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Latex Particle Size Distribution by Dynamic Light Scattering:
Computer Evaluation of Two Alternative Calculation Paths
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Two calculation paths for estimating the particle size distribution
(PSD) of a polymer latex from single-angle dynamic light scattering
(DLS) measurements are evaluated on the basis of a numerical ex-
ample. In the more common “double-step method,” two calculation
steps are applied, with the intermediate estimation of the particle
light intensity distribution (PLID). In the “single-step method,”
the calculation is performed in one operation. From the specifica-
tion of several PSDs, a mathematical model is used to produce the
synthetic measurements. An iterative procedure was applied for
determining the diameter range and the number of PSD points.
The inversion operations were carried out using a regularization
technique. For narrow distributions with diameters in the range
100–1000 nm, the PSD and the PLID are similar in shape, and
both calculation paths produce similar results. For broad PSDs in
the range 100–1000 nm, and for arbitrary PSDs in the range 10–
100 nm (i.e., in the Rayleigh region), the single-step method proved
preferable. C© 2000 Academic Press
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INTRODUCTION

Optical methods, such as dynamic light scattering (DL
static light scattering, and turbidimetry, are fast and reliable
evaluating average particle diameters, but they exhibit se
limitations for estimating the particle size distribution (PS
(1–5).

In a DLS experiment, a dilute latex sample is irradiated wi
monochromatic laser, and the temporal fluctuations of the s
tered light due to the (Brownian) particle motion are determin
The raw DLS measurement is a discrete autocorrelation fun
of the scattered light intensity,G(2)(τ j ), whereτ j represents th
time delay. From such measurement, reproducible average
ticle diameters can be easily estimated through for exampl
cumulants method (6). The average diameter estimate (indic
here withD̂cum) cannot be associated to a specific PSD me
but it is in general close to the so-calledD6,5 average, defined a
D6,5=

∑
f (Di )D6

i /
∑

f (Di )D5
i , where f (Di ) is the discrete

number-particle diameter distribution. For distributions ins
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the Rayleigh region (i.e., with diameters smaller than 100 n
Dcum tends toD6,5.

To estimate the PSD from a DLS measurement, Mie’s t
ory is required (7), the particle refractive index must be know
and an (ill-posed) inversion problem must be solved. Sev
algorithms have been developed for solving the inversion pr
lem: nonnegative least squares, the histogram method, sin
value analysis, the subdistribution method, the maximum
tropy technique, and the CONTIN program (8–10). DLS e
mates are improved by taking measurements at several an
but unfortunately such an advantage is lost for distributions
side the Rayleigh region (11, 12). A DLS measurement is
fected by errors in the temperature, the medium viscosity,
the refractive indexes of the medium and particles. In this wo
none of such errors will be considered, and furthermore, sp
ical and nonagglomerated latex particles will be assumed.

In what follows, two alternative paths for recuperating t
PSD from single-angle DLS measurements are theoretic
evaluated.

THEORY

Define the PSDf (Di ) with n points evenly distributed along
the diameter range [Dmin, Dmax]. The particle light intensity dis-
tribution (PLID), indicated byh(Di ), is related tof (Di ) through

h(Di ) = CI (Di ) f (Di ), (i = 1, . . . ,n), [1]

where the functionCI (Di ) is obtained through Mie’s theory (7
and represents the intensity fraction of light scattered by a
ticle of diameterDi . The (first-order and normalized) autoco
relation of the electric fieldg(1)(τ j ) is related toh(Di ) through

g(1)(τ j ) = 1D
n∑

i=1

e−
00τ j

Di h(Di ), ( j = 1, . . . ,m), [2a]

with

00 = 16π

3

(
nm(λ)

λ

)2 kT

η
sin2(θ/2), [2b]
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wherenm(λ) is the (real) refractive index of the (nonabsorbin
medium,k is Boltzmann’s constant,T is the absolute tempera
ture,η is the medium viscosity, andθ is the detection angle.

The noise-free “measurement”G(2)(τ j ) is obtained from
g(1)(τ j ) through Siegert’s equation (3),

G(2)(τ j ) = G(2)
∞
{
1+ β[g(1)(τ j )

]2}
, ( j = 1, . . . ,m), [3]

whereG(2)
∞ is the autocorrelation baseline andβ (<1) is an “in-

strumental” constant. Finally, a noisy measurement,G̃
(2)

(τ j ),
can be simulated by adding a random sequence,ε(τ j ), into
Eq. [3], yielding

G̃
(2)

(τ j ) = G(2)(τ j )+ ε(τ j ), ( j = 1, . . . ,m), [4a]

and

G̃
(2)

(τ j ) = G(2)
∞
{
1+ β[g̃(1)(τ j )

]2}
, ( j = 1, . . . ,m), [4b]

whereg̃(1)(τ j ) is the noisy version ofg(1)(τ j ).
Consider now the data treatment equations. Replacingg(1) by

g̃(1) in Eq. [2a] and employing vectorial notation, one obtain

g̃(1) = Hĥ, [5]

where g̃(1) is a (m× 1) vector containing the normalize
measurement heights,H is a (m× n) matrix of elements
h ji =1D exp(−00τ j /Di ), andĥ is a (n× 1) vector represent
ing the PLID estimate. Similarly, from Eqs. [1] and [2a], o
can write

g̃(1) = Ff̂, [6]

where F is a (m× n) matrix of elements f j i =CI (Di )1D
exp(−00τ j /Di )=CI (Di )h ji , andf̂ is a (n× 1) vector contain-
ing the PSD estimate. CallC a (n× n) diagonal matrix of com-
ponentsCI (Di ). Then, one can writeF=HC. Substituting this
last expression into Eq. [6] and comparing with Eq. [5], o
finds

f̂ = C−1ĥ. [7]

In Fig. 1, the two proposed calculation paths are presen
In both methods, Eq. [4b] is first applied for obtainingg̃(1). The
“double-step method” (8, 14) first calculates a discrete P
estimate,̂h, by numerical inversion of Eq. [5] and then us
Eq. [7] to produce the PSD estimate,f̂ D. In the “single-step
method” (15), the PSD estimatef̂ S is obtained in a single op
eration, by direct inversion of Eq. [6]. Most publications se
to adopt the double-step method. The polymer refractive in
requirement and the numerical difficulties of Eq. [7] determ
that most of the commercial software estimates only the P
andDcum instead of the PSD.

In Eqs. [5] and [6], matricesH and F must be inverted to

obtainĥ andf̂, respectively. The condition numbers ofH andF
(indicated byCH andCF, respectively) measure the numeric
ROUGH DLS 15
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FIG. 1. The two calculation paths (schematic).

ill conditioning of such inversions. Also, the inversion ope
tions amplify the measurement noise, thus further deteriora
the PSD estimate. The condition number and the noise am
fication are both improved by lowering the ranks ofH or F.
However, lower ranked matrices produce PSD estimates
fewer points, and therefore a compromise is required. In g
eral,CH <CF (11), and therefore the double-step method wo
seem preferable. However, the propagation of errors in the
ond step of the double-step method (Eq. [7]) can more t
compensate that condition number advantage.

In a real DLS measurement, the exact PSD is unknown,
different solutions may be produced by simply readjusting
parameters of the inversion algorithm. A PSD estimate,f̂ (Di ),
may be evaluated through the following functional,

J
G̃

(2) =
∑m

j=1

[
Ĝ

(2)
(τ j )− G̃

(2)
(τ j )

]2∑m
j=1

[
G̃

(2)
(τ j )

]2
0.5

× 100, [8]

where Ĝ(2)(τ j )=G(2)
∞ [1+β(

∑n
i=1 f j i f̂ (Di ))2] is a measure-

ment estimate. Unfortunately, the PSD estimate that minim
Eq. [8] must be, in general, discarded due to its highly os
latory nature, with negative peaks. Additionally, the differen
between theD6,5 estimate obtained from̂f (Di )(D̂6,5) with re-
spect to the independently estimatedDcum(D̂cum) can be used a
a practical performance index.

In contrast to real measurements, synthetic examples are
for evaluating alternative numerical procedures. This is beca
the true PSD isa priori specified, and thereforêf (Di ) may be
evaluated through, for example, the following functional:

Jf =
(∑n

i=1[ f̂ (Di )− f (Di )]2∑n
i=1[ f (Di )]2

)0.5

× 100. [9]

THE SIMULATED EXAMPLE

Consider the analysis of an acrylonitrile–butadiene rubbe
tex. Four different PSDs are proposed. Their plots are re
sented in Figs. 2c–2f, and their basic characteristics are g
in the left-hand side of Table 1. All distributions are norm
al
logarithmic and are defined by 41 equally spaced points in
[Dmin, Dmax]. While f1 and f2 are inside the Rayleigh region,
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FIG. 2. The numerical examples. In all cases, the original PSD (fi ) and the PLID (hi ) are compared with their corresponding estimatesf̂ i andĥi . Superscript

S indicates single-step method and superscript D indicates double-step method. (a–c) Distributionf3: three stages of the procedure for estimating the diameter

t

w-

e
]

range and the diameter interval1D. (The adopted ranges are indicated by th

f3 and f4 are outside that region. Also,f2 and f4 are narrow,
while f1 and f3 are broad.

The following values are adopted for the wavelength,
detection angle, the temperature, the medium viscosity,
medium refractive index, and the polymer refractive index:λ=
632.8 nm, θ = 90◦, T = 293.15 K, η= 10−9 g/(nm s), nm=
1.3316 (1), andnp= 1.5097 (1).
From the PSDs andCI (Di ), the PLIDs were calculated G̃(2)(τ j ) was obtained choosingε(τ j )= 107/2r (τ j ) in Eq. [4a],

through Eq. [1] [see Figs. 2c–2f]. In a narrow diameter range,

TABLE 1
Proposed PSDs and Estimation Results

PSD characteristics Cumulants Diameter interval and Double-step method Single-step method
method diameter range

PSD Dg
a σ b [Dmin, Dmax] D6,5 EDcum

c 1D [Dmin, Dmax]d EDPSD
e CH Jf EDPSD CF Jf

(nm) (nm) (nm) (%) (nm) (nm) (%) (%) (%) (%)

f1 50 0.300 [0, 120] 77.5 0.38 5 [20, 120] −0.85 7.9× 106 136.8 0.67 7.1× 1015 25.5
f2 50 0.050 [35, 65] 50.7 0.01 5 [20, 100] −20.6 6.8× 106 133.0 9.7 1.3× 1015 85.2
f3 500 0.150 [250, 800] 564 −2.16 50 [50, 1000] 8.7 6.7× 106 67.2 7.8 3.0× 1010 39.4

−2.16 50 [200, 900] 3.5 5.7× 106 54.4 1.0 9.9× 107 19.8
−2.16 20 [300, 800] −0.81 1.0× 107 49.3 0.46 5.3× 107 10.6

f4 750 0.015 [700, 800] 751 −0.20 5 [650, 850] −0.13 1.6× 107 59.2 −0.17 2.9× 107 68.4

a Geometric mean diameter.
b Standard deviation off (ln Di ).
c EDcum= (D̂cum− D6,5)/D6,5× 100.

wherer (τ j ) is a random number sequence in the range [−1, 1]
d Estimated diameter range.
e EDPSD= (D̂6,5− D̂cum)/D̂cum× 100.
e vertical arrows.) (c–f) Final results for distributionsf3, f1, f2, and f4.

he
the

CI (Di ) varies only moderately, and for this reason, the follo
ing is approximately verified:h2∝ f2 andh4∝ f4. In contrast,
f1 and f3 differ considerably fromh1 andh3.

The functiong(1)(τ j ) was obtained through Eqs. [2], and th
noise-free measurementG(2)(τ j ) was produced through Eq. [3
with β = 0.5 andG(2)

∞ = 2× 107. All resultingG(2)(τ j ) functions
vary from 3× 107 (at τ j = 0) to 2× 107 (at τ j →∞). Finally,
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with a flat probability distribution (16). Also, to allow for an ad
quate comparison of the different estimation results, the foll
ing was adopted: (1) in all cases, a minimal signal-to-noise r
of around 3000 was fixed at the right-hand-side end ofG̃

(2)
(τ j ),

by simply eliminating all values lower than 2.1× 107, and (2) all
G̃

(2)
(τ j ) functions were defined by 100 evenly distributed poi

in their differentτ j ranges. The adopted signal-to-noise ratio
typical of a power spectrum of̃G

(2)
(τ j ) that is observed in a

good DLS measurement (e.g., after a 4 min. measurement an
with a proper selection of the particle concentration). Fina
the normalized measurementsg̃(1)(τ j ) were obtained through
Eq. [4b].

Consider now the recuperation results. First, the averag
ameter estimateŝDcum were calculated employing the quadra
cumulants method (6). As expected, the relative errors in
average diameters are small (seeEDcum in Table 1).

To invert Eqs. [5] and [6], the regularization technique p
posed by Twomey (13) was used. The regularization param
(13) was selected by trial and error on the basis of (a) the
served solution, (b) the value ofJf , and (c) the relative error in
D̂6,5 with respect toD̂cum(EDPSD). In general, the “best” solu
tions were a compromise between lowJf ’s and small negative
peaks at the distribution tails.

In both calculation methods, the following iterative proced
was applied. First, the diameter range was estimated as foll
(i) a broad enough diameter range aroundD̂cumwas selected, an
a relatively large diameter interval between successive distr
tion points was sought (for example, adopting1D≈ D̂cum/5);
(ii) the PSDs were estimated; (iii) from the observed heights,
diameter range was reduced; and (iv) items (ii) and (iii) were
peated until the final range was found. Then, the PSD resolu
was increased by reducing1D through a compromise betwee
the number of distribution points and quality of results. To illu
trate the proposed procedure, consider the recuperation off3. In
Figs. 2a–2c and in Table 1, three stages of such recuperatio
presented. Initially, a very broad diameter range was sele
[Fig. 2a]. Figure 2b illustrates an intermediate stage, and Fig
shows the last iteration (where the PSD is defined by 26 poi

All final results are presented in Figs. 2c–2f and in Table
In Figs. 2d and 2e, the distributions inside the Rayleigh reg
are shown. As expected, all solutions are in general poor, ex
perhaps for (the broader)f1 via the single-step method. (Du
to the propagation of errors through Eq. [7], the double-s
method estimatêf D

1 is poor, in spite of the fact thatĥ1 is quite
acceptable.) For the narrowerf2, the single-step method prove
again to be better.

Consider the distributions outside the Rayleigh regionf3 and
f4. For (the narrower)f4, both methods produce similar resul
The moderate variations ofCI (Di ) in a narrow diameter rang
determine thatF andH result roughly proportional to each othe
and thereforeCF andCH are in the same order of magnitude. F

an identical reason, relatively low errors are introduced in
transformation from̂h into f̂ , and consequentlŷh4 and f̂ 4 are
ROUGH DLS 17
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similar in shape (see Fig. 2f). For (the broader)f3, the single-
step method exhibits a better recuperation, in spite of the
thatCH <CF. As in the case off1, this happens because the co
dition number benefit of the double-step method is more th
compensated by the errors introduced into theh– f transforma-
tion [again, induced by the large variations inCI (Di )].

For completeness, the case of bimodal distributions was in
tigated, but no results are presented here for the sake of spac
expected, deteriorated recuperations with respect to equiva
unimodal distributions were observed. To improve the estim
tions, multiangle DLSs and/or a combination of single-an
DLS measurements with signals from some other optical te
nique ought to be employed.

CONCLUSIONS

PSD estimates obtained from single-angle DLS measu
ments are in general inaccurate, due to the ill nature of
inversion operations. The problem is particularly grave for n
row distributions inside the Rayleigh region. For broader d
tributions inside that same region, somewhat better results
obtained, and the single-step method proved preferable.

Outside the Rayleigh region, two different situations we
again observed. For narrow distributions, the shape of the P
is close to that of the PSD estimate, and the two calcula
methods produce similar results. For broad distributions,
shapes of the PLID and the PSD are quite different, and
single-step method proved again advantageous.

In summary, the relatively less-applied single-step meth
seems preferable to the more classical double-step method
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