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Latex Particle Size Distribution by Dynamic Light Scattering:
Computer Evaluation of Two Alternative Calculation Paths
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Two calculation paths for estimating the particle size distribution
(PSD) of a polymer latex from single-angle dynamic light scattering
(DLS) measurements are evaluated on the basis of a numerical ex-
ample. In the more common “double-step method,” two calculation
steps are applied, with the intermediate estimation of the particle
light intensity distribution (PLID). In the “single-step method,”
the calculation is performed in one operation. From the specifica-
tion of several PSDs, a mathematical model is used to produce the
synthetic measurements. An iterative procedure was applied for
determining the diameter range and the number of PSD points.
The inversion operations were carried out using a regularization
technique. For narrow distributions with diameters in the range
100-1000 nm, the PSD and the PLID are similar in shape, and
both calculation paths produce similar results. For broad PSDs in
the range 100-1000 nm, and for arbitrary PSDs in the range 10—
100 nm (i.e., in the Rayleigh region), the single-step method proved
preferable.  ©2000 Academic Press
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INTRODUCTION

the Rayleigh region (i.e., with diameters smaller than 100 nm
Dcum tends toDg s.

To estimate the PSD from a DLS measurement, Mie’s the
ory is required (7), the particle refractive index must be knowr
and an (ill-posed) inversion problem must be solved. Sever
algorithms have been developed for solving the inversion prol
lem: nonnegative least squares, the histogram method, singu
value analysis, the subdistribution method, the maximum el
tropy technique, and the CONTIN program (8-10). DLS esti
mates are improved by taking measurements at several ang|
but unfortunately such an advantage is lost for distributions ir
side the Rayleigh region (11, 12). A DLS measurement is a
fected by errors in the temperature, the medium viscosity, ar
the refractive indexes of the medium and particles. In this worl
none of such errors will be considered, and furthermore, sphe
ical and nonagglomerated latex particles will be assumed.

In what follows, two alternative paths for recuperating the
PSD from single-angle DLS measurements are theoretical
evaluated.

THEORY

Optical methods, such as dynamic light scattering (DLS),

static light scattering, and turbidimetry, are fast and reliable for pefine the PSDf (D;) with n points evenly distributed along
evaluating average particle diameters, but they exhibit seria4e diameter rangemin, Dmad. The particle light intensity dis-
I(imita)ltions for estimating the particle size distribution (PSDiribution (PLID), indicated byi(D;), is related tof (D;) through
1-5).
In a DLS experiment, a dilute latex sample is irradiated with a
monochromatic laser, and the temporal fluctuations of the scat-
tered light due to the (Brownian) particle motion are determined,

The raw DLS measurementis a discrete autocorrelation functff"e the functioi€, (D;) is obtained through Mie's theory (7)

of the scattered light intensit&®(z;), wherer; represents the end represents the intens_ity fraction of light sca_lttered by a pz
time delay. From such measurement, reproducible average ;5'& € ,Of d|?nr1]ete|rDi. Th]f l(fwg)t—ord_er alnd r(ljor(;?allze?]) autzcor—
ticle diameters can be easily estimated through for example ffgeation of the electric fie §™(;) is related tn(D;) throug
cumulants method (6). The average diameter estimate (indicated

h(D;) =Ci(Di)f(Dy), (i=1,...,n), [1]

here withDeum) cannot be associated to a specific PSD mean, Wy _ : —on . -
butitis in general close to the so-callBg 5 average, defined as g(r) = AD ; € h(D), (G=1....m), [2a]
Des= Y f(Di)D?/ Y f(Di)D?, where f(Dj) is the discrete -
number-particle diameter distribution. For distributions insiq,—;,ith
2
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wherenp, (1) is the (real) refractive index of the (nonabsorbing)

medium,k is Boltzmann’s constant, is the absolute tempera-
ture,n is the medium viscosity, antlis the detection angle.

The noise-free “measuremen@®(z;) is obtained from
gW(z;) through Siegert's equation (3),

GAx;) = G[1+ B[gPN]?), (1 =1,...,m),

(3]

whereG is the autocorrelation baseline afd<1) is an “in-
strumental” constant. Finally, a noisy measuremé%,)(rj),
can be simulated by adding a random sequen¢g), into
Eq. [3], yielding

6Prj) = GOr)) + (). (j=1....m). [4a]
and
9y = c@1 §0(z)1? i
(rj) = G2{1+ B[GV ()]}, (i
whered®(z;) is the noisy version o§ ().

Consider now the data treatment equations. Replagingy
g® in Eq. [2a] and employing vectorial notation, one obtains

(5]

1,...,m), [4b]

g(l) = Hh,

where g is a mx 1) vector containing the normalized

measurement heightdil is a (nxn) matrix of elements
hji = AD exp(-Totj/D;), andh is a (n x 1) vector represent-

ing the PLID estimate. Similarly, from Eqgs. [1] and [2a], one

can write

§@ = Ff, [6]
where F is a (mxn) matrix of elementsfj; =C,(Di)AD

exp(=Tor;/Di) =C(Di)hji, andf is a ( x 1) vector contain-
ing the PSD estimate. Cdll a (n x n) diagonal matrix of com-
ponent<C, (D;). Then, one can writé = HC. Substituting this

last expression into Eq. [6] and comparing with Eqg. [5], on

finds

f=ch. [7]
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FIG. 1. The two calculation paths (schematic).

ill conditioning of such inversions. Also, the inversion opera
tions amplify the measurement noise, thus further deterioratir
the PSD estimate. The condition number and the noise amf
fication are both improved by lowering the rankstbfor F.
However, lower ranked matrices produce PSD estimates wi
fewer points, and therefore a compromise is required. In ge
eral,Cy < Cg (11), and therefore the double-step method woul
seem preferable. However, the propagation of errors in the se
ond step of the double-step method (Eq. [7]) can more the
compensate that condition number advantage.

In a real DLS measurement, the exact PSD is unknown, al
different solutions may be produced by simply readjusting th
parameters of the inversion algorithm. A PSD estim&(e;),
may be evaluated through the following functional,

0.5

T [6m) - 6%\

> [P

where G@(t)) = GE[1+ B(X), ;i f(Di))A] is a measure-
ment estimate. Unfortunately, the PSD estimate that minimiz
Eqg. [8] must be, in general, discarded due to its highly oscil
latory nature, with negative peaks. Additionally, the differenc
between theDg 5 estimate obtained fronfi (D;)(De s) with re-

ect to the independently estimaﬁgm(ﬁcum) can be used as
a practical performance index.

In contrast to real measurements, synthetic examples are id
for evaluating alternative numerical procedures. This is becau
the true PSD is priori specified, and thereforé(Di) may be

(8]

Jéz =

In Fig. 1, the two proposed calculation paths are present€yaluated through, for example, the following functional:

In both methods, Eq. [4b] is first applied for obtainigld. The

“double-step method” (8, 14) first calculates a discrete PLID
estimate,h, by numerical inversion of Eq. [5] and then uses

Eq. [7] to produce the PSD e§tima1f@,. In the “single-step
method” (15), the PSD estimaté is obtained in a single op-

eration, by direct inversion of Eq. [6]. Most publications seem

SILf(D) - (D)
YL LF(D)2

0.5
) x 100, [9]

o

THE SIMULATED EXAMPLE

to adopt the double-step method. The polymer refractive index

requirement and the numerical difficulties of Eq. [7] determine Consider the analysis of an acrylonitrile—butadiene rubber I:

that most of the commercial software estimates only the PLIi&x. Four different PSDs are proposed. Their plots are repr

and D¢y, instead of the PSD. sented in Figs. 2c—2f, and their basic characteristics are giv
In Egs. [5] and [6], matrice$! and F must be inverted to in the left-hand side of Table 1. All distributions are normal

obtainh andf, respectively. The condition numberstéfandF logarithmic and are defined by 41 equally spaced points |

(indicated byCy andCp, respectively) measure the numerical Dmin, Dmaxd. While f; and f, are inside the Rayleigh region,
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FIG.2. The numerical examples. In all cases, the original P§Pand the PLID ;) are compared with their corresponding estimateandh; . Superscript
S indicates single-step method and superscript D indicates double-step method. (a—c) Distfibuticee stages of the procedure for estimating the diamete
range and the diameter intervaD. (The adopted ranges are indicated by the vertical arrows.) (c—f) Final results for distribfgidas f2, and f4.

f3 and f, are outside that region. Alsd, and f, are narrow, C,(D;) varies only moderately, and for this reason, the follow:
while f; and f3 are broad. ing is approximately verifiech, o« f, andhy o f4. In contrast,
The following values are adopted for the wavelength, th& and f3 differ considerably frormh; andhs.
detection angle, the temperature, the medium viscosity, theThe functiong(l)(rj)was obtained through Egs. [2], and the
medium refractive index, and the polymer refractive index:  noise-free measureme@fz)(rj) was produced through Eq. [3]
6328 nm, 8 =90°, T=29315 K, n=10"°g/(nms), nm= with 8 =0.5andG? =2 x 10. All resultingG@(z;) functions
1.3316 (1), andh, = 1.5097 (1). vary from 3x 107 (at; =0) to 2x 10’ (at rj — c0). Finally,
From the PSDs an®,(D;), the PLIDs were calculated G@(r;) was obtained choosing(z;) = 107/ (z;) in Eq. [4a],
through Eq. [1] [see Figs. 2c—2f]. In a narrow diameter rangeherer (z;) is a random number sequence in the rangg, [1]

TABLE 1
Proposed PSDs and Estimation Results
PSD characteristics Cumulants Diameter interval and Double-step method Single-step method
method diameter range
PSD Dg®  o®  [Dmin,Dmad Des  Epgn® ~ AD  [Dmin, Dmad®  Ebpep® CH Jt Ebpgp Cr J
(nm) (nm) (nm) (%) (nm) (nm) (%) (%) (%) (%)
fy 50  0.300 [0, 120] 775 0.38 5 [20,120] —-0.85 7.9x10° 136.8 067 7.x10% 255
fa 50 0.050 [35, 65] 50.7 0.01 5 [20,100] —20.6 6.8x10°  133.0 9.7 1.3%10'® 85.2
f3 500  0.150 [250, 800] 564  —2.16 50 [50, 1000] 8.7 6.310°  67.2 7.8 3.0<10° 394
—2.16 50 [200, 900] 35 5.% 1¢° 54.4 1.0 9.9¢<10" 19.8
—2.16 20 [300, 800] —0.81 1.0x10° 493 046 5310 106
fa 750 0.015 [700, 800] 751 —0.20 5 [650, 850] -0.13  1.6x 107 59.2 -0.17 2.9x 10 68.4

a Geometric mean diameter.

b Standard deviation of (In D;).

® Epgyn = (Deum — De;5)/ De 5 x 100.
d Estimated diameter range.

€ EDPSD = (66,5 - If)cum)/ljcum x 100.
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with a flat probability distribution (16). Also, to allow for an adesimilar in shape (see Fig. 2f). For (the broadé;) the single-
quate comparison of the different estimation results, the follostep method exhibits a better recuperation, in spite of the fa
ing was adopted: (1) in all cases, a minimal signal-to-noise rativatCy < Cg. As in the case of, this happens because the con:

of around 3000 was fixed at the right-hand-side ené%}(fj), dition number benefit of the double-step method is more the
by simply eliminating all values lower thanx 107, and (2) all compensated by the errors introduced intolthé transforma-

G (¢;) functions were defined by 100 evenly distributed pointéon [again, induced by the large variationsGn(D;)]. _

in their differentr; ranges. The adopted signal-to-noise ratio is For completeness, the case of bimodal distributions was inve
typical of a power spectrum (fs(z)(rj) that is observed in a tigated, but no re_sults are presentgd here_ forthe sake ofsp_ace
good DLS measurement (e.g., aftee4 min. measurement andexpected, d_etgrlor_ated recuperations with _respect to equn_/ale
with a proper selection of the particle concentration). Finall Jmmodal distributions were observed. To improve the estim:

the normalized measuremeri€)(r:) were obtained through ions, multiangle DLSs and/or a combination of single-angl
Eq. [4b] ) DLS measurements with signals from some other optical tec

Consider now the recuperation results. First, the average yaue ought to be employed.

ameter estimateB .,m were calculated employing the quadratic
cumulants method (6). As expected, the relative errors in the CONCLUSIONS
average diameters are small (d8g,,, in Table 1).

To invert Egs. [5] and [6], the regularization technique pro- PSD estimates obtained from single-angle DLS measur
posed by Twomey (13) was used. The regularization parameignts are in general inaccurate, due to the ill nature of tf
(13) was selected by trial and error on the basis of (a) the dpversion operations. The problem is particularly grave for na
served solution, (b) the value df, and (c) the relative error in FOW distributions inside the Rayleigh region. For broader dis
[’56’5 with respect t06cum(EDp5D)- In general, the “best” solu- tributions inside that same region, somewhat better results ¢

tions were a compromise between Idw's and small negative obtained, and the single-step method proved preferable.
peaks at the distribution tails. Outside the Rayleigh region, two different situations wer:
In both calculation methods, the following iterative procedur@dain observed. For narrow distributions, the shape of the PLI
was applied. First, the diameter range was estimated as folloWs¢lose to that of the PSD estimate, and the two calculatic
(|) abroad enough diameter range aro“ﬁ'lgmwas Selected, and methods produce similar results. For broad d|Str|bUt|OnS, th
arelatively large diameter interval between successive distritifiapes of the PLID and the PSD are quite different, and tl
tion points was sought (for example, adoptin® ~ D¢,m/5); Single-step method proved again advantageous.
(i) the PSDs were estimated; (iii) from the observed heights, thel? summary, the relatively less-applied single-step methc
diameter range was reduced:; and (iv) items (ii) and (iii) were ré€ems preferable to the more classical double-step method.
peated until the final range was found. Then, the PSD resolution
was increased by reducingD through a compromise between REFERENCES
the number of distribution points and quality of results. To illus-
trate the proposed procedure, consider the recuperatim lof 1. Llosent, M. A., Gugliotta, L. M., and Meira, G. RRubber Chem. Technol.
Figs. 2a—2c and in Table 1, three stages of such recuperation %reg%r?:ﬁjlg%;h d Sun, S. Anal. Chems?7, 151R (1985)
pr?se”ted-, Imt'a”y’_a very broa‘?‘ dlamete_r range was Sel_eCt%q Peco;a, R., ‘:Dynami(:’Light Scattering.A;;pIications of Photon Correlatiol
[Fig. 2a]. Figure 2b illustrates an intermediate stage, and Fig. 2C spectroscopy.” Plenum Press, New York, 1985.
shows the last iteration (where the PSD is defined by 26 points). Kourti, T., and MacGregor, J. Fin “Particle Size Distribution I1. Assess-
All final results are presented in F|gs 2c—2f and in Table 1. ment and Chargcterizatiop" (T. Prgvder, Ed.)'7 ACS Symposium Series 47
In Figs. 2d and 2e, the distributions inside the Rayleigh regiop (T:L‘g&i ﬁ?eggﬁgigrnig;‘;i'esg(;ﬁ? \l’\gs?l'g%t?o)”' DC, 199L.
are shown. As expected, all splutiong are in general poor, except Koppel, D. é.,]. Chem. Phy57, 4814 (’1972). '
perhaps for (the broaderf) via the single-step method. (Due 7. wmie, G.,Ann. Phys25,337 (1908).
to the propagation of errors through Eq. [7], the double-step. Stock, R., and Ray, W3, Polym. Sci. Polym. Phys. E23,1393 (1985).
method estimate ? is poor, in spite of the fact that; is quite - Pfovencheg S. V\ﬁiogﬁput- fPhyS- C;mmU(W,Zl)S (1982).
; _ 0. Finsy, R.Adv. Colloid Interface Scb2, 79 (1994).
aCCthabt:e.)t)For the narrowéy, the smgle step method provedil. De Vos, C., Deriemaeker, L., and Finsy, Rangmuir12,2630 (1996).
again to be better. _ _ 12. Bryant, G., and Thomas, llangmuirl1, 2480 (1995).
Consider the distributions outside the Rayleigh redigand 13, Twomey, S.Frankiin. Inst.279,95 (1965).
f4. For (the narrower),, both methods produce similar results14. Bott, S. E.in “Particle Size Distribution. Assessment and Characterization
The moderate variations &, (D;) in a narrow diameter range (TH PfOVdIefv Ed.), ACS :ymposium Series 332, Chap. 5, p. 74. Americz
; ; Chemical Society, Washington, DC, 1987.
de:jerr:mnef tth an%‘é reSU|t. I’Olﬁghly propoc;’tlonfal to ea.CththISr’ls. Stock, R., and Ray, Win “Particle Size Distribution. Assessment and
an _t er? orer andy are_‘ In the same order O_ magnitu e_‘ or Characterization” (T. Provder, Ed.), ACS Symposium Series 332, Chap.
an identical reason, relatively low errors are introduced in the p_ 105. American Chemical Society, Washington, DC, 1987.
transformation fronh into f, and consequentlly, and f4 are 16. Gulari, E., Tsunashima, Y., and Chu, B.Chem. Phys70, (1979).



	INTRODUCTION
	THEORY
	FIG. 1.

	THE SIMULATED EXAMPLE
	FIG. 2.
	TABLE 1

	CONCLUSIONS
	REFERENCES

