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In this work we study the singularity of the (centered) max-
imal operator in the hyperbolic spaces. With this aim, we
changed the density of the underlying measure to avoid pos-
sible compensations due to the symmetries of the hyperbolic
measure. Our starting point is a variant of the well-known
endpoint Fefferman-Stein inequality for the centered Hardy-
Littlewood maximal function. This inequality generalizes, in
the hyperbolic setting, the weak (1, 1) estimates obtained by
Stréomberg (1981) [17] who answered a question posed by Stein
and Wainger (1978) [16]. Our approach is based on a combina-
tion of geometrical arguments and the techniques used in the
discrete setting of regular trees by Naor and Tao (2010) [11].
This variant of the Fefferman-Stein inequality paves the road
to weighted estimates for the maximal function for p > 1. On
the one hand, we show that the classical A, conditions are not
the right ones in this setting. On the other hand, we provide
sharp sufficient conditions for weighted weak and strong type
(p,p) boundedness of the centered maximal function, when
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p > 1. The sharpness is in the sense that, given p > 1, we can
construct a weight satisfying our sufficient condition for that
p, and so it satisfies the weak type (p,p) inequality, but the
strong type (p, p) inequality fails. In particular, the weak type
(g, q) fails as well for every ¢ < p.
© 2025 The Author(s). Published by Elsevier Inc. This is an
open access article under the CC BY-NC license (http://
creativecommons.org/licenses/by-nc/4.0/).

1. Introduction

Let H™ denote the n-dimensional hyperbolic space, i.e. the unique (up to isometries)
n-dimensional, complete, and simply connected Riemannian manifold with constant sec-
tional curvature —1. Let p, denote the corresponding volume measure. If By(z,r)
denotes the hyperbolic ball of radio r centered at x, then the centered Hardy-Littlewood
maximal function on H" is defined as

M (z) = sup ——

p s [ @)

By (z,r)

In the seminal work [16], Stein and Wainger proposed the study of the end-point
estimates for the centered Hardy-Littlewood maximal function when the curvature of
the underline space could be non-negative. In this more general scenario, the euclidean
spaces R™ and the aforementioned hyperbolic spaces H" represent two extreme cases.

In [17], Stromberg proved the (unweighted) weak type (1,1) boundedness of M in
symmetric spaces of noncompact type, suggesting that the behavior of the maximal
operator is the same in both spaces, R™ and H". However, this is not the case in general,
and it will be reveled by analyzing weighted estimates. More precisely, to complete the
answer to Stein-Wainger’s question we study an end-point two-weight Fefferman-Stein
inequality for M in the hyperbolic setting.

1.1. Fefferman Stein type inequality

In the Euclidean setting, the classical Fefferman Stein inequality [4] is

wi{e € R Mf@) > A) £ 5 [ @] Mulod,
R»

where w is non-negative measurable function (a weight) defined in R™, and w(E) =
J w(z)dz. This is a cornerstone in the theory of weights, and a powerful tool to consider
vector valued extension of the maximal function M. This result follows from a classical
covering lemma, which is not available in the hyperbolic setting. Indeed, in this setting
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T

i (BH(x,r)) = Qn/(sinht)"_ldt ~n
0

- n=Dr 1.1
1+r"e ’ (1.1)

where (2, is the euclidean (n — 1)-volume of the sphere S"~!, and the subindex in the
symbol ~ means that the constant behind this symbol depends only on the dimension
n. This exponential behavior, as well as the metric properties of H", make the classical
covering arguments fail. In consequence, it is unclear how to decompose the level set
{zx € H™ : Mf(x) > A} in such way that the appropriate averages of w appear.

As in the euclidean case, from now on, given a non-negative measurable function w
(a weight) defined on H", let w(E) = [, w(x)dun(x) for a measurable set £ C H". On
the other hand, given s > 1, let

Mow = M(w®)Y/.

Using this notation, our first main result is the following variant of the Fefferman-Stein
inequality.

Theorem 1.1. For every weight w > 0 we have that

wle € W' s Mf@)> N) < Cony [ 17@IMwl@dn (@)
HTL

where the constant Cs ,, — +00 when s — 1.

This theorem is a generalization of the result of Stromberg [17], and as far as we
know, it represents the first result for general weights in the hyperbolic setting. The
reader may wonder if this result could hold for s = 1. We will show that this result is
false in general if s = 1 (see Example 4.1 item 1 below). Moreover, our example shows
that it is false, even if we put iterations of the maximal function in the right hand side.
In some sense, this is an evidence of a stronger singularity of the maximal function in the
hyperbolic setting. In Section 4 we will show that there are non trivial weights satisfying
the pointwise condition M,(w)(z) < Cw(z) a.e. x € H™. Then, for these weights it holds
that the maximal function M satisfies the weak type (1, 1) respect to the measure wdp,,.

About the proof of Theorem 1.1. For each r > 0, let A, be the averaging operator

1

AT = o B an)

/ £ @) din ().

By (x,r)

Hence M f(z) = sup,>q Ay f(x). If M'°(f) denotes the operator obtained if supremum
is restricted to r < 2, and M/ (f) denotes the operator obtained if the supremum is
taken over all r > 2, then



4 J. Antezana, S. Ombrosi / Advances in Mathematics 482 (2025) 110641
Mf(z) < M'f(x) + M7 f(z).

On the one hand, the operator M!°¢ behaves as in the Euclidean setting. The main diffi-
culties appear in the estimations of M72". In [17], Stromberg uses a pointwise inequality
obtained by Clerc and Stein in [3]. This pointwise inequality reduced the problem to
get a good estimate for a convolution operator associated with a k-bi-invariant ker-
nel 7, which in the case of hyperbolic setting is 7(z,w) = (1 + pn(B(0,d(z,w))" .
A similar approach was used by Li and Lohoué in [9] to obtain sharp constants with
respect to the dimension n. However, Stromberg’s argument strongly uses the homo-
geneity of the measure p,. So, it is not clear that one can apply a similar idea in
the general case of any weight w. This makes it necessary to look for a more flexible
approach.

Our general strategy is based in the scheme used by Naor and Tao in [11], where
the weak type (1,1) of the centered maximal function on the discrete setting of rooted
k-ary trees is obtained. The flexibility of this approach was shown in [13] and [14], where
the authors used this approach to get weighted estimates in the same discrete setting.
It is well known that regular trees can be thought as discrete models of the hyperbolic
space. Moreover, this kind of heuristic was used by Cowling, Meda and Setti in [2], but
in the other way round, that is, in this work the authors used Strémberg’s approach
to prove weak estimates in the setting of trees. A mnovelty of our paper is to bring
ideas of the discrete setting to the continue hyperbolic context. Adapting this strategy
to a continuous context requires overcoming certain obstacles. On the one hand, the
combinatorial arguments used in the discrete setting of trees are not longer available, so
they have to be replaced by geometrical arguments. In this sense, the following estimate
(Proposition 2.1)

n—1

Hn (BH(y7 5) N BH(va)) <Cpe = (rts—dn(@y))

is behind many estimates, as well as, some examples. It will also play a key role in the
inequality

s/

/AT(XE)(y)w(y)dun(y) < com € TV THw(F) T Mow(E) 7
F

that is very important to prove Theorem 1.1. In this inequality, F' and F' are measurable

subsets of H", s > 1, s’ = 25, and r is a positive integer. On the other hand, in

our setting the measure is not atomic. This leads us to make some estimations on some

convenient averages of the original function instead of the function itself (see for instance
Lemma 3.3).
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1.2. Weighted estimates in the hyperbolic space for p > 1

In the Euclidean case, the weak and strong boundedness of the maximal operator M
in weighted LP spaces is completely characterized by the A, condition defined in the
seminal work of Muckenhoupt [10]:

p—1

1 1 1

up | — — [ 1.2

sup B|/wd:c |B/wpldx < 00, (1.2)
B B

where the supremum is taken over all the Euclidean balls. Different type of weighted
inequalities were proved for measures such that the measure of the balls grows polynom-
ically with respect to the radius (see for instance [5], [12], [15], [18], and [19]). However,
the techniques used in those works can not be applied in our framework because of the
geometric properties of H™ and the exponential growth of the measures of balls with re-
spect to the radius. Unweighted strong (p, p) inequalities for the maximal function were
proved for p > 1 by Clerc and Stein in [3]. Moreover, singular integral operators also
were studied on symmetric spaces by Tonescu ([6,7]).

Roughly speaking, in the hyperbolic spaces, the behavior of the maximal function is
a kind of combination of what happens in the Euclidean case and in the trees. More
precisely, recall that we have defined the operators

M"Y f(z) = sup A, f(z) and M7 f(z) =sup A, f(z).
0<r<2 2<r

As we have already mentioned, the operator M!°¢ behaves as if it were defined in the
Fuclidean space. So, it is natural to expect that it boundedness could be controlled by
a kind of “local A, condition”. We say that a weight w € Ap, joc(H™) if

p—1

1 / 1 / _a
sup — = [ Win — = [ W Py, < o0.
0<r(B)<1 :U'TI(B) % ,Ufn(B) A

The situation is very different for large values of the radius, when the hyperbolic
structure comes into play. For instance, it is not difficult to show that the natural A,
condition is too strong for the boundedness of M 7" in the hyperbolic setting. Indeed, in
the Example 4.1 we show a weight for which the maximal function is bounded in all the
LP-spaces, but it does not belong to any (hyperbolic) A, class. This suggests to follow
a different approach. Inspired by the condition introduced in [14], in the case of k-ary
trees, we are able to define sufficient conditions to obtain weak and strong estimates for
the maximal function respect to a weight w. Our main result in this direction is the
following;:

Theorem 1.2. Let p > 1 and w a weight. Suppose that
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i.) w e Ap’loc(Hn),
ii.) There exist 0 < 8 <1 and B8 < a < p such that for every r > 1 we have

/AT(XE)(y)w(y)dun(y) S e (B) v w(F) T, (1.3)
F
for any pair of measurable subsets B, F C H™.
Then
M f1 oo )y S 1 Le (w)- (1.4)
Furthermore, if B < « then for each fized v > 0 we have
> A ) S N FlLew)- (1.5)

Jj=1

And therefore

HMf”LP(w) S; ”fHLP(w)v
IM e o) S Nl e (o)

where o = w'™ P and p' = g

Remark 1.3. We observe that the estimate (1.5) in the previous theorem is stronger than
the boundedness of the maximal function M/%"(f). In particular, it implies that if an
operator T satisfies the pointwise estimate

ITf (@) S M f) () + D0 57 A5 (1) (),

Jj=1

for some 7 > 0, then the requested conditions on the weight w in Theorem 1.2 will be
sufficient condition for the boundedness of T' in the space L?(w) with p > 1. In particular,
this generalized, in the hyperbolic setting, the unweighted estimates obtained by Clerc
and Stein in [3, Thm. 2] for the maximal function.

Remark 1.4. It is not clear whether or not the condition (1.3) for & = /3 is a necessary
condition for the weak type (p,p) boundedness of M with respect to w. However, the
condition is sharp in the following sense: if 5 = a we can construct a weight w satisfying
(1.3) and w € Ay, 1oc(H™), therefore the weak type (p,p) holds, but the strong type (p, p)
fails. Consequently, the weak type (g, q) fails as well for every ¢ < p (see Example 4.1
(2)). In particular, this shows that, unlike the classical case, in the hyperbolic context
the weak (p,p) inequality with respect to w of the maximal operator is not equivalent
to the strong estimate for p > 1.
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The condition (1.3) could be not easy to be checked. For this reason, we consider the
following result which provides a more tractable condition. To simplify the statement,
given a positive integer j, let

Cj = B(0,5) \ B(0,j —1).

Observe that the sets considered in the condition in (1.3) may have non-empty inter-
section with several different levels C;. The condition in the following proposition studies
the behavior of the weight at each level.

Proposition 1.5. Let 1 < p < oo, and let w be a weight such that there exists a real
number § < 1, so that for every j,l,r > 1 integers with the restriction |l — j| < r, we
have that

T+

w(C N B(z,r)) < e b i>7j(”_‘S)e("_l)r‘sw(av), for a.e. x € Cj. (1.6)

Then, the condition (1.3) in Theorem 1.2 holds with f = o = p—§+1'

Combining Theorem 1.2, Remark 1.3 and Proposition 1.5 we obtain the following
corollary.

Corollary 1.6. Let 1 < p < 00, and w € Ap 1oc(H™) such that there exists a real number
§ < 1 such that for every j,l,r > 1 integers with the restriction |l — j| < r, we have that

w(C N B(z,1)) S e(n=1) =g =0 em=Drdyy (), for a.e. x € Cj.
Then
M fllpeeew) S 1Flzew)-
Furthermore, if p < q we have

||Tf||L‘1(w) S HfHLq(w)v

for every operator T' satisfying the pointwise estimate

T f @) S M f1) () +57 ) 40D (),

jz1
for some v > 0.

Remark 1.7. The results of this paper can be also proved, following essentially the same
steps, in some § hyperbolic spaces endowed with a measure p satisfying that
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p(B(x, 7)) ~ra”

for some a > 1, some non-negative integer n, and any r big enough. Examples of such
spaces are the regular trees and the rank one symmetric spaces of non-compact type
(see also Remark 2.3). We prefer the framework of hyperbolic spaces H,, for the sake
of simplicity and to keep the universe of potential readers as wide as it is possible. It
should be also pointed out that, although we think that our results must also hold in
some spaces of non-positive curvature, like the general symmetric spaces of non-compact
type, our arguments can not be extended directly to that setting since they depend on
some hyperbolicity of the metric.

1.3. Organization of the paper

This paper is organized as follows. In Section 2 we prove an estimate on the measure
of the intersection of two hyperbolic balls. Section 3 is devoted to the proof of the main
results of this paper. The proof of Theorem 1.1 is contained in Subsection 3.1, while
the proof of Theorem 1.2 is contained in Subsection 3.2. The Section 3 concludes with
the proof of Proposition 1.5. The Section 4 contains examples that clarify several points
previously mentioned. Finally, the paper concludes with an appendix on the ball model
of the hyperbolic space.

2. Geometric results
2.1. The hyperbolic space

Although the precise realization of hyperbolic space is not important for our purposes,
for sake of concreteness, throughout this article we will consider the ball model. Recall
that u, denotes the volume measure, and by d,, we will denote the hyperbolic distance.
A brief review of some basic facts about this model and its isometries is left to the
Appendix A.

2.2. Two results on the intersection of balls in the hyperbolic space

This subsection is devoted to prove the following two geometric results, which will be
very important in the sequel.

Proposition 2.1. Let By (y,s) and By (x,r) be two balls in H,,. Then

n—1

tin(Br(y,5) N Bu(x,1)) < Cpe "5 (Ha=lo),

where Cy, is a constant that only depends on the dimension.
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Fig. 1. Intersection of the balls with the two dimensional plane P.

Proof. We can assume that By (y,s) N By(z,r) # &. On the other hand, since the
estimate is trivial if r and s are less than a fixed constant, we can also assume that
r,s > 2. Without loss of generality, we can assume that y = 0 and « = (d,0,...,0) with
d = d,(z,y). Note that we can also assume that d > 0, otherwise the estimate is trivial.
The geodesic passing through the centers is the segment

L={(t,0,...,0): te(=1,1)}

Since the balls are symmetric with respect to this geodesic line, the intersection is also
symmetric with respect to this line. Let Op(n — 1) be the subgroup of the orthogonal
group O(n) defined by

Or(n) ={A € O(n) : A leaves invariant the geodesic line L},

then the intersection is invariant by the action of Op(n — 1). Moreover, the subgroup
Or(n — 1) acts transitively in the intersection of the boundaries 0Bg(0,s) N 0By (x, 1),
which turns out to be an (n — 2)-sphere. Let S denote this intersection of boundaries,
and consider the point m € L that satisfies

d (0,m) = * = dn(mz) = %.

Since L is a symmetry axis for S, the points in S are at the same distance to the point
m. Let p denote this distance. The volume of the ball of radius p can be estimated using
the hyperbolic law of cosines. Take ¢ € S, and consider the two dimensional hyperbolic
(also linear) plane P containing ¢ and L. Let us restrict our attention to this hyperbolic
plane (see Fig. 1). Since Z(0,m,q) + Z(g,m,x) = 7, one of them is greater or equal to

7. Suppose that the angle § = Z(0,m, q) is greater than 7, and consider the geodesic

triangle whose vertices are 0, m and ¢ (see Fig. 2).! Since cos(f) is non-positive, we have

L If the angle (0, m, q) were smaller than Z, we use the angle (¢, m,z) and the triangle with vertices g,

m and x.
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s+d—r
@ 2 Py
0 P x
q
Fig. 2. Geodesic triangle.
that
d— d—
cosh(s) = cosh (%) cosh(p) — sinh (u) sinh(p) cos(6)
d—
> cosh (HTT) cosh(p).
Therefore, we get the following estimate
¢ < cosh(p) < cosh(s) < 9 5

s+d—r
cosh (%)

By equation (1.1), we get that

P
Vol (BH(m, p>) =Q, /(sinht)"’ldr < Kpem=1r < on g, oD (FE) (2.1)
0

Now, it is enough to prove that By (0, s)NBy(x,r) C By (m, p). Since the intersection
is an open-connected set, it is enough to prove that the boundary Bp(m,p) is not
contained in the intersection. So, take p € 9By (m, p). By a continuity argument, we
can assume that p ¢ L. Then, as before, consider the plane P generated by p and the
geodesic L. The geodesic L divide this plane in two parts. Let ¢ be the unique point in
P NS in the same half-plane as p, and suppose that 6, = Z(p,m,x) is greater or equal
than 0, = Z(q,m,z) (see Fig. 3).

If t = d,,(z,p), since the cosine is decreasing in (0, 7) we get that

cosh(t) = cosh (%H) cosh(p) — sinh (r—i_;ﬁ) sinh(p) cos(6)
> cosh (%) cosh(p) — sinh (m> sinh(p) cos(6,)

= cosh(r).

In consequence, ¢t > r and therefore, the point ¢t ¢ By (x, 7). If Z(p, m,x) is smaller than
Z(q,m, z), it holds that Z(p, m,0) is greater than Z(q, m,0). Hence, the same argument,
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s+d—r

o

Fig. 3. Comparison of triangles.

replacing the vertex x by the vertex 0 shows that ¢ ¢ Bg(0,s). This concludes the
proof. O

The following is a corollary of the proof of the previous lemma.

Corollary 2.2. Let By(0,s) and By (x,r) be two balls in H,, such that their intersection
has positive measure. If po = (7 + 5 — dn(0,) ), then

By (m, po) € Bu(0,8) N By(z,7) € Bu(m,po + 1),

s+d—r)-

where m = ax, and o = tanh ( >

Remark 2.3. After we finished this manuscript, we learned that the previous corollary
holds in §-hyperbolic metric spaces. The first inclusion holds in any geodesic metric
space, while the second one requires that the metric satisfies some hyperbolic condition
(see [1] for more details). Examples of spaces satisfying this hyperbolic condition, besides
the hyperbolic spaces H,,, are the regular trees and the rank one symmetric spaces of
non-compact type.

3. Proof of main results

First of all, we will prove the following arithmetical lemma, which is a slight general-
ization of a result contained in [14].

Lemma 3.1. Let 1 <p < oo, —p<d <1, and k > 1. Let the sequences of non-negative
real numbers {c;}52, and {d;}72, satisfying

(e} o
Z kP, = A and Z w'd, = B.
j=0 =0

Then, for every integer r > 1 we have that

. U+i+r)(p—9) Ijtr P 1 _ 1
E min { K%k 2 cj k2 dl} < Cp 5 KP-OFTT Ap=oF1 Bl= =1, (3.1)
j,1eNU{0}
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Proof. To prove this inequality, let p be a real parameter to be chosen later, and argue
as follows

. (+i+r)(p—38) gt
E mm{nz‘;’“/@ 2 Cj, k2 dl}

7,leNU{0}
pts (+5) (p—5) r [
<kgz" g K2 cj+K? g k= d;
1,jeNU{0} 1,jeNU{0}
I<j+p I>5+p
5 (et (=) =
p+6 . Jtpt+i)(p— T —£
55275 K 2 cj+f<a2g KT 2d,
j=0 1=0
pts,. p(p=9) = J(p—9) r,_p i 1
=K'z "K 2 g k cj+/£2k:2§ K'd;
j=0 1=0

p;rér p(p—9)

r _pP
K Kk 2 A+ kzIr 2DB.

B 1)
Choosing p = 2;055&1‘) — (’; t% +11) . it follows that

15, pp=5)
P2 TKP p

r p D 1 1
K > A+ k2K 2B < cpghroF1 Av=o¥1 Bl morT
= Cp,

which concludes the proof. 0O
3.1. Proof of Theorem 1.1

The first step consists on proving that Lemma 2.1 leads to the following result. This
is a key point to push the scheme on the discrete cases in [11] or [13]. Recall that, given
r > 0, we denote by A, the averaging operator

1

A I = B )

/ (@) dpia ().

yEBp (z,r)
Lemma 3.2. Let E, F measurable sets of H"™, s > 1 and let r be a positive integer. Then
—(n—1) " A i
/ Ar(x2) @) w(y)dpa(y) < csme” "V TITw(F) T Moaw(B) 7,
F

where s = 25 and ¢, is a constant depending on s and the dimension n.

Proof. We divide the hyperbolic space H" in level sets as follows
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where C; ={x € H" : j —1 < dyu(0,z) < j}. Let E; = ENC; and F; = F NCy. Hence,

we can write

1= [ A0 @u)dn) = Y / Al e@din(y).  (32)

rF £,7>0

Now, we will estimate the integrals

L= [ 40 W) )

Fy

in two different ways. On the one hand, given x € Ej, let
Te={yeF: dz,y) <r}
Then, by Lemma 2.1
Hn(Q,0) < Cpe™3 770,

Using this estimate, we obtain that

L= [ ] (@) dn (@) 0) i ()
Fe B(y,r)

- 1// 9)dpin(y) dpin ()
—cr [ [ a, | wwdno | dn@

Ej 5. Bu (z,r)

o

(n=1)r

< Cpe~ (Ve (hr=) 5 M (w)(Ej).

On the other hand, if y € Iy, let QY , = {z € E; : d(z,y) <r}. Then, by Lemma 2.1

e [ [ )ty

Feqy,

< Cne_("_l)re%l G4r=0) w(Fy).

In consequence

(n— l)r

Ly < Cue™ 0 min {5 4700 5 M () (), 75 0470 () .
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and

I<Cpem 0" 3" min {e%(”“j) e My (w)(Ey), T 070 w(Fe)}.

[0—j|<r+2
Now, if we define ¢; = anl_vil(“) and d; = l(‘;(Fi)l We have that
e s7
Z e("_l)b%cj = M;w(E) and Z en=Dlg; = w(F), (3.3)
Jj=0 j=

and

min{e 5o (=) o )TMs(w)(Ej)aengl(Hr_e)w(FZ)}

(n—1)r (A+j+r) I+ji+r
:min{e E e("_l)ch,e("_l)le}

Then we have that

I <Se by Z min {e(n;m e(n=1) 50 ¢y, e dl} . (3.4)
1,jeNuU{0}

Now, if we choose § = 2 and p =1 (then p — § = Z) we have that

(n—1)r

2s’

_q1)Utitn) _q)ktitr
o(n=1) ¢, e dz}

min{e
is equal to
. _ _ 1\ U+i+r)(p=96) 1) ititr
min {e(" Dorg(n=1) 2 cj,em Vs dl}.

Therefore, if k = e"~! and we take into account (3.3), applying Lemma 3.1 in (3.4)
we get

s/

1< e VT w(F) 75 Maw(E)77. O

~

We can use Lemma 3.2 to obtain a distributional estimate on A,..

Lemma 3.3. Let » > 1 and A > 0. Then, there exists n > 0 such that

e(n—l)k

w({Ar(ALf) 21}) Ses Z <m> 25/ =Dk M ({|A2f| > ne(nfl)k}) 7

k=0

where cs depends only on s and c¢s — oo when s — 1.



J. Antezana, S. Ombrosi / Advances in Mathematics 482 (2025) 110641 15

Proof of Lemma 3.3. Let f; = A;f. We bound

I &
A+ e oxm + fixgnz pemor, (3.5)
k=0
where F), is the sublevel set
By = {é”*l)(’“*l) <fi< e<”*1>’“}. (3.6)
Hence
I &
Acfr < =+ 30" A, () + Ar (X ey ) - (3.7)

k=0

Given any A >0

w ({Ar (fixgsizem-ry) > A}) S w ({Ar (fiXggi5e0-0r)) #0})
<w ({x :By(r,x)N{f1 > e(”*l)’“} * @}) .

Take z such that By(z,7) N {fi > e™ D" £ &} and let y be an element of this
intersection. It is not difficult to see that

Bu(y,1) C By(z,r + 1) N {fo > ce" D},

where fo = Aof and ¢ = %. Therefore, for some ¢; > 0 depending only on the

dimension, it holds that

o ({osBatnn 162 ) £.2}) < 0({Ae (xgseie ) > iy })

Cle(nfl)r

< Cle(nil)r / Ar+1 (X{fQECE(n_l)T}) wdu
Hy

< Cle(nil)TM(w) (X{fzzce(n—l)r}) .

On the other hand, let 5 € (0,1) that will be chosen later. Note that, now it is enough
to study when the following inequality holds

" 1
Ze(nil)kAr (XEk) > —.
k=0 €
This in particular implies that there exists 1 < k < r for which

(n—1)8 _ 1 (n—1)k B
e (&
Ar (XE) > e(n—1)(k+2) <e(n1)r> '
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Indeed, otherwise we have that

LN 1k g P~ 1 (n—1)8k
= ;06 r(XB,) < e(n—1)(Br+2) Z
L o N
D12 Gn-DF 1 &’

which is a contradiction. Thus

T

w(Arfi 2 1) <Y w(Fr) + e VM (w) (X g, 5cetn-ry) »
k=0

where

(n=1)B _ 1 /on—1k\7

e e

Fi, = {Ar (XE,) > S DD (e(nl)r> } .
Note that F} has finite measure, and

(=18 _ 1 /pn—1k\P
W) e (G ) < [ Al i),
Fy,

On the other hand, by Lemma 3.2,

/AT(XEk)wd/’l’n(x) < cse _(n 1)S'+1w(Fk)ﬁMsw(Ek)ﬁ-

Fy,

Hence

w(

k) o= (k+2) \ g(n—Dr

(’I’L*l)ﬂ — 1 (nil)k ” s/
¢ (e ) < csef(nfl)mw(Fn)ﬁMsw(En)m.

So, choosing = we have that

(s +1)

(n—1)k

w(Fy) < cie” Va7 UM w(E,,)

<e, (6(n1)k> 27 DK ({f1 > e(nq)(k—l)}) _

e(n=1)r

Therefore

1

w{A, f1 > 1}) < ¢, - (M) > e =1k N ({f1 > e(nfl)(kfl)}>

e(n=1)r
k=0
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+ c1e VT M (w) ({fg > ce("_l)T}) . (3.8)

So, there exists > 0 depending only on the dimension such that

w{Arfi > 1}) <& XT: (M) 27 e=DE N ({f2 > ne(n—l)(k—l)}) .

e(nfl)r
k=0

Indeed, note that in the right-hand side of (3.8), the second term is dominated by the
last term of the sum. This yields the desired conclusion. O

Combining the ingredients above we are in position to settle Theorem 1.1.

Proof of Theorem 1.1. By the discussion in the introduction we only need to argue for
MY (f)(z). Then, by Lemma 3.3 implies that

w(Mf”f > /\> <w (MP fy > )

<D w(Afi =)
r=1
r n— %
~e 23 () e ({z )

< T 1)k 257
3 e .
:C‘*/ 2 <T1>> eI et 060y Mow (@) dpan ()

(
U, r=0 k=0 ¢
% X/ (n-1)k 3 -
= [ (Samr) e Kz g M o)
Hon k=0r==k

oo
:Es/Ze(n_l)kX{fQZE("*l)(k*l)}nA}MSw<m)dun(m)
Ho k=0

< n—;ﬂ/ fol) Myw (@) dpan (2)

o / F(2) As (M) () djun ().

Hn

Now, if w is identically 1 we have Ay(M,w)(z) = 1 and we are done. In particular, this
recovers the Stromberg’s weak type (1,1) estimate. If w is not constant, we claim that

Az (Msw)) (z) S5 Msw(w).
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Indeed,

Gy | M) = rty [ M) e
B(x2) B(z,2)

* i (B(x,2)) M (w* X5 @4y (1)) * dptn (y)-

B(z,2)

The second term in the last line can be controlled by c¢M (w)(x) because

=
fn\H

M (WX (B(a,4))c(Y))* ~ M(w’X(B(z,4))()) 7,

for every y € B(xz,2). Using Kolmogorov’s inequality and the weak type (1,1) of M the
first term can be estimate by cﬁ(A4(w5)(:r))§ and the claim follows. This completes the
proof in the general case. O

3.2. Proof of Theorem 1.2

The proof of Theorem 1.2 follows the same ideas of the proof of Theorem 1.1. in
[14]. First, the hypothesis w € Ap joc(H™) implies the estimates for M'°¢ by standard
arguments as in the classical setting. On the other hand, the arguments used to prove that
Lemma 3.2 implies Lemma 3.3 can be used to prove that the hypothesis in Theorem 1.2
implies that

1-8
(n—1)k &

w({A-(A1f) > A}) Ses zr: <Z(n71)r> 2 e(n=1BEk,, <{|A2f| > ne(n—l)k)\}) )

k=0
(3.9)
This inequality shows that the case § < « produces a better estimate than the case
8 = «. First of all, assume that we are in the worst case = «a. Arguing as in the proof
of Theorem 1.1 we get

w({M7f(2) 2 A}) 5 Ap/|A2 z)|Pw(x)dpn (v)dz.

Since |Aa(f)(z)| < M'°¢f(z) and w € A, 10c(H™), paying a constant we can eliminate
As in the right hand side of the previous estimate, and the proof is complete in this case.
If we assume that 8 < «, then by (3.9) we have that

oo

14y = [ X0 (Arf = X dA

0
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1-p
r e(n=1k\ 2~
~ n—1)r
k=0 ¢
1-8

— (el DRy B2k Dk
=3 (Smw) A
k=0

oo

e(nfl)ﬁﬁk‘/)\p*lw ({|A2f‘ > ne<”*1>’u})
0

Qs

Qs

n—1)rp(2—
< e Dra(g 1)‘|A2f||z£p(w)-

Since w € Ap 10c(H™) we can eliminate A, in the last norm, and taking into account that
g — 1 < 0, we have that

oo oo (B
DA oy S D eI PET fl o) ~vausi 1 1]Log)-

r=1 r=1

This leads to (1.5). From (1.5) and the fact that Z]Oil A;(f) is self-adjoint (y = 0)
we obtain the boundedness of M7/%" in the spaces LP(w) and L” (¢). Moreover, since
w € Ap1oc(H™) and therefore o is in Ay jo.(H™) we have the same inequalities for M'¢,
and as a consequence we obtain

HMfHLT’(w) SJ ||fHLP(w)
HMfHLp’(a) S ||fHLp’(a)

This ends the proof of the Theorem.
3.3. Proof of Proposition 1.5

The proof follows similar ideas as Lemma 3.2.

Proof of Proposition 1.5. Given E, F' subsets in H™, we should prove that

/ A0 Wiy S "y e @3a0)

~

F
Using the same notation as in the Lemma 3.2, we have
L= [ 4G W) ).
Fe
Given x € Ej, let Qf , = {y € Fy : d(x,y) < r}. Then, by condition (1.6)

w(§dj,) < C’ne("_l)wéﬁ(p_‘;)e("_l)“sw(a:).
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Therefore,

L= [ ] i @) dut@)uw)dun)

Fo B(y,r)

e~ / / )i () dtn (1)

< 67(n71)r6(n71)r+é73 (pfts)e(nfl)N;w(Ej)'

On the other hand, if y € Fy, let le ={z € E;: d(z,y) <r}. Then, by Lemma 2.1
L= (n=br / / dpin (x y)dpin(y)
Fe QY,

< Cpe= D" G4r=0) (7).
So,
Iy < Cpe” ™D min {e("_l) sy (p=0)en=1rdyy (), ez itr=0) w(Fz)}.

From now on, we can follow the same steps as in the proof of Lemma 3.2, and using
Lemma 3.1 we obtain (3.10). O

4. Examples

In this last section we show several examples to clarify several points previously men-
tioned. We omit details since the examples follow from continue variants of Theorem 1.3
n [14].

Let —o0o < v < 1, we denote

1
(1+MTL(B(07dH(va)))’Y

wy(z) =
Examples 4.1.
(1) If0 <y < 1, then
M (wy)(z) S wy ()

In particular if v < 1 taking s > 1 such that vs < 1 we have that

Mé(w'y)(x) S w’y(m)
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Therefore there are non trivial weights satisfying Mg (w) < w. On the other
hand, Mw;(z) < wi(z). However, the weak type (1,1) of M with respect to w
fails. In fact, taking fp(z) = xc,(x) for k big, it is not difficult to show that
wi{z : M(fx)(x) > 1/2} > k and the L!'(w;)-norm of f; is uniformly bounded.
In particular, this example shows that in Theorem 1.1 is not possible to put s = 1.
In fact, it is not possible to put any iteration (M™(f) = M(M™1f)) of M for any

fixed natural number m.
(2) Let p > 1. Then wy_,(x) satisfies the hypothesis of Corollary 1.6 and therefore

1M fll oo (wr—p) S Wl e (wi,)

holds. Nevertheless, || M f|| 1 (w,_,) < | f]l2r(w,_,) does not. This can be seen by con-
sidering the function f = xp(o,1), and taking into account that w ~ (MXB(O,l))l_p.

(3) Fixed v € (0,1). We have seen in the item 1 that the maximal function satisfies a
weak type (1,1) inequality for this weight. In particular, for every ¢ > 1,

1M fllaqw,) S fllzaqw,)-

However, it is not difficult to see that, for any fixed p > 1, it holds that

p—1

1 / 1 / 55
SuUp ———~ w —_— w = 0.
>0 1 (B(0,7)) T\ ua(B(O, 7)) !

B(0,r) B(0,r)

This example shows that boundedness of M does not imply the natural condition
A, for any p > 1 in this setting. In the Euclidean setting in the context of a general
measure ;1 an example in this line was also obtained by Lerner in [g].

Appendix A. The ball model of the hyperbolic space

Let B, = {x € R": ||z|| < 1}, where || - || denotes the euclidean norm in R™. In this
ball we will consider the following Riemannian structure

L2 2jv]”

)= T e

The hyperbolic distance in this model can be computed by

lz =yl
dy(z,y) = arctanh ( - |-
(1 =2(z,y) + llz[Pllyll*)>

The group of isometries Z(B,,) in this representation coincides with the group of
conformal diffeomorphisms from B,, onto itself. For n = 2, we can identify R? with C,
and this group is the one generated by:
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« Rotations: z — €'z, t € R.
z—w

e Mobius maps: z +— —.
1 —wz
o Conjugation: z — Z.

For dimension n > 2, recall that, by Liouville’s theorem, every conformal map between
two domains of R™ has the form

> Aoy, o(z)+Db

where A > 0, b € R™, A belongs to the orthogonal group O(n), and for o € R™, a € R

- r — Xo
lzg,a(T) = aiﬂx ol + x0.

Note that, when a > 0, the maps ¢4,,o correspond to a reflection with respect to the
sphere

S Hxg,a) = {r €R™: ||z — 20]* = a}.

If « < 0, it is a composition of the inversion with respect to the sphere S"~(xq, —a)
and the symmetry centered at xy. Using this result, we get that the group Z(B,,) consists
of the maps of the form

Aof

where A belongs to the orthogonal group O(n) and € is either the identity or an inversion
with respect to a sphere that intersect orthogonally 0B,,. Recall that we say that two
spheres S; and Sy intersects orthogonally if for every p € S1 NSy

(T,81)* L (TpS2)™.

Remark A.1. This representation is also true for n = 2. Indeed, on the one hand, the
rotations as well as the conjugation belongs to O(2). On the other hand, given oo € C
such that |a| < 1, the circle of center a1 and squared radius || =2 — 1 is orthogonal to
0B,, and if + denotes the inversion with respect to this circle then

zZ—w

u(2) =

— Wz

—_

In this model, the r-dimensional hyperbolic subspaces that contains the origin are
precisely the intersection the r-dimensional linear subspaces of R? with B,,. The other
ones, are images of these ones by isometries. So, they are r-dimensional spheres orthog-
onal to dB,,. The orthogonality in this case, as before, is defined in the natural way in
terms of the orthogonal complements of the corresponding tangent spaces.
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