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In this work, we uncover a collection of noninvertible topological operators linked to the 0-, 2-, 4-, and 6-form
symmetries related to the type IIB superstring effective theory. By pinpointing the SL(2, Z)-covariant
conserved currents corresponding to these symmetries, we first derive a set of SL(2, Z)-invariant invertible
topological operators that encapsulate the integer Bogomol’nyi-Prasad-Sommerfield charges inherent to the
theory. Moving forward, by incorporating fractional charges while maintaining gauge invariance, we introduce
the noninvertible topological operators for each generalized symmetry and, in particular, for the SL(2, Z)
0-form symmetry. Identifying them as a novel kind of symmetries reminiscent of fractional quantum-Hall-
effect-like noninvertible operators, we study their action on charged objects and their associated topological

quantum field theories obtained via half (higher) gauging.
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I. INTRODUCTION

In recent years, the discovery of higher-form symmetries
[1,2], higher-group symmetries [3—7], and noninvertible
symmetries [8—18] has opened new avenues in quantum
field theories (QFTs) (see [19-23] for some reviews). These
aspects unveil new layers of complexity and richness into
the symmetry structures of physical theories, shifting the
paradigm of how we understand these systems.

Numerous works have significantly advanced the under-
standing of higher-form and noninvertible symmetries
in string theory and supergravity [24-33]. See [34,35]
for gauge noninvertible symmetries from a world sheet
perspective.

In the context of supergravity, despite the fact that every
global symmetry is expected to be broken or gauged in
string theory, we aim to understand whether new phenom-
ena associated with noninvertible symmetries can effec-
tively emerge at the intermediate scale between the
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continuous IR and discrete UV symmetries. On the other
hand, dealing with both Page currents [36] (see also [37,38])
and higher-group structures entails an obstacle for assem-
bling topological operators associated with these sym-
metries. This eventually translates to a formulation of
BF theories in terms of the supergravity field strengths
(see [29] for example).

In this paper we elaborate on this to understand the
landscape of global higher-form and noninvertible sym-
metries in a particular supergravity theory. We want to
scrutinize the symmetry structure of the bosonic sector of
type IIB superstring effective theory and highlight its
significance and implications, where the SL(2, R) 0-form
symmetry serves a crucial function. More in detail, we
would like to understand the role of the non-Abelian O-form
symmetry in the construction of the (non)invertible topo-
logical operators of the theory and their actions.

Some works involving type IIB backgrounds in the
literature amount to the obtaining of topological quan-
tum field theories (TQFTs) [39], the analysis of topological
T duality [40], topological duality defects [41], and
branes [42,43].

The paper is organized as follows. In Sec. II, we
introduce the manifestly invariant SL(2, R) type IIB super-
string effective theory, together with its global and gauge
symmetries. In Sec. III, we obtain the invertible topological
operators associated with the unbroken global higher-form
symmetries of the theory and their action on charged
operators. Section IV contains a set of noninvertible
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topological operators for each global symmetry of the
theory, together with their genesis from a half higher
gauging and associated TQFTs. This, in turn, allows us
to calculate their action on charged operators. Finally, our
conclusions are presented in Sec. V.

II. SYMMETRIES OF TYPE IIB SUPERGRAVITY

In its manifestly SL(2, R)-invariant formulation [44], the
bosonic type 1IB supergravity pseudoaction reads

(. 1
s:/ [—R*l——dM’J A% dM; + > MUH; A H;
%0 4 2

1 1
+ 3 F A% F— 2D AH A H; | (1)

where B; is an SL(2, R) doublet of 2-forms, D is a 4-form
singlet, and M is an SL(2,R) symmetric matrix that
depends on the scalars of the theory. This pseudoaction
must be complemented by the self-duality relation
F = %F, and

1 .
HiEdBi’ FEdD—ESUB[/\Hj (2)

are the field strengths that are invariant under the following
gauge transformations:

1
B,—B,+d\", D->D+di® +§e’fd/1§” AB.  (3)

When X, has a nontrivial topology that permits the
existence of closed 2-forms A(z), 4-forms A<4), or both,

i

the equations of motion (EOM) are invariant under the
transformations

2)

1.
B, — B, + A, D—>D+A(4)+§e”Al(.2)/\Bj. (4)

Thus, while the EOM exhibit a classical U(1)?) x U(1)?)
2-form symmetry and a U(1)*) 4-form symmetry, the Chern-
Simons term in the action breaks both of them for generic
topologies (see also [29,45]). Moreover, the Bianchi iden-
tities dH; = 0 yield a U(1)©® x U(1)(®) 6-form symmetry.
In contrast, this pseudoaction is manifestly invari-
ant under the following SL(2,R) O-form symmetry
transformations [46]:
ng = ‘Qkiglekh B, = Q/;B;, (5)
where Q'; €SL(2,R). This SL(2,R) symmetry acts as
an outer automorphism on the U(1) factors of both 2- and
6-form symmetries.

Finally, the transformations (3) allow us to identify a
(U(1)® x U(1)?) x, U(1)* 4-group classical symmetry
[5], which is fully characterized by the invariant of the
SL(2,R) outer automorphism, k = €.

III. INVERTIBLE CHARGED OPERATORS
AND ACTIONS

The type IIB pseudoaction is invariant only under the
0- and 6-form symmetries. In this section we are going
to obtain the invertible topological operators using their
respective conserved currents.

The SL(2, R) codimension-1 conserved Noether current
associated with the 0-form symmetry satisfies d % j, = 0,
where the index a transforms in the adjoint representation
of SL(2,R) and the current %, is given by

*jo = 4(1,)7 |M* % dMy; + B; A M™* % H,
1 ik

where (1,)/. are the generators of the SL(2, R) group.
Regarding the U(1)® x U(1)(© symmetry, the con-
served current x j; arising from the Bianchi identities of
the 2-forms B; is [47,48]
dxj; =0, * ji=H;. (7)
Thus, we construct the invertible topological operators

U(Z;) associated with each of the two currents as follows:

U(29)=6Xp/ * 1, U(23)=e><p/ *j7. (8)

% P

where X; represents a p-dimensional closed manifold, the
currents are
* U =q"*jo.  *jT=22ig x ji. (9)
and {q%, @'} are the parameters of the symmetry trans-
forming in the adjoint and fundamental SL(2,Z) repre-
sentations, respectively. At this moment, the operators are
not gauge invariant, as the charges are still real numbers.
To evaluate the action of these operators, we introduce
the charged objects O(,), O), and O which, respec-
tively, carry charges {Q', Q, O;} € Z transforming, respec-
tively, in the fundamental, singlet, and antifundamental
representations of SL(2, Z) and that correspond to F1/Dl,
D3, and NS5/D5 charges [37]. We will denote the insertion
of these operators along a generic submanifold X, as
Oy =0(Z,) [49].
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Then, the actions of U(Z;) on these operators are

UEZy): OM,) = OM,).

Let us emphasize that the trivial action of the O-form
operator U(Z,) is a consequence of the invariance of every
O(M ) under SL(2, Z). Precisely, its action on operators
0;(M,) and O,(M ) transforming, respectively, under the
fundamental and the adjoint representations is

U(Zy): Oi(M,) — Q,0,(M,),
Oa(Mp) = Qbaob(Mp)v (10)

where Q/; =expC/;, Q0 , =exp(¢°f?.,) and C/; =¢q%(1,)/,.

The gauge invariance of the operator U(Xy) requires
the components of C to be integers. Because Q € SL(2, Z),
this further constrains C to satisfy det C = 0. These two
conditions in turn imply that Q is not the most general
SL(2,Z) element. Instead it amounts to the SL(2,2Z)
monodromies of the D7-brane [51], which precisely leaves
C invariant.

It would be interesting to explore whether there exists a
richer structure in the O-form sector, reflecting the non-
Abelian nature of SL(2, R), which requires a more careful
analysis of the charges ¢’s as representations.

IV. NONINVERTIBILITY AND ACTION
OF OPERATORS

In this section we distinguish the different situations of
the higher-form symmetries at the level of the action.

For nontrivial topologies, the U(1) x U(1)? and the
U(1)® symmetries are not symmetries of the pseudoaction
due to the Chern-Simons terms. However, we are going to
show that the theory still hosts a subgroup of them as 2- and
4-form noninvertible symmetries.

A different situation occurs with the O- and 6-form
symmetries. Being symmetries of the action, we can promote
the integer parameters of their associated topological oper-
ators to rational while still preserving gauge invariance.
Because of its simple structure, U(1)(©) x U(1)© does not
require any further treatment for this. However, in full
analogy with the fractional quantum Hall effect (FQHE),
the SL(2, Z) symmetry will necessarily become noninver-
tible when considering fractionary parameters.

Let us first introduce the classical conserved global
currents associated with the 2- and 4-form symmetries.
These, in turn, will be improved to build gauge-invariant
topological operators with fractionary parameters.

The conserved current of the U(1)® x U(1)® sym-
@)

metry associated with A;” is

- 1 .
d(M7 % H;) +§€’-’Hj AN(F+% F)=0, (11)

where, upon assuming F =% F, it can be rewritten as
d* ji =0,

. y L.
xji = 3<M’1 * Hj+2€B; A (F+2dD)>- (12)

Regarding the 4-form symmetry U(1)®), the conserved
current associated with A% is

1 ..

A. Noninvertible operators

In this section we build a set of noninvertible operators
associated with the generalized currents discussed above.
To do so, we relax the integer condition over the parameters
to rational numbers, ¢ — g/N with N € Z, while preserv-
ing the gauge invariance of the operators. This is achieved
by introducing a set of auxiliary fields which will be the
degrees of freedom (d.o.f.) of the TQFTs associated with
each noninvertible operator. In Fig. 1 the arrows denote the
auxiliary fields entering each noninvertible operator D(Z, ).
The role of these fields is twofold: while they allow us to
restore the gauge invariance, the integration over these
new d.o.f. makes the resulting operator noninvertible. In
analogy to [17,18], our result consists of a set of FQHE
operators for the symmetries of type IIB supergravity [52].

Let us first consider U(X3), the topological operator of
the U(1)© x U(1)©®) symmetry. Being gauge invariant
even when ¢' is a continuous parameter, it does not require
any treatment. Thus, there is no noninvertible counterpart

associated and the symmetry becomes Zl@ X Zg\f).
Let us promote the parameters that multiply the 0-, 2-,
and 4-form currents to rational values,

{L@yit

{bi, ¢} {Lisy, L
(3)i» (5)}
5) i3 D) i) arx
*7) ) %7 * -
(009, 20 YA f
{ae), a(y} ( ®)
{bia c, EI}

{L)is Lesys Ly}
*xJ O G(2o)

{a(Q)‘i7 a(4), QEG)} {A(3)i, A(5), Aé7)}
FIG. 1. Left: higher-form currents of type IIB supergravity,
where xj(7) is omitted due to its trivial nature. Center: non-
invertible xJ(”) currents and the associated auxiliary fields in the
arrows. Right: half higher gauging terms. Above and below each
arrow, we show the gauge fields that induce gauge transforma-
tions on the auxiliary fields above and below the previous arrow,
respectively.
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. q°
N a1 14
¢ =y 9= (14)

q— a
N’
This would break the gauge invariance of some of their
associated topological operators. However, upon introduc-
ing the auxiliary fields to restore the gauge invariance, they
will automatically mutate to noninvertible operators.
Regarding the vector parameters ¢' € Z and ¢* € Z, it is
sufficient considering the same integer N for every com-
ponent. Dividing each of its components by a different
integer yields an equivalent result: ¢//N' = ¢'!/N, for
I ={i,a} [55].
Let us study then the gauge-invariant operator associated
with the classical U(1)® that is compatible with ¢ — 1 ¢.

The Chern-Simons structure of % j©) in (13) allows for the
same treatment as to the original FQHE case [17,18]. In our
case, the noninvertible operator results

D(%s) = / [Db,] exp [2ni L *J )

2 .

’

where b; is an SL(2, Z) doublet of 2-forms and h; = db;.

We analyze now the 2-form symmetry topological
operator, which is associated with U(1)?) x U(1)®?), with
a fractional parameter ¢’ — %qi. In order to write a non-
invertible one, it is crucial to observe that the last two terms
of % j’ in (12), which is the nongauge-invariant sector, have
been expressed as the sum of two BF theories. This part can
be extended to a gauge-invariant one as follows:

€'B; A(F+2dD) —» 1% =¢V(b; A\F-2cAH}),  (16)

where b; and ¢ are a doublet of 2-forms and a 4-form
auxiliary field, respectively, whose gauge transformations
are similar to the ones in (3),

(1) 3 o L i,

b; = b;+di;”’, c—c+di +§€-’d/1i A Bj.
In addition, f=dc—1e"b; A H, is a gauge-invariant
tensor mimicking the field strength F.

The second and final task consists of imposing the
gauge-invariant constraints

Hl—Nhl:(), F—Nf:(), (17)

whose solutions, up to gauge transformations, are
1
{bi,c} :N{Bi’D}‘ (18)

Let us note that, while this equation holds locally, a more
careful analysis is necessary when considering a nontrivial

spacetime topology, for which the gauge fields are not
defined as differential forms.

Thus, upon integrating out the auxiliary fields, we
recover the 21(3 X Zﬁ) current xj®)/N. To impose the
constraints (17), we need an extra pair of auxiliary fields,
{a(z),a’@)} which, being invariant under gauge transfor-
mations, can be understood as Lagrange multipliers. Then
the operator will contain the gauge-invariant pieces,

2(F —Nf) AN a(z) + (Hz —Nhl) A Cll('4), (19)

which trivially establish the solution (18). Thus, combining
(16) and (19), the noninvertible operator is assembled as
follows:

D(x) :/D[bi,c,a(z),a€4)]exp |:277,'i/ *J(3)],

%

*JO) =

3 . ,
NqiMU * H]+ql€”(b] A F—2C AN H])
+2

(F—Nf) VAN a(2> + (Hz —Nl’li) AN 6124).

(20)
Being gauge invariant, a nongauge-invariant operator with
Z, parameter is exactly recovered in two ways: (i) either
upon integration of the fields {a,), al(' 4>}, which straight-
forwardly implies (18), or (ii) by integrating out the fields
{b;, c}. This property arises from the fact that the auxiliary
fields are linearly present in each term of (20). We
emphasize that, due to the linear dependence on the
auxiliary fields, these integrals can be explicitly done.
Let us finally consider a noninvertible operator for the
SL(2,Z) 0-form symmetry of the theory. We first note
that, although xj, accounts for a term proportional to
B; A M* % H,, which does not admit an integration by
parts, it is potentially related to the EOM of B;, Eq. (12).
Precisely, this EOM authorizes the introduction of a
doublet of dual 7-forms H', which is defined as big

H =MV x H,, (21)

and can be locally written as
Hi—dB —Lei(B, A F—2D A H 22
= —3€ (B, —2D A H)), (22)

where B’ is an SL(2,Z) 6-form doublet whose gauge
transformation is B' — B’ + A with

2
A= dij) + gefd,1<3> A B;
1 1

-3¢ <d/1§-1) AD =B ndi! A Bl>. (23)

066024-4



NONINVERTIBLE SYMMETRIES IN TYPE IIB SUPERGRAVITY

PHYS. REV. D 111, 066024 (2025)

Based on the SL(2, R)-invariant democratic formulation of
type IIB supergravity [56], we introduce the auxiliary fields
to construct the O-form noninvertible operator.

In particular, plugging A’ into (6), %, is rewritten as a
composite of two BF theories,

. . 1 o o
*ja =41, | M* % dMy + By A (H4-3dBY) | (24)

Thus, mimicking the form of H', we define the field
strength /' for the 6-form auxiliary fields b’ as

. ~ 1 .
b = db’ —§1<3>l. (25)

In analogy with B’, for this field strength to be gauge

invariant b’ transforms as b’ — b’ 4+ A’. Therefore, the
noninvariant part of (24) is promoted to the following
gauge-invariant BF terms:

(1)/B, A (B + 3dB)
= 1 = (1,i(b; A M™% H, +3B; A db). (26)

where we have traded the dual 7-form A’ using (21).

Finally, to recover the original current, we have to
supplement the operator by the appropriate terms that
realize the Eq. (17), together with the new gauge-invariant
condition

MY x H; = Nh' =0. (27)

This is accomplished by considering the gauge-invariant
Lagrange-multiplier-like fields {a ), a(4)., aéé)}, which are,
respectively, imposing the constraints (17) and (27).
Bringing together these requirements, we assemble the
noninvertible SL(2, Z) operator
/ *J
Zy

4 . _ .
*xJ) = NC/,-M”‘ * dM,; 4+ C/y(b; A H' +3B; A db')

’

D(Zy) = /D[bn ¢,b', @) ), ajg) exp

+ 3(1:11 - Nill) A a)i + 2(F - Nf) A as)
+ (Hl - Nl’ll) AN a’@, (28)

where we have used (21).

Similar to the previous cases, every auxiliary field
appears linearly in x.J(!). This feature enables us to straight-
forwardly check that either integrating out first the fields
{a(z)i, au), aé@ }, orthe set{b;, c, Bi}, the invertible operator
U(%y) with parameter ¢“/N is recovered.

B. Half (higher) gaugings and TQFTs

While half gauging a symmetry induces a codimension-1
topological interface between two different QFTs implement-
ing a noninvertible O-form symmetry [10,11,13], for a
higher-form symmetry the notion of higher gauging is
introduced [13,29,57-60]. In this case, p gauging of a
g-form global symmetry consists of inserting a system of
g-form symmetry defects along a codimension-p manifold
inside the bulk spacetime. The isomorphism between the
ungauged and gauged QFTs is ensured by the self-duality
condition, which implies the relation g = % (d+p-2)[45,61].

Additionally, d-dimensional theories can also be self-
dual under p gauging a discrete g-form x (d + p — g — 2)-
form symmetry (0 < g <d —1) [45,62].

On the other hand, the obtaining of the half
(higher) gauging structure provides more rigorous
evidence of the topological nature of the noninvertible
operators [17,20,63].

Apart from introducing the above auxiliary fields, this
method requires some additional gauge fields to realize
the gauging [29,45]. The arrows in Fig. 1 show the set of
necessary fields for every higher-form symmetry. Let us
stress that, for these gauge fields, which are just defined
inside the region of the gauging, we impose Dirichlet
boundary conditions A|2p =0, and L|2F =0, where £, =
0Z, ., and corresponds to the closed manifold where the
noninvertible operator is inserted.

We also stress that the gauge fields entering the gauging
procedure might be understood as the d.o.f. of the TQFTs
associated with each noninvertible operator.

Let us first discuss the operator D(Xs5), which is
obtained by four gauging the U(1)©® x U(1)(® symmetry
to Zj(\?) X Zl@ as follows:

D(ss) = / Dlb,. Agsy] exp [27iG(Es)]

2q q .
G( E/—*FJr/—e’-’Hl-/\H»
( 5) s, N Z(,N J
+N€ijA(3)[ /\A<3)j, (29)

with X5 = 0%¢. Here, the gauge transformation Ay —

A@y + dEl(»2> induces the transformation b; — b; + E§2>. In

this case, p =4 and g =6, so the above self-duality
condition is fulfilled.

The operator D(X,) associated with U(1)?) x U(1)?) is
written in terms of the half higher gauging G(%;) as

D) = / D[] exp 27iG(S,).  (30)
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where D[CI)7] = D[bi, C, Cl(z), a’@, L(3)i’ L(S)’ A(3)’AES)]’

¥, = 0% is a closed manifold, and G(Z;) is

GZ :/—M’/*H~+ —eYH NF
( 7) s N J 5 N J
+(H;—Nhj) Al

+L)A (—q,»eijF—Nda{4) —Ne/'H; nayy))

—NL3); Al +2(F=Nf) AAg
+2L(5) A\ (qieinj —Nda(2>) —2NL(5) /\A(3). (31)
|

Gauge invariance under transformations of the new fields
{Layis L(5>,A<3),Aés)} yields nontrivial gauge transforma-
tions of {b;. c. ay). a’@)}. As p = 2, g = 4, the self-duality

amounts to a discrete Zﬁ:,‘) X Zg\f) symmetry [45].

Finally, we consider the codimension-1 defect D(Z)
associated with the SL(2,R) O-form symmetry. Here the
operator is written in terms of G(Zg) as

D(%y) = / D[®,] exp [G(Z)]. (32)

where D[®y]=D[b;.c.b'.a” .aw.alg . LY .LO) Li, A,

A<5),Af7>], Yy = 0%y is closed, and G(Zy) is

4 ' ik 1 ' [7i ik
9

210

& (Cizi i i@
— NL /\<N’H/+da(6)—efa;

i J

ANF —€H; A a(4)> + (H; — Nh;) A Al

3) i
—NL7 N A,

™) )

+ 2NL<5) VAN (—Nda(4) + €ija§2) VAN Hj) + 2(F — Nf) VAN A(S) — 2NL(5) VAN A(5)

+3L" A (-Nda{”) + CiH)) + 3(H' = Ni') A A7 = 3NL]

Interestingly (p =0, g = 2), the 2- and 6-form sym-

metries are democratically gauged to (Zﬁ) X Zg\?)) X

(ZE\?) X Z](\?)). However, as expected from its invariance

under SL(2,R), the 4-form symmetry is fictitiously
gauged. This is also confirmed in the next section.

Thus, the discovery of these noninvertible operators
might imply the existence of associated TQFTs that are
described by the actions G(Z,) in (29), (31), and (33).

C. Action of operators

The half higher gauging method has been proven to be
useful to calculate the action of the noninvertible operators on
charged objects [9,17,45]. In this subsection we are going to
calculate the action of the symmetry operators on branes by
reading off how the magnetic current couples to the auxiliary
fields in the half (higher) gauging construction. Alternative
approaches for this calculation can be found in [53].

Starting with D(X3) = U(Z3) with §' - §'/N, its non-
trivial and invertible action on the aforementioned charged
operators reduces to

D(Z3): O(Mg) > ¥ FO(M). (34)
The action of the 4-form symmetry operator D(Zs) is

D(Zs): O(M;) = O(M,),
O(M,) > 25 O(M,),

OMyg) > O(Mg)e " Jo 20 (35)

®3)
) NAT (33)

[
where M3 C Mg N X5 is a compact manifold such that
$an, E)i €27Z;. Using the EOM of A 3); we obtain

D(Z5)O(Mg) = O(Mf,)e‘z”ie”%@'fm T (36)

Second, the action of D(Z;) amounts to

D(E,): O(My) > 5 0(M,),

O(M4) = O(M4)e2meM3 2A3)+qi€ L),

El

O(Mg) = O(M, 6)32”1@ S A 26 4k

where M3 C My N %y and M5 C Mg N X, are submani-
folds such that the integration of the gauge parameters of
{L@)A@m)} and {L(S),A’@} are, respectively, quantized
over M5 and dMs. Subsequently, if we evaluate the
noninvertible phases on shell, we obtain

. Sqell .
DENOM,) = OM ) L™ a7y

sy
2710, ‘/f F
PN Mg

D(27)O(Mg) = O(Mg)e (38)

Finally, the action of the SL(2, R) noninvertible operator
nontrivially acts over all the charged objects,
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el )L oig®
D(Zg): O(My) = O(M,)e 0 fMa LY+ A" ’

OM,) > O(My)e”® Jugte,

O(Mg) > O(Mg)e2 w307 H0,

such that 0M3 = M2 C 29, aMS = M4 C 29, and 6M7 ==
Mg C Zy. Using the EOM of the gauge fields Ls and As,
these noninvertible phases result

D(S,)O(My) = O(M,)e? ¥ S (39)

D(Z9)O(My) = O(M,), (40)
D(Z)O(My) = OMg)e LA Ly Mt (41

V. CONCLUSIONS

In this work we have studied the higher-form symmetries
of type IIB supergravity and found the invertible topologi-
cal operators associated with them. Interestingly, we have
obtained an invertible operator that carries out SL(2, Z)
transformations on operators or objects charged under this
symmetry. We have provided a mechanism to systemati-
cally obtain a set of noninvertible operators inspired by BF
theories. Then, led by the half higher gauging construction,
we have obtained their action on charged objects. Being

this a first step, a more detailed analysis of these
operators [64] could shed some light on their uniqueness
and potential applications.

Likewise, understanding the half higher gauging as an
effective description of some phenomena occurring at
intermediate energy scales in supergravity (with general-
ized symmetries in gravity [65]) could be interesting.

Finally, we would like to understand whether there
exists a relation between the operators with continuous
symmetries and the fluxbranes discussed in [43]. It
would be interesting to compare the TQFTs and their
associated d.o.f.
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