”, “ESC-T1”, “ESC-T2”, “PIN-T1”, 

“PCHI-T1”, “PCHI-T1”, 

    “PCHII-T1”, “PCHII-T2”, “PANT-T1”, “PANT-T2”, “RCH-T1”, 

“RCH-T2”, “VED-T1” 

) 

estres <- sprintf(“Stress = %s”, round(resultado_nmds$stress, 2)) 

 

# Graficamos 

plot_nmds <- ggplot(puntos_nmds, aes(x = MDS1, y = MDS2)) + 

    ggtitle(“NMDS”) + 

    geom_point(aes(shape = CONSERVACION), size = 3) + 

    scale_shape_manual( 

        name = “”, 

        breaks = c(“ECB”, “ECI”, “ECD”), 

        labels = c(“Conservado”, “Intermedio”, “Degradado”), 

        values = c(15, 16, 17) 

    ) + 

    geom_mark_hull( 

        aes(group = CONSERVACION, linetype = CONSERVACION), 

        concavity = 10, 

        radius = 0, 

        expand = 0, 

        show.legend = FALSE 

    ) + 

    scale_linetype_manual(values = c(“solid”, “dashed”, “dotted”)) + 

    annotate(“text”, x = +Inf, y = +Inf, label = estres, hjust = 1, 

vjust = 1) + 

    theme_classic() 

plot_nmds 

 

# Opcionalmente podemos añadir el nombre de los sitios 

plot_nmds + 

    geom_text_repel( 

        aes(label = SITIO), 

        box.padding = 0.5, 

        size = 3.5, 

        colour = “blue”, 

    )
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Capítulo 8. Evaluación de variables ambientales

Análisis de regresión

datos <- read.csv(“datos_ecologicos.csv”) 

 

plot(datos$variable_independiente, datos$variable_dependiente) 

 

modelo <- lm(variable_dependiente ~ variable_independiente, data = 

datos) 

summary(modelo) 

 

plot(datos$variable_independiente, datos$variable_dependiente) 

abline(modelo, col = “red”)

Análisis de correlación

datos <- read.csv(“datos_ecologicos.csv”) 

 

matriz_cor <- cor(datos) 

 

install.packages(“corrplot”)   

library(corrplot) 

 

corrplot(matriz_cor, method = “circle”) 

corrplot(matriz_cor, method = “color”) 

 

resultado_prueba <- cor.test(datos$variable1, datos$variable2) 

resultado_prueba

Análisis de componentes principales (PCA)

datos <- read.csv(“datos_ecologicos.csv”) 

 

datos_estandarizados <- scale(datos) 

 

pca <- prcomp(datos_estandarizados, scale = TRUE) 

summary(pca) 

plot(pca) 

 

datos_proyectados <- predict(pca, newdata = datos_estandarizados)
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Análisis de Correspondencia Canónica (CCA)

datos <- read.csv(“datos_ecologicos.csv”) 

 

variables_ambientales <- datos[, c(“variable_ambiente1”, “variable_

ambiente2”, ...)]  # Selecciona las variables ambientales 

variables_biologicas <- datos[, c(“variable_biologica1”, “variable_

biologica2”, ...)]  # Selecciona las variables biológicas 

 

library(vegan)              

 

cca_resultado <- cca(variables_biologicas ~ variables_ambientales) 

summary(cca_resultado) 

plot(cca_resultado) 

 

anova_resultado <- anova.cca(cca_resultado) 

significativas <- anova_resultado$ANOVA[,”Pr(>F)”] < 0.05 

variables_ambientales_significativas <- rownames(anova_resultado$ANO-

VA)[significativas]

Test de Mantel en R

matriz_biologica <- read.csv(“matriz_biologica.csv”, header = TRUE, 

row.names = 1) 

matriz_ambiental <- read.csv(“matriz_ambiental.csv”, header = TRUE, 

row.names = 1) 

 

library(vegan) 

 

resultado_mantel <- mantel(matriz_biologica, matriz_ambiental, me-

thod = “pearson”, permutations = 999) 

resultado_mantel

Capítulo 9. Modelado de nicho ecológico

# Variables ambientales 

mapas_worldclim <- “https://biogeo.ucdavis.edu/data/worldclim/v2.1/

base/wc2.1_2.5m_bio.zip” 

 

tmp <- tempfile() 
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download.file(mapas_worldclim, destfile = tmp) 

unzip(tmp, exdir = file.path(“data/base/worldclim”, bio_all)) 

unlink(tmp) 

 

# Shapefile neotropico 

tmp <- tempfile() 

download.file( 

    “https://figshare.com/ndownloader/articles/3569361/versions/2”, 

    destfile = tmp 

) 

unzip(tmp, exdir = “data/base/mascara_neotropico”) 

unlink(tmp)  

 

for(i in c(8, 9, 18, 19)) { 

    path <- file.path(“./data/base/worldclim/bio_all”, sprint-

f(“wc2.1_2.5m_bio_%s.tif”, i)) 

    file.remove(path) 

} 

dir.create(“./data/base/worldclim/bio_temp”) 

dir.create(“./data/base/worldclim/bio_prec/”) 

for (i in c(1:11)) { 

    if (i == 8 || i == 9) { 

        next 

    } 

    path <- file.path(“./data/base/worldclim/bio_all”, sprint-

f(“wc2.1_2.5m_bio_%s.tif”, i)) 

    file.copy(from = path, to = “./data/base/worldclim/bio_temp/”) 

} 

for (i in c(12:17)) { 

    path <- file.path(“./data/base/worldclim/bio_all”, sprint-

f(“wc2.1_2.5m_bio_%s.tif”, i)) 

    file.copy(from = path, to =”./data/base/worldclim/bio_prec/”) 

} 

 

# ---- Librerias ---- 

 

library(raster) 

library(kuenm) # https://github.com/marlonecobos/kuenm 

library(ellipsenm) # https://github.com/marlonecobos/ellipsenm/ 

 

# ---- Limpieza ---- 
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limpieza <- function(datos, region, thin_dist) { 

    dentro <- data.frame( 

        datos, 

        inside = !is.na(raster::extract(region, datos[-1])) 

     ) 

    dentro <- dentro[dentro$inside == TRUE, ][1:3] 

    dentro <- dentro[!is.na(dentro$Lat) & !is.na(dentro$Long), ] 

    unicos <- unique(dentro) 

    thin_data(unicos, longitude = “Long”, latitude = “Lat”, thin_

distance = thin_dist) 

} 

 

# ---- Máscara ---- 

 

mascara <- function(ocurrencias, variables, salida, distancia) { 

    variables <- raster::stack( 

        list.files(file.path(variables, “Initial”), pattern = “pc_”, 

full.names = TRUE) 

    ) 

    buffer_oc <- buffer_area( 

        ocurrencias, 

        longitude = “Long”, 

        latitude = “Lat”, 

        buffer_distance = distancia 

    ) 

    mascara <- raster::mask(raster::crop(variables, buffer_oc), 

buffer_oc) 

    dir.create(salida) 

    raster::writeRaster(mascara, filename = file.path(salida, “pc”), 

format = “ascii”, bylayer = TRUE) 

} 

 

# ---- Limpieza ocurrencias ----  

 

# Carga de datos 

oc_l_limpidus <- read.csv(“./data/base/ocurrencias_l_limpidus.csv”) 

oc_c_fragrans <- read.csv(“data/base/ocurrencias_c_fragrans.csv”) 

region_neo <- raster(“./data/bio/bio_all.tif”, lyrs = 1) 

plot(region_neo, col = “grey70”, legend = FALSE) 

 

# Limpieza 

oc_l_limpidus_neot <- limpieza(oc_l_limpidus[1:3], region_neo, 10) 
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points(oc_l_limpidus_neot$Long, oc_l_limpidus_neot$Lat) 

write.csv(oc_l_limpidus_neot, file = “data/ocurrencias/l_limpidus.

csv”) 

 

oc_c_fragrans_neot <- limpieza(oc_c_fragrans, region_neo, 10) 

points(oc_c_fragrans_neot$Long, oc_c_fragrans_neot$Lat, col = “sea-

green”) 

write.csv(oc_c_fragrans_neot, file = “data/ocurrencias/c_fragrans_

hp.csv”) 

 

# ---- PCA ---- 

 

# Todas las variables 

kuenm_rpca( 

    variables = raster::stack(“./data/bio/bio_all.tif”), 

    var.scale = TRUE, 

    write.result = TRUE, 

    out.format = “ascii”, 

    out.dir = “./data/pcs_all”, 

    n.pcs = 3 

) 

 

# Temperatura 

kuenm_rpca( 

    variables = raster::stack(“./data/bio/bio_temp.tif”), 

    var.scale = TRUE, 

    write.result = TRUE, 

    out.format = “ascii”, 

    out.dir = “./data/pcs_temp”, 

    n.pcs = 3 

) 

 

# Precipitación 

kuenm_rpca( 

    variables = raster::stack(“./data/bio/bio_prec.tif”), 

    var.scale = TRUE, 

    write.result = TRUE, 

    out.format = “ascii”, 

    out.dir = “./data/ pcs_prec”, 

    n.pcs = 3 

) 
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# ---- Máscara ----  

pcs <- c(“./data/pcs_all”, “./data/pcs_prec”, “./data/pcs_temp”) 

for (carpeta in pcs) { 

    salida <- file.path(carpeta, “l_limpidus”) 

    mascara(oc_l_limpidus_neot, carpeta, salida, 50) 

} 

for (carpeta in pcs) { 

    salida <- file.path(carpeta, “c_fragrans”) 

    mascara(oc_c_fragrans_neot, carpeta, salida, 50) 

} 

 

# Definición funcion para leer los pcs generados anteriormente 

leer_pcs <- function(carpeta, tipo = NULL) { 

    carpetas <- list.files(carpeta, full.names = TRUE) 

    nombres <- list.files(carpeta) 

    raster_list <- lapply(carpetas, function(x) { 

        raster <- raster::stack( 

        list.files(x, pattern = “pc_”, full.names = TRUE) 

    ) 

    names(raster) <- paste0(names(raster), tipo) 

    raster 

    }) 

    names(raster_list) <- nombres 

    raster_list 

} 

 

#Definición función para calculo de elipses 

superposicion <- function(ocs_hp, ocs_cb, vars_hp, vars_cb) { 

   

    nicho_1 <- overlap_object( 

        ocs_hp, species =  “species”, 

        longitude = “Long”, latitude = “Lat”, 

        method = “covmat”, level = 95, 

        variables = vars_hp) 

   

    nicho_2 <- overlap_object( 

        ocs_cb, species =  “species”, 

        longitude = “Long”, latitude = “Lat”, 

        method = “covmat”, level = 95, 

        variables = vars_cb) 

   

    ellipsoid_overlap( 



. 164

        nicho_1, nicho_2, overlap_type = “back_union”, 

        significance_test = TRUE, replicates = 1000, 

        confidence_limit = 0.05) 

} 

 

 

# ---- Elipsoides ---- 

 

# Variables 

pcs_all <- leer_pcs(“data/pcs_all/”) 

pcs_prec <- leer_pcs(“data/pcs_prec/”) 

pcs_temp <- leer_pcs(“data/pcs_temp/”) 

 

# Ocurrencias  

oc_l_limpidus <- read.csv(“./data/ocurrencias_L_limpidus.csv”) 

oc_c_fragrans <- read.csv(“./data/ocurrencias_c_fragrans.csv”) 

 

# Superposición con prueba de significación 

overlap_all <- superposicion( 

    ocs_hp = oc_c_fragrans_neot, 

    ocs_cb = oc_l_limpidus_neot, 

    vars_hp = pcs_all$c_fragrans, 

    vars_cb = pcs_all$l_limpidus 

) 

overlap_prec <- superposicion( 

    ocs_hp = oc_c_fragrans_neot, 

    ocs_cb = oc_l_limpidus_neot, 

    vars_hp = pcs_prec$c_fragrans, 

    vars_cb = pcs_prec$l_limpidus 

) 

overlap_temp <- superposicion( 

    ocs_hp = oc_c_fragrans_neot, 

    ocs_cb = oc_l_limpidus_neot, 

    vars_hp = pcs_temp$c_fragrans, 

    vars_cb = pcs_temp$l_limpidus 

) 

 

dir.create(“./output/overlaps”, recursive = TRUE) 

saveRDS(overlap_all, “./output/overlaps/overlap_all.rds”) 

saveRDS(overlap_prec, “./output/overlaps/overlap_prec.rds”) 

saveRDS(overlap_temp, “./output/overlaps/overlap_temp.rds”) 
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# ---- Carga de datos ---- 

 

# Se agraga un sufijo a cada capa del raster (_all, _prec, _temp) 

# dependiendo del conjunto de predictors climáticos.  

 

pcs_all <- leer_pcs(“./data/pcs_all”, tipo = “_all”) 

pcs_prec <- leer_pcs(“./data/pcs_prec”, tipo = “_prec”) 

pcs_temp <- leer_pcs(“./data/pcs_temp”, tipo = “_temp”) 

 

# ---- Preparación para análisis ---- 

 

dir.create(“./output/projection_model/splits”, recursive = TRUE) 

data_split <- split_data( 

    oc_cerambicido, method = “random”, longitude = “Long”, 

    latitude = “Lat”, train_proportion = 0.75, 

    save = TRUE, name = “./output/projection_model/splits/ocurren-

cias” 

) 

 

# Juntando las variables de cerambicido 

# para luego armar los sets 

vars_cerambicido <- raster::stack( 

    pcs_all$l_limpidus, pcs_prec$l_limpidus, pcs_temp$l_limpidus 

) 

 

sets <- list( 

    set_1 = c(“pc_1_all”, “pc_2_all”, “pc_3_all”), 

    set_2 = c(“pc_1_prec”, “pc_2_prec”, “pc_3_prec”), 

    set_3 = c(“pc_1_temp”, “pc_2_temp”, “pc_3_temp”) 

) 

 

sets_vars_cerambicido <- prepare_sets(vars_cerambicido, sets) 

 

# ---- Calibracion ---- 

 

metodos <- c(“covmat”, “mve1”) 

calibracion <- ellipsoid_calibration( 

    data_split, species = “species”, longitude = “Long”, 

    latitude = “Lat”, variables = sets_vars_cerambicido, 

    methods = metodos, level = 99, selection_criteria = “S_OR_P”, 

    error = 5, iterations = 500, percentage = 50, 

    output_directory = “output/projection_model/calibration_pcs” 
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) 

res_calibracion <- read.csv( 

    “./output/projection_model/calibration_pcs/selected_parameteri-

zations.csv” 

) 

res_calibracion 

 

# ---- Modelo ---- 

 

modelo <- ellipsoid_model( 

    data = oc_cerambicido, species = “species”, 

    longitude = “Long”, latitude = “Lat”, 

    raster_layers = pcs_temp$Initial, method = “covmat”, level = 99, 

    replicates = 10, prediction = “suitability”, 

    return_numeric = TRUE, format = “GTiff”, overwrite = FALSE, 

    output_directory = “output/projection_model/model_pcs” 

) 

# Umbral del modelo 

modelo_mean <- raster( 

    “./output/projection_model/model_pcs/mean_suitability_calibra-

tion_l_limpidus.tif” 

) 

 

# Threshold del 5% 

# Se tomó el valor más bajo recuperado y se utilizó para transformar 

el modelo en binario. 

puntos_cerambicido <- extract(modelo_mean, oc_cerambicido[-1]) 

modelo_mean_binario <- (modelo_mean > min(puntos_cerambicido)) 

plot(modelo_mean_binario) 

writeRaster( 

    modelo_mean_binario, 

    “./output/projection_model/final_model_thrs_5.tif”, 

) 

library(readr) 

nuevo <- read_csv(“data/ocurrencias/l_limpidus_nr.csv”) 

View(l_limpidus_nr) 

points(oc_l_limpidus_neot$Long, oc_l_limpidus_neot$Lat, col = 

“black”, cex = 0.3) 

points(nuevo$Long, nuevo$Lat, col = “red”, cex = 0.3) 

 

# Crear tabla de especies alien y native de l_limpidus 

# ---- Ocurrencias con status ---- 
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l_limpidus_nr <- read.csv(“./data/base/l_limpidus_nr.csv”) 

l_limpidus_nr$status  <- “alien” 

oc_l_limpidus_neot$status <- “native” 

l_limpidus_status <- rbind(oc_l_limpidus_neot, l_limpidus_nr) 

write.csv(l_limpidus_status, file = “./data/ocurrencias/l_limpidus_

status.csv”, row.names = FALSE) 

 

# ---- Distancia Mahalanobis ---- 

 

cb_dist <- data.frame( 

    l_limpidus_status, 

    dist = extract(modelo_mean, l_limpidus_status[2:3]) 

) 

cb_dist <- na.omit(cb_dist) 

write.csv(cb_dist, file = “./output/dist_mahalanobis.csv”) 

 

# ---- Librerias ---- 

 

library(rgl) 

library(ggplot2) 

 

# ---Gráficos --- 

 

# Overlaps 

plot_over <- function(overlap) { 

    plot_overlap( 

    overlap, niche_col = c( “brown1”, “deepskyblue”), 

    data_col = c(“brown1”, “deepskyblue”), background = FALSE, 

    change_labels = TRUE, xlab = “”, ylab = “”, zlab = “”, legend= 

T) 

   

} 

plot_over(overlap_all) rgl.snapshot( “plots/overlap_all.png”, fmt = 

“png”, top = TRUE ) 

plot_over(overlap_prec) rgl.snapshot( “plots/overlap_prec.png”, fmt 

= “png”, top = TRUE ) 

plot_over(overlap_temp) rgl.snapshot( “plots/overlap_temp.png”, fmt 

= “png”, top = TRUE ) 

 

# Histogramas 

# La función plot_hist crea gráficos usando R base. 
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# La función gg_hist lo hace utilizando ggplot2 

 

plot_hist <- function(overlap){ 

    hist(overlap@significance_results$union_random$Niche_1_vs_2$over-

lap, 

        breaks = 5, main = “Overlap HP x Cb”, xlab = “Overlap”, 

        xlim = c(0, 1), ylim = c(0, 650) 

    ) 

    abline(v = quantile(overlap@significance_results$union_random$Ni-

che_1_vs_2$overlap, 0.05), 

        col = “red”, lwd = 2, lty = 2 

    ) 

    abline(v = overlap@union_overlap$overlap[1], col = “lightblue”, 

lwd = 2) 

    legend(“topright”, bty = “n”, legend = c(“Observed”, “5% CL”), 

        col = c(“lightblue”, “red”), lty = c(1, 2), lwd = 2 

    ) 

} 

plot_hist(overlap_all) 

plot_hist(overlap_prec) 

plot_hist(overlap_temp) 

 

gg_hist <- function(overlap, file) { 

    datos <- data.frame( 

        Overlap = overlap@significance_results$union_random$Niche_1_

vs_2$overlap 

    ) 

    observado <- overlap@union_overlap$overlap 

    cl <- quantile(overlap@significance_results$union_random$Niche_1_

vs_2$overlap, 0.05) 

    plot <- ggplot(datos) + 

        ylab(“Frequency”) + 

        coord_cartesian(xlim = c(0, 1), ylim = c(0,650)) + 

        geom_histogram(aes(x = Overlap), bins = nclass.Sturges(da-

tos[,1]), color = “black”, fill = “gray85”) + 

        geom_vline( 

            aes(xintercept = cl, linetype = “5% CL”, color = “5% 

CL”) 

        ) + 

        geom_vline( 

            aes(xintercept = observado, linetype = “Observed”, color 

= “Observed”) 



. 169

        ) + 

        scale_color_manual( 

            name = “”, 

            values = c(“red”, “blue”) 

        ) + 

        scale_linetype_manual( 

            name = “”, 

            values = c(“dashed”, “solid”) 

        ) + 

        theme_classic() 

    ggsave(file, plot = plot, width = 7, height = 7) 

    plot 

} 

gg_hist(overlap_all, “plots/overlap_all.svg”) 

gg_hist(overlap_prec, “plots/overlap_prec.svg”) 

gg_hist(overlap_temp, “plots/overlap_temp.svg”) 

 

# Mahalanobis 

 

hist(cb_dist$dist) 

abline(v = cb_dist$dist[cb_dist$status == “alien”], col = “red”, lwd 

= 1) 

 

maha_plot <- ggplot(cb_dist, aes(x = dist)) + 

    ylab(“Frequency”) + 

    xlab(“Distance”) + 

    geom_histogram(bins = nclass.Sturges(cb_dist $dist), color = 

“black”, fill = “gray”) + 

    geom_vline(data = subset(cb_dist, status == “alien”), aes(xin-

tercept = dist), color = “red”) + 

    theme_classic() 

maha_plot 

ggsave(“./plots/mahalanobis_hist.svg”, plot = maha_plot, height = 7, 

width = 7)

«
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Glosario

Aleatorización. Asignación aleatoria de tratamientos a unidades experimentales para re-
ducir la variabilidad no controlada.
Diseño experimental. Proceso de planificación y estructuración de un experimento para 
identificar relaciones causales entre variables.
Escalas de medición. Nominal, ordinal, de intervalo y de razón. || Determinan el tipo de 
análisis estadístico aplicable.
Mini-Winkler. Método de recolección de hormigas en la hojarasca del suelo.
Muestra. Conjunto de observaciones recopiladas para el estudio.
Muestreo aleatorio. Selección de muestras de manera aleatoria para representar la po-
blación.
Muestreo balanceado. Distribución homogénea de muestras entre categorías o trata-
mientos.
Niveles de una variable. Posibles valores que puede asumir una variable formando un 
continuo ordenado.
Operacionalización de variables. Proceso de definir cómo medir una variable de manera 
precisa y observable.
Pitfall. Método de recolección de hormigas mediante trampas enterradas en el suelo.
Protocolo de muestreo. Procedimiento estandarizado para la recolección de datos en el 
campo.
Replicación. Inclusión de múltiples unidades experimentales para obtener resultados con-
fiables.
Tamaño de la muestra. Número de observaciones recopiladas para el estudio. || Deter-
minado por objetivos, variabilidad de los datos, diseño del estudio y recursos disponibles.
Toma de datos. Proceso de recopilación de información relevante para el estudio.
Transecto. Método de muestreo que involucra el recorrido de una línea recta a través de 
un área de estudio.
Variables. Elementos fundamentales estudiados y analizados para comprender fenóme-
nos y procesos dentro de un sistema.
Variable continua. Pueden tomar cualquier valor dentro de un rango específico. || Infini-
tamente divisibles.
Variable cualitativa. Representan características no numéricas o cualidades de los ele-
mentos de estudio.
Variable cuantitativa. Representan cantidades numéricas o medidas de los elementos de 
estudio.
Variable dependiente. Variable observada y medida en respuesta a los cambios en la va-
riable independiente.
Variable discreta. Valores aislados y contables. || Generalmente enteros.
Variable independiente. Factor manipulado o controlado por el investigador, con efecto 
sobre la variable dependiente. «
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