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In this work we study the singularity of the (centered) max
imal operator in the hyperbolic spaces. With this aim, we 
changed the density of the underlying measure to avoid pos
sible compensations due to the symmetries of the hyperbolic 
measure. Our starting point is a variant of the well-known 
endpoint Fefferman-Stein inequality for the centered Hardy
Littlewood maximal function. This inequality generalizes, in 
the hyperbolic setting, the weak (1, 1) estimates obtained by 
Strömberg (1981) [17] who answered a question posed by Stein 
and Wainger (1978) [16]. Our approach is based on a combina
tion of geometrical arguments and the techniques used in the 
discrete setting of regular trees by Naor and Tao (2010) [11]. 
This variant of the Fefferman-Stein inequality paves the road 
to weighted estimates for the maximal function for p > 1. On 
the one hand, we show that the classical Ap conditions are not 
the right ones in this setting. On the other hand, we provide 
sharp sufficient conditions for weighted weak and strong type 
(p, p) boundedness of the centered maximal function, when 
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p > 1. The sharpness is in the sense that, given p > 1, we can 
construct a weight satisfying our sufficient condition for that 
p, and so it satisfies the weak type (p, p) inequality, but the 
strong type (p, p) inequality fails. In particular, the weak type 
(q, q) fails as well for every q < p.
© 2025 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY-NC license (http://
creativecommons.org/licenses/by-nc/4.0/).

1. Introduction

Let ℋn denote the n-dimensional hyperbolic space, i.e. the unique (up to isometries) 
n-dimensional, complete, and simply connected Riemannian manifold with constant sec
tional curvature −1. Let μn denote the corresponding volume measure. If BH(x, r)
denotes the hyperbolic ball of radio r centered at x, then the centered Hardy-Littlewood 
maximal function on ℋn is defined as

Mf(x) = sup
r>0 

1 
μn(BH(x, r))

∫︂
BH(x,r)

|f(y)|dμn(y).

In the seminal work [16], Stein and Wainger proposed the study of the end-point 
estimates for the centered Hardy-Littlewood maximal function when the curvature of 
the underline space could be non-negative. In this more general scenario, the euclidean 
spaces Rn and the aforementioned hyperbolic spaces ℋn represent two extreme cases.

In [17], Strömberg proved the (unweighted) weak type (1, 1) boundedness of M in 
symmetric spaces of noncompact type, suggesting that the behavior of the maximal 
operator is the same in both spaces, Rn and ℋn. However, this is not the case in general, 
and it will be reveled by analyzing weighted estimates. More precisely, to complete the 
answer to Stein-Wainger’s question we study an end-point two-weight Fefferman-Stein 
inequality for M in the hyperbolic setting.

1.1. Fefferman Stein type inequality

In the Euclidean setting, the classical Fefferman Stein inequality [4] is

w ({x ∈ Rn : Mf(x) > λ}) ≲ 1 
λ

∫︂
Rn

|f(x)| Mw(x)dx,

where w is non-negative measurable function (a weight) defined in Rn, and w(E) =∫︁
E
w(x)dx. This is a cornerstone in the theory of weights, and a powerful tool to consider 

vector valued extension of the maximal function M . This result follows from a classical 
covering lemma, which is not available in the hyperbolic setting. Indeed, in this setting

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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μn

(︂
BH(x, r)

)︂
= Ωn

r∫︂
0 

(sinh t)n−1dt ∼n
rn

1 + rn
e(n−1)r, (1.1)

where Ωn is the euclidean (n − 1)-volume of the sphere Sn−1, and the subindex in the 
symbol ∼ means that the constant behind this symbol depends only on the dimension 
n. This exponential behavior, as well as the metric properties of ℋn, make the classical 
covering arguments fail. In consequence, it is unclear how to decompose the level set 
{x ∈ ℋn : Mf(x) > λ} in such way that the appropriate averages of w appear.

As in the euclidean case, from now on, given a non-negative measurable function w
(a weight) defined on ℋn, let w(E) =

∫︁
E
w(x)dμn(x) for a measurable set E ⊂ ℋn. On 

the other hand, given s > 1, let

Msw = M(ws)1/s.

Using this notation, our first main result is the following variant of the Fefferman-Stein 
inequality.

Theorem 1.1. For every weight w ≥ 0 we have that

w ({x ∈ ℋn : Mf(x) > λ}) ≤ Cs,n
1 
λ

∫︂
ℋn

|f(x)|Msw(x)dμn(x)

where the constant Cs,n → +∞ when s → 1.

This theorem is a generalization of the result of Strömberg [17], and as far as we 
know, it represents the first result for general weights in the hyperbolic setting. The 
reader may wonder if this result could hold for s = 1. We will show that this result is 
false in general if s = 1 (see Example 4.1 item 1 below). Moreover, our example shows 
that it is false, even if we put iterations of the maximal function in the right hand side. 
In some sense, this is an evidence of a stronger singularity of the maximal function in the 
hyperbolic setting. In Section 4 we will show that there are non trivial weights satisfying 
the pointwise condition Ms(w)(x) ≤ Cw(x) a.e. x ∈ ℋn. Then, for these weights it holds 
that the maximal function M satisfies the weak type (1, 1) respect to the measure wdμn.

About the proof of Theorem 1.1. For each r > 0, let Ar be the averaging operator

Arf(x) = 1 
μn(BH(x, r))

∫︂
BH(x,r)

|f(y)| dμn(y).

Hence Mf(x) = supr≥0 Arf(x). If M loc(f) denotes the operator obtained if supremum 
is restricted to r ≤ 2, and Mfar(f) denotes the operator obtained if the supremum is 
taken over all r ≥ 2, then
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Mf(x) ≤ M locf(x) + Mfarf(x).

On the one hand, the operator M loc behaves as in the Euclidean setting. The main diffi
culties appear in the estimations of Mfar. In [17], Strömberg uses a pointwise inequality 
obtained by Clerc and Stein in [3]. This pointwise inequality reduced the problem to 
get a good estimate for a convolution operator associated with a k-bi-invariant ker
nel τ , which in the case of hyperbolic setting is τ(z, w) = (1 + μn(B(0, d(z, w))−1. 
A similar approach was used by Li and Lohoué in [9] to obtain sharp constants with 
respect to the dimension n. However, Strömberg’s argument strongly uses the homo
geneity of the measure μn. So, it is not clear that one can apply a similar idea in 
the general case of any weight w. This makes it necessary to look for a more flexible 
approach.

Our general strategy is based in the scheme used by Naor and Tao in [11], where 
the weak type (1, 1) of the centered maximal function on the discrete setting of rooted 
k-ary trees is obtained. The flexibility of this approach was shown in [13] and [14], where 
the authors used this approach to get weighted estimates in the same discrete setting. 
It is well known that regular trees can be thought as discrete models of the hyperbolic 
space. Moreover, this kind of heuristic was used by Cowling, Meda and Setti in [2], but 
in the other way round, that is, in this work the authors used Strömberg’s approach 
to prove weak estimates in the setting of trees. A novelty of our paper is to bring 
ideas of the discrete setting to the continue hyperbolic context. Adapting this strategy 
to a continuous context requires overcoming certain obstacles. On the one hand, the 
combinatorial arguments used in the discrete setting of trees are not longer available, so 
they have to be replaced by geometrical arguments. In this sense, the following estimate 
(Proposition 2.1)

μn

(︂
BH(y, s) ∩BH(x, r)

)︂
≤ Cne

n−1
2 ( r+s−dn(x,y) )

is behind many estimates, as well as, some examples. It will also play a key role in the 
inequality

∫︂
F

Ar(χE)(y)w(y)dμn(y) ≤ cs,n e−(n−1) r
s′+1w(F )

1 
s′+1Msw(E)

s′
s′+1 ,

that is very important to prove Theorem 1.1. In this inequality, E and F are measurable 
subsets of ℋn, s > 1, s′ = s 

s−1 , and r is a positive integer. On the other hand, in 
our setting the measure is not atomic. This leads us to make some estimations on some 
convenient averages of the original function instead of the function itself (see for instance 
Lemma 3.3).
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1.2. Weighted estimates in the hyperbolic space for p > 1

In the Euclidean case, the weak and strong boundedness of the maximal operator M
in weighted Lp spaces is completely characterized by the Ap condition defined in the 
seminal work of Muckenhoupt [10]:

sup

⎛
⎝ 1 
|B|

∫︂
B

w dx

⎞
⎠

⎛
⎝ 1 
|B|

∫︂
B

w− 1 
p−1 dx

⎞
⎠

p−1

< ∞, (1.2)

where the supremum is taken over all the Euclidean balls. Different type of weighted 
inequalities were proved for measures such that the measure of the balls grows polynom
ically with respect to the radius (see for instance [5], [12], [15], [18], and [19]). However, 
the techniques used in those works can not be applied in our framework because of the 
geometric properties of ℋn and the exponential growth of the measures of balls with re
spect to the radius. Unweighted strong (p, p) inequalities for the maximal function were 
proved for p > 1 by Clerc and Stein in [3]. Moreover, singular integral operators also 
were studied on symmetric spaces by Ionescu ([6,7]).

Roughly speaking, in the hyperbolic spaces, the behavior of the maximal function is 
a kind of combination of what happens in the Euclidean case and in the trees. More 
precisely, recall that we have defined the operators

M locf(x) = sup 
0<r≤2

Arf(x) and Mfarf(x) = sup
2<r 

Arf(x).

As we have already mentioned, the operator M loc behaves as if it were defined in the 
Euclidean space. So, it is natural to expect that it boundedness could be controlled by 
a kind of ``local Ap condition''. We say that a weight w ∈ Ap,loc(ℋn) if

sup 
0<r(B)≤1

⎛
⎝ 1 
μn(B)

∫︂
B

wμn

⎞
⎠

⎛
⎝ 1 
μn(B)

∫︂
B

w− 1 
p−1μn

⎞
⎠

p−1

< ∞.

The situation is very different for large values of the radius, when the hyperbolic 
structure comes into play. For instance, it is not difficult to show that the natural Ap

condition is too strong for the boundedness of Mfar in the hyperbolic setting. Indeed, in 
the Example 4.1 we show a weight for which the maximal function is bounded in all the 
Lp-spaces, but it does not belong to any (hyperbolic) Ap class. This suggests to follow 
a different approach. Inspired by the condition introduced in [14], in the case of k-ary 
trees, we are able to define sufficient conditions to obtain weak and strong estimates for 
the maximal function respect to a weight w. Our main result in this direction is the 
following:

Theorem 1.2. Let p > 1 and w a weight. Suppose that
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i.) w ∈ Ap,loc(ℋn).
ii.) There exist 0 < β < 1 and β ≤ α < p such that for every r ≥ 1 we have

∫︂
F

Ar(χE)(y)w(y)dμn(y) ≲ e(n−1)r(β−1)w(E)
α
p w(F )1−

α
p , (1.3)

for any pair of measurable subsets E,F ⊆ ℋn.

Then

∥Mf∥Lp,∞(w) ≲ ∥f∥Lp(w). (1.4)

Furthermore, if β < α then for each fixed γ ≥ 0 we have

∞ ∑︂
j=1 

jγ∥Ajf∥Lp(w) ≲ ∥f∥Lp(w). (1.5)

And therefore

∥Mf∥Lp(w) ≲ ∥f∥Lp(w),

∥Mf∥Lp′ (σ) ≲ ∥f∥Lp′ (σ),

where σ = w1−p′ and p′ = p 
p−1 .

Remark 1.3. We observe that the estimate (1.5) in the previous theorem is stronger than 
the boundedness of the maximal function Mfar(f). In particular, it implies that if an 
operator T satisfies the pointwise estimate

|Tf(x)| ≲ M loc(|f |)(x) +
∑︂
j≥1 

jγAj(|f |)(x),

for some γ ≥ 0, then the requested conditions on the weight w in Theorem 1.2 will be 
sufficient condition for the boundedness of T in the space Lp(w) with p > 1. In particular, 
this generalized, in the hyperbolic setting, the unweighted estimates obtained by Clerc 
and Stein in [3, Thm. 2] for the maximal function.

Remark 1.4. It is not clear whether or not the condition (1.3) for α = β is a necessary 
condition for the weak type (p, p) boundedness of M with respect to w. However, the 
condition is sharp in the following sense: if β = α we can construct a weight w satisfying 
(1.3) and w ∈ Ap,loc(ℋn), therefore the weak type (p, p) holds, but the strong type (p, p)
fails. Consequently, the weak type (q, q) fails as well for every q < p (see Example 4.1 
(2)). In particular, this shows that, unlike the classical case, in the hyperbolic context 
the weak (p, p) inequality with respect to w of the maximal operator is not equivalent 
to the strong estimate for p > 1.
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The condition (1.3) could be not easy to be checked. For this reason, we consider the 
following result which provides a more tractable condition. To simplify the statement, 
given a positive integer j, let

𝒞j = B(0, j) \B(0, j − 1).

Observe that the sets considered in the condition in (1.3) may have non-empty inter
section with several different levels 𝒞j . The condition in the following proposition studies 
the behavior of the weight at each level.

Proposition 1.5. Let 1 < p < ∞, and let w be a weight such that there exists a real 
number δ < 1, so that for every j, l, r ≥ 1 integers with the restriction |l − j| ≤ r, we 
have that

w(𝒞l ∩B(x, r)) ≲ e(n−1) r+l−j
2 (p−δ)e(n−1)rδw(x), for a.e. x ∈ 𝒞j . (1.6)

Then, the condition (1.3) in Theorem 1.2 holds with β = α = p 
p−δ+1 .

Combining Theorem 1.2, Remark 1.3 and Proposition 1.5 we obtain the following 
corollary.

Corollary 1.6. Let 1 ≤ p < ∞, and w ∈ Ap,loc(ℋn) such that there exists a real number 
δ < 1 such that for every j, l, r ≥ 1 integers with the restriction |l− j| ≤ r, we have that

w(𝒞l ∩B(x, r)) ≲ e(n−1) r+l−j
2 (p−δ)e(n−1)rδw(x), for a.e. x ∈ 𝒞j .

Then

∥Mf∥Lp,∞(w) ≲ ∥f∥Lp(w).

Furthermore, if p < q we have

∥Tf∥Lq(w) ≲ ∥f∥Lq(w),

for every operator T satisfying the pointwise estimate

|Tf(x)| ≲ M loc(|f |)(x) + jγ
∑︂
j≥1 

Aj(|f |)(x),

for some γ ≥ 0.

Remark 1.7. The results of this paper can be also proved, following essentially the same 
steps, in some δ hyperbolic spaces endowed with a measure μ satisfying that
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μ(B(x, r)) ∼ rnar

for some a > 1, some non-negative integer n, and any r big enough. Examples of such 
spaces are the regular trees and the rank one symmetric spaces of non-compact type 
(see also Remark 2.3). We prefer the framework of hyperbolic spaces ℋn for the sake 
of simplicity and to keep the universe of potential readers as wide as it is possible. It 
should be also pointed out that, although we think that our results must also hold in 
some spaces of non-positive curvature, like the general symmetric spaces of non-compact 
type, our arguments can not be extended directly to that setting since they depend on 
some hyperbolicity of the metric.

1.3. Organization of the paper

This paper is organized as follows. In Section 2 we prove an estimate on the measure 
of the intersection of two hyperbolic balls. Section 3 is devoted to the proof of the main 
results of this paper. The proof of Theorem 1.1 is contained in Subsection 3.1, while 
the proof of Theorem 1.2 is contained in Subsection 3.2. The Section 3 concludes with 
the proof of Proposition 1.5. The Section 4 contains examples that clarify several points 
previously mentioned. Finally, the paper concludes with an appendix on the ball model 
of the hyperbolic space.

2. Geometric results

2.1. The hyperbolic space

Although the precise realization of hyperbolic space is not important for our purposes, 
for sake of concreteness, throughout this article we will consider the ball model. Recall 
that μn denotes the volume measure, and by dn we will denote the hyperbolic distance. 
A brief review of some basic facts about this model and its isometries is left to the 
Appendix A.

2.2. Two results on the intersection of balls in the hyperbolic space

This subsection is devoted to prove the following two geometric results, which will be 
very important in the sequel.

Proposition 2.1. Let BH(y, s) and BH(x, r) be two balls in ℋn. Then

μn

(︂
BH(y, s) ∩BH(x, r)

)︂
≤ Cne

n−1
2 ( r+s−dn(x,y) ),

where Cn is a constant that only depends on the dimension.
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Fig. 1. Intersection of the balls with the two dimensional plane P . 

Proof. We can assume that BH(y, s) ∩ BH(x, r) ̸= ∅. On the other hand, since the 
estimate is trivial if r and s are less than a fixed constant, we can also assume that 
r, s > 2. Without loss of generality, we can assume that y = 0 and x = (d, 0, . . . , 0) with 
d = dn(x, y). Note that we can also assume that d > 0, otherwise the estimate is trivial. 
The geodesic passing through the centers is the segment

L = {(t, 0, . . . , 0) : t ∈ (−1, 1)}.

Since the balls are symmetric with respect to this geodesic line, the intersection is also 
symmetric with respect to this line. Let OL(n − 1) be the subgroup of the orthogonal 
group O(n) defined by

OL(n) = {A ∈ O(n) : A leaves invariant the geodesic line L},

then the intersection is invariant by the action of OL(n − 1). Moreover, the subgroup 
OL(n− 1) acts transitively in the intersection of the boundaries ∂BH(0, s) ∩ ∂BH(x, r), 
which turns out to be an (n − 2)-sphere. Let S denote this intersection of boundaries, 
and consider the point m ∈ L that satisfies

dn(0,m) = s + d− r

2 
⇐⇒ dn(m,x) = r + d− s

2 
.

Since L is a symmetry axis for S, the points in S are at the same distance to the point 
m. Let ρ denote this distance. The volume of the ball of radius ρ can be estimated using 
the hyperbolic law of cosines. Take q ∈ S, and consider the two dimensional hyperbolic 
(also linear) plane P containing q and L. Let us restrict our attention to this hyperbolic 
plane (see Fig. 1). Since ∠(0,m, q) + ∠(q,m, x) = π, one of them is greater or equal to 
π
2 . Suppose that the angle θ = ∠(0,m, q) is greater than π2 , and consider the geodesic 
triangle whose vertices are 0, m and q (see Fig. 2).1 Since cos(θ) is non-positive, we have 

1 If the angle (0,m, q) were smaller than π
2 , we use the angle (q,m, x) and the triangle with vertices q, 

m and x.
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Fig. 2. Geodesic triangle. 

that

cosh(s) = cosh
(︂s + d− r

2 

)︂
cosh(ρ) − sinh

(︂s + d− r

2 

)︂
sinh(ρ) cos(θ)

≥ cosh
(︂s + d− r

2 

)︂
cosh(ρ).

Therefore, we get the following estimate

eρ ≤ cosh(ρ) ≤ cosh(s) 
cosh

(︂
s+d−r

2 

)︂ ≤ 2e
s+r−d

2 .

By equation (1.1), we get that

Vol
(︂
BH(m, ρ)

)︂
= Ωn

ρ ∫︂
0 

(sinh t)n−1dr ≤ Kne
(n−1)ρ ≤ 2nKne

(n−1)
(︂

s+r−d
2 

)︂
. (2.1)

Now, it is enough to prove that BH(0, s)∩BH(x, r) ⊆ BH(m, ρ). Since the intersection 
is an open-connected set, it is enough to prove that the boundary BH(m, ρ) is not 
contained in the intersection. So, take p ∈ ∂BH(m, ρ). By a continuity argument, we 
can assume that p / ∈ L. Then, as before, consider the plane P generated by p and the 
geodesic L. The geodesic L divide this plane in two parts. Let q be the unique point in 
P ∩ S in the same half-plane as p, and suppose that θp = ∠(p,m, x) is greater or equal 
than θq = ∠(q,m, x) (see Fig. 3). 

If t = dn(x, p), since the cosine is decreasing in (0, π) we get that

cosh(t) = cosh
(︂r + d− s

2 

)︂
cosh(ρ) − sinh

(︂r + d− s

2 

)︂
sinh(ρ) cos(θp)

≥ cosh
(︂r + d− s

2 

)︂
cosh(ρ) − sinh

(︂r + d− s

2 

)︂
sinh(ρ) cos(θq)

= cosh(r).

In consequence, t ≥ r and therefore, the point t / ∈ BH(x, r). If ∠(p,m, x) is smaller than 
∠(q,m, x), it holds that ∠(p,m, 0) is greater than ∠(q,m, 0). Hence, the same argument, 
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Fig. 3. Comparison of triangles. 

replacing the vertex x by the vertex 0 shows that t / ∈ BH(0, s). This concludes the 
proof. □

The following is a corollary of the proof of the previous lemma.

Corollary 2.2. Let BH(0, s) and BH(x, r) be two balls in ℋn such that their intersection 
has positive measure. If ρ0 = 1

2 ( r + s− dn(0, x) ), then

BH(m, ρ0) ⊆ BH(0, s) ∩BH(x, r) ⊆ BH(m, ρ0 + 1),

where m = αx, and α = tanh
(︂s + d− r

2 

)︂
.

Remark 2.3. After we finished this manuscript, we learned that the previous corollary 
holds in δ-hyperbolic metric spaces. The first inclusion holds in any geodesic metric 
space, while the second one requires that the metric satisfies some hyperbolic condition 
(see [1] for more details). Examples of spaces satisfying this hyperbolic condition, besides 
the hyperbolic spaces ℋn, are the regular trees and the rank one symmetric spaces of 
non-compact type.

3. Proof of main results

First of all, we will prove the following arithmetical lemma, which is a slight general
ization of a result contained in [14].

Lemma 3.1. Let 1 ≤ p < ∞, −p < δ < 1, and κ > 1. Let the sequences of non-negative 
real numbers {cj}∞j=0 and {dl}∞l=0 satisfying

∞ ∑︂
j=0 

κ(p−δ)jcj = A and
∞ ∑︂
l=0 

κldl = B.

Then, for every integer r ≥ 1 we have that∑︂
j,l∈N∪{0}

min
{︂
κδrκ

(l+j+r)(p−δ)
2 cj , κ

l+j+r
2 dl

}︂
≤ cp,δ,κ κ

p 
p−δ+1 rA

1 
p−δ+1B1− 1 

p−δ+1 . (3.1)
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Proof. To prove this inequality, let ρ be a real parameter to be chosen later, and argue 
as follows

∑︂
j,l∈N∪{0}

min
{︂
κδrκ

(l+j+r)(p−δ)
2 cj , κ

l+j+r
2 dl

}︂

≤ κ
p+δ
2 r

∑︂
l,j∈N∪{0}

l<j+ρ

κ
(l+j)(p−δ)

2 cj + κ
r
2 

∑︂
l,j∈N∪{0}

l≥j+ρ

k
l+j
2 dl

≲ κ
p+δ
2 r

∞ ∑︂
j=0 

κ
(j+ρ+j)(p−δ)

2 cj + κ
r
2 

∞ ∑︂
l=0 

κl− ρ
2 dl

= κ
p+δ
2 rκ

ρ(p−δ)
2 

∞ ∑︂
j=0 

kj(p−δ)cj + κ
r
2 k−

ρ
2 

∞ ∑︂
l=0 

κldl

= κ
p+δ
2 rκ

ρ(p−δ)
2 A + κ

r
2 κ− ρ

2 B.

Choosing ρ = 2 logκ

(︁
B
A 
)︁

p−δ+1 − (p+δ−1)r
p−δ+1 , it follows that

κ
p+δ
2 rκ

ρ(p−δ)
2 A + κ

r
2 κ− ρ

2 B ≤ cp,δκ
p 

p−δ+1 rA
1 

p−δ+1B1− 1 
p−δ+1 ,

which concludes the proof. □
3.1. Proof of Theorem 1.1

The first step consists on proving that Lemma 2.1 leads to the following result. This 
is a key point to push the scheme on the discrete cases in [11] or [13]. Recall that, given 
r ≥ 0, we denote by Ar the averaging operator

Arf(x) = 1 
μn(BH(x, r))

∫︂
y∈BH(x,r)

|f(x)| dμn(x).

Lemma 3.2. Let E,F measurable sets of ℋn, s > 1 and let r be a positive integer. Then
∫︂
F

Ar(χE)(y)w(y)dμn(y) ≤ cs,ne
−(n−1) r

s′+1w(F )
1 

s′+1Msw(E)
s′

s′+1 ,

where s′ = s 
s−1 and cs,n is a constant depending on s and the dimension n.

Proof. We divide the hyperbolic space ℋn in level sets as follows

ℋn =
∞ ⋃︂
j=1

𝒞j ,
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where 𝒞j = {x ∈ ℋn : j − 1 ≤ dH(0, x) < j}. Let Ej = E ∩ 𝒞j and Fℓ = F ∩ 𝒞ℓ. Hence, 
we can write

I :=
∫︂
F

Ar(χE)(y)w(y)dμn(y) = 
∑︂
ℓ,j≥0

∫︂
Fℓ

Ar(χEj
)(y)w(y)dμn(y). (3.2)

Now, we will estimate the integrals

Ij,ℓ :=
∫︂
Fℓ

Ar(χEj
)(y)w(y)dμn(y)

in two different ways. On the one hand, given x ∈ Ej , let

Ωx
j,ℓ = {y ∈ Fℓ : d(x, y) ≤ r}.

Then, by Lemma 2.1

μn(Ωx
j,ℓ) ≤ Cne

n−1
2 (ℓ+r−j).

Using this estimate, we obtain that

Ij,ℓ = e−(n−1)r
∫︂
Fℓ

∫︂
B(y,r)

χEj
(x) dμn(x)w(y)dμn(y)

= e−(n−1)r
∫︂
Ej

∫︂
Ωx

j,ℓ

w(y)dμn(y) dμn(x)

= e−(n−1)r
∫︂
Ej

⎛
⎜⎝ ∫︂

Ωx
j,ℓ

dμn

⎞
⎟⎠

1 
s′
⎛
⎜⎝ ∫︂
BH(x,r)

ws(y) dμn(y)

⎞
⎟⎠

1
s 

dμn(x)

≤ Cne
−(n−1)re

n−1
2s′ (ℓ+r−j) e

(n−1)r
s Ms(w)(Ej).

On the other hand, if y ∈ Fℓ, let Ωy
j,ℓ = {x ∈ Ej : d(x, y) ≤ r}. Then, by Lemma 2.1

Ij,ℓ = e−(n−1)r
∫︂
Fℓ

∫︂
Ωy

j,ℓ

dμn(x) w(y)dμn(y)

≤ Cne
−(n−1)re

n−1
2 (j+r−ℓ) w(Fℓ).

In consequence

Ij,ℓ ≤ Cne
−(n−1)r min

{︂
e

n−1
2s′ (ℓ+r−j) e

(n−1)r
s Ms(w)(Ej), e

n−1
2 (j+r−ℓ) w(Fℓ)

}︂
,
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and

I ≤ Cne
−(n−1)r

∑︂
|ℓ−j|≤r+2

min
{︂
e

n−1
2s′ (ℓ+r−j) e

(n−1)r
s Ms(w)(Ej), e

n−1
2 (j+r−ℓ) w(Fℓ)

}︂
.

Now, if we define cj = M◦
s w(Ej)

e
(n−1) j

s′
and dl = w(Fl) 

e(n−1)l . We have that

∞ ∑︂
j=0 

e(n−1) j
s′ cj = M◦

sw(E) and
∞ ∑︂
j=0 

e(n−1)ldj = w(F ), (3.3)

and

min
{︂
e

n−1
2s′ (ℓ+r−j) e

(n−1)r
s Ms(w)(Ej), e

n−1
2 (j+r−ℓ) w(Fℓ)

}︂
= min

{︂
e

(n−1)r
s e(n−1) (l+j+r)

2s′ cj , e
(n−1) l+j+r

2 dl

}︂
Then we have that

I ≲ e−(n−1)r
∑︂

l,j∈N∪{0}
min

{︂
e

(n−1)r
s e(n−1) (l+j+r)

2s′ cj , e
(n−1) l+j+r

2 dl

}︂
. (3.4)

Now, if we choose δ = 1
s and p = 1 (then p− δ = 1 

s′ ) we have that

min
{︂
e

(n−1)r
s e(n−1) (l+j+r)

2s′ cj , e
(n−1) l+j+r

2 dl

}︂
is equal to

min
{︂
e(n−1)δre(n−1) (l+j+r)(p−δ)

2 cj , e
(n−1) l+j+r

2 dl

}︂
.

Therefore, if κ = en−1 and we take into account (3.3), applying Lemma 3.1 in (3.4) 
we get

I ≲ e−(n−1) r
s′+1w(F )

1 
s′+1Msw(E)

s′
s′+1 . □

We can use Lemma 3.2 to obtain a distributional estimate on Ar.

Lemma 3.3. Let r ≥ 1 and λ > 0. Then, there exists η > 0 such that

w ({Ar(A1f) ≥ 1}) ≲ cs

r∑︂
k=0

(︃
e(n−1)k

e(n−1)r

)︃ 1 
2s′

e(n−1)kMsw
(︂{︂

|A2f | ≥ ηe(n−1)k
}︂)︂

,

where cs depends only on s and cs → ∞ when s → 1.
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Proof of Lemma 3.3. Let f1 = A1f . We bound

f1 ≤ 1
e 

+
r∑︂

k=0

e(n−1)kχEk
+ f1χ{f1≥ 1

2 e
(n−1)r}, (3.5)

where Ek is the sublevel set

Ek =
{︂
e(n−1)(k−1) ≤ f1 < e(n−1)k

}︂
. (3.6)

Hence

Arf1 ≤ 1
e 

+
r∑︂

k=0

e(n−1)kAr (χEk
) + Ar

(︂
f1χ{f1≥ 1

2 e
(n−1)r}

)︂
. (3.7)

Given any λ > 0

w
(︁{︁

Ar

(︁
f1χ{f1≥e(n−1)r}

)︁
> λ

}︁)︁ ≤ w
(︁{︁

Ar

(︁
f1χ{f1≥e(n−1)r}

)︁ ̸= 0
}︁)︁

≤ w
(︂{︂

x : BH(r, x) ∩ {f1 ≥ e(n−1)r} ̸= ∅

}︂)︂
.

Take x such that BH(x, r) ∩ {f1 ≥ e(n−1)r ̸= ∅}, and let y be an element of this 
intersection. It is not difficult to see that

BH(y, 1) ⊆ BH(x, r + 1) ∩ {︁
f2 ≥ ce(n−1)r}︁,

where f2 = A2f and c = μn(B(0,1))
μn(B(0,2)) . Therefore, for some c1 > 0 depending only on the 

dimension, it holds that

w
(︂{︂

x : BH(r, x) ∩ {f1 ≥ e(n−1)r} ̸= ∅

}︂)︂
≤ w

(︂{︂
Ar+1

(︁
χ{f2≥ce(n−1)r}

)︁
>

1 
c1e(n−1)r

}︂)︂

≤ c1e
(n−1)r

∫︂
Hn

Ar+1
(︁
χ{f2≥ce(n−1)r}

)︁
wdμ

≤ c1e
(n−1)rM(w)

(︁
χ{f2≥ce(n−1)r}

)︁
.

On the other hand, let β ∈ (0, 1) that will be chosen later. Note that, now it is enough 
to study when the following inequality holds

r∑︂
k=0

e(n−1)kAr (χEk
) ≥ 1

e 
.

This in particular implies that there exists 1 ≤ k ≤ r for which

Ar (χEk
) ≥ e(n−1)β − 1

e(n−1)(k+2)

(︃
e(n−1)k

e(n−1)r

)︃β

.
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Indeed, otherwise we have that

1
e 
≤

r∑︂
k=0

e(n−1)kAr (χEk
) < e(n−1)β − 1 

e(n−1)(βr+2)

r∑︂
k=0

e(n−1)βk

= e(n−1)β − 1 
e(n−1)(βr+2)

e(n−1)β(r+1) − 1
e(n−1)β − 1 

<
1
e 
,

which is a contradiction. Thus

w (Arf1 ≥ 1) ≤
r∑︂

k=0

w(Fk) + c1e
(n−1)rM(w)

(︁
χ{f2≥ce(n−1)r}

)︁
,

where

Fk =
{︄
Ar (χEk

) ≥ e(n−1)β − 1
e(n−1)(k+2)

(︃
e(n−1)k

e(n−1)r

)︃β
}︄
.

Note that Fk has finite measure, and

w(Fk)
e(n−1)β − 1
e(n−1)(k+2)

(︃
e(n−1)k

e(n−1)r

)︃β

≤
∫︂
Fk

Ar(χEk
)wdμn(x).

On the other hand, by Lemma 3.2,
∫︂
Fk

Ar(χEk
)wdμn(x) ≤ cse

−(n−1) r
s′+1w(Fk)

1 
s′+1Msw(Ek)

s′
s′+1 .

Hence

w(Fk)
e(n−1)β − 1
e(n−1)(k+2)

(︃
e(n−1)k

e(n−1)r

)︃β

≤ cse
−(n−1) r

s′+1w(Fn)
1 

s′+1Msw(En)
s′

s′+1 .

So, choosing β = 1 
2(s′+1) we have that

w(Fk) ≤ cse
−(n−1) r

2s′ e
(n−1)k

2s′ e(n−1)kMsw(En)

≤ cs

(︃
e(n−1)k

e(n−1)r

)︃ 1 
2s′

e(n−1)kMsw
(︂{︂

f1 ≥ e(n−1)(k−1)
}︂)︂

.

Therefore

w({Arf1 ≥ 1}) ≤ cs

r∑︂
k=0

(︃
e(n−1)k

e(n−1)r

)︃ 1 
2s′

e(n−1)kMsw
(︂{︂

f1 ≥ e(n−1)(k−1)
}︂)︂
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+ c1e
(n−1)rM(w)

(︂{︂
f2 ≥ ce(n−1)r

}︂)︂
. (3.8)

So, there exists η > 0 depending only on the dimension such that

w({Arf1 ≥ 1}) ≤ c̃s

r∑︂
k=0

(︃
e(n−1)k

e(n−1)r

)︃ 1 
2s′

e(n−1)kMsw
(︂{︂

f2 ≥ ηe(n−1)(k−1)
}︂)︂

.

Indeed, note that in the right-hand side of (3.8), the second term is dominated by the 
last term of the sum. This yields the desired conclusion. □

Combining the ingredients above we are in position to settle Theorem 1.1.

Proof of Theorem 1.1. By the discussion in the introduction we only need to argue for 
Mfar(f)(x). Then, by Lemma 3.3 implies that

w
(︂
Mfarf ≥ λ

)︂
≤ w

(︁
Mfarf1 ≥ λ

)︁

≤
∞ ∑︂
r=1 

w (Arf1 ≥ λ)

= c̃s

∞ ∑︂
r=0 

r∑︂
k=0

(︃
e(n−1)k

e(n−1)r

)︃ 1 
2s′

e(n−1)kMsw
(︂{︂

f2 ≥ e(n−1)(k−1)ηλ
}︂)︂

= c̃s

∫︂
ℋn

∞ ∑︂
r=0 

r∑︂
k=0

(︃
e(n−1)k

e(n−1)r

)︃ 1 
2s′

e(n−1)kχ{f2≥e(n−1)(k−1)}ηλ}Msw(x)dμn(x)

= c̃s

∫︂
ℋn

∞ ∑︂
k=0

∞ ∑︂
r=k

(︃
e(n−1)k

e(n−1)r

)︃ 1 
2s′

e(n−1)kχ{f2≥e(n−1)(k−1)}ηλ}Msw(x)dμn(x)

= c̃s

∫︂
ℋn

∞ ∑︂
k=0

e(n−1)kχ{f2≥e(n−1)(k−1)}ηλ}Msw(x)dμn(x)

≤ ĉs
ηλ

∫︂
ℋn

f2(x)Msw(x)dμn(x)

= ĉs
ηλ

∫︂
ℋn

f(x)A2(Msw)(x)dμn(x).

Now, if w is identically 1 we have A2(Msw)(x) = 1 and we are done. In particular, this 
recovers the Strömberg’s weak type (1, 1) estimate. If w is not constant, we claim that

A2 ((Msw)) (x) ≲s Msw(x).
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Indeed,

1 
μn(B(x, 2))

∫︂
B(x,2)

Msw(y)dμn(y) ≤ 1 
μn(B(x, 2))

∫︂
B(x,2)

M(wsχB(x,4)(y))
1
s dμn(y)

+ 1 
μn(B(x, 2))

∫︂
B(x,2)

M(wsχ(B(x,4))c(y))
1
s dμn(y).

The second term in the last line can be controlled by cMs(w)(x) because

M(wsχ(B(x,4))c(y))
1
s ∼ M(wsχ(B(x,4))c(x)) 1

s ,

for every y ∈ B(x, 2). Using Kolmogorov’s inequality and the weak type (1, 1) of M the 
first term can be estimate by cβ(A4(ws)(x)) 1

s and the claim follows. This completes the 
proof in the general case. □
3.2. Proof of Theorem 1.2

The proof of Theorem 1.2 follows the same ideas of the proof of Theorem 1.1. in 
[14]. First, the hypothesis w ∈ Ap,loc(ℋn) implies the estimates for M loc by standard 
arguments as in the classical setting. On the other hand, the arguments used to prove that 
Lemma 3.2 implies Lemma 3.3 can be used to prove that the hypothesis in Theorem 1.2
implies that

w ({Ar(A1f) ≥ λ}) ≲ cs

r∑︂
k=0

(︃
e(n−1)k

e(n−1)r

)︃ 1−β
2 p 

α

e(n−1)β p 
αkw

(︂{︂
|A2f | ≥ ηe(n−1)kλ

}︂)︂
.

(3.9)
This inequality shows that the case β < α produces a better estimate than the case 

β = α. First of all, assume that we are in the worst case β = α. Arguing as in the proof 
of Theorem 1.1 we get

w
(︁{︁

Mfarf(x) ≥ λ
}︁)︁

≲ c 
λp

∫︂
ℋn

|A2(f)(x)|pw(x)dμn(x)dx.

Since |A2(f)(x)| ≤ M locf(x) and w ∈ Ap,loc(ℋn), paying a constant we can eliminate 
A2 in the right hand side of the previous estimate, and the proof is complete in this case. 
If we assume that β < α, then by (3.9) we have that

∥Arf∥pLp(w) = p

∞ ∫︂
0 

λp−1w (Arf ≥ λ) dλ
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≲
r∑︂

k=0

(︃
e(n−1)k

e(n−1)r

)︃ 1−β
2 p 

α

e(n−1)β p 
αk

∞ ∫︂
0 

λp−1w
(︂{︂

|A2f | ≥ ηe(n−1)kλ
}︂)︂

=
r∑︂

k=0

(︃
e(n−1)k

e(n−1)r

)︃ 1−β
2 p 

α

e(n−1)β p 
αke−(n−1)kp∥A2f∥pLp(w)

≲ e(n−1)rp( β
α−1)∥A2f∥pLp(w).

Since w ∈ Ap,loc(ℋn) we can eliminate A2 in the last norm, and taking into account that 
β
α − 1 < 0, we have that

∞ ∑︂
r=1 

rγ∥Arf∥Lp(w) ≲
∞ ∑︂
r=1 

rγe(n−1)rp( β
α−1)∥f∥Lp(w) ∼γ,α,β,p ∥f∥Lp(w).

This leads to (1.5). From (1.5) and the fact that 
∑︁∞

j=1 Aj(f) is self-adjoint (γ = 0) 
we obtain the boundedness of Mfar in the spaces Lp(w) and Lp′(σ). Moreover, since 
w ∈ Ap,loc(ℋn) and therefore σ is in Ap′,loc(ℋn) we have the same inequalities for M loc, 
and as a consequence we obtain

∥Mf∥Lp(w) ≲ ∥f∥Lp(w)

∥Mf∥Lp′ (σ) ≲ ∥f∥Lp′ (σ)

This ends the proof of the Theorem.

3.3. Proof of Proposition 1.5

The proof follows similar ideas as Lemma 3.2.

Proof of Proposition 1.5. Given E,F subsets in ℋn, we should prove that

∫︂
F

Ar(χE)(y)w(y)dμn(y) ≲ e
(n−1)r

(︂
p 

p−δ+1−1
)︂
w(E)

1 
p−δ+1w(F )1−

1 
p−δ+1 . (3.10)

Using the same notation as in the Lemma 3.2, we have

Ij,ℓ :=
∫︂
Fℓ

Ar(χEj
)(y)w(y)dμn(y).

Given x ∈ Ej , let Ωx
j,ℓ = {y ∈ Fℓ : d(x, y) ≤ r}. Then, by condition (1.6)

w(Ωx
j,ℓ) ≤ Cne

(n−1) r+l−j
2 (p−δ)e(n−1)rδw(x).
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Therefore,

Ij,ℓ = e−(n−1)r
∫︂
Fℓ

∫︂
B(y,r)

χEj
(x) dμ(x)w(y)dμn(y)

= e−(n−1)r
∫︂
Ej

∫︂
Ωx

j,ℓ

w(y)dμn(y) dμn(x)

≲ e−(n−1)re(n−1) r+l−j
2 (p−δ)e(n−1)rδw(Ej).

On the other hand, if y ∈ Fℓ, let Ωy
j,ℓ = {x ∈ Ej : d(x, y) ≤ r}. Then, by Lemma 2.1

Ij,ℓ = e−(n−1)r
∫︂
Fℓ

∫︂
Ωy

j,ℓ

dμn(x) w(y)dμn(y)

≤ Cne
−(n−1)re

n−1
2 (j+r−ℓ) w(Fℓ).

So,

Ij,ℓ ≤ Cne
−(n−1)r min

{︂
e(n−1) r+l−j

2 (p−δ)e(n−1)rδw(Ej), e
n−1

2 (j+r−ℓ) w(Fℓ)
}︂
.

From now on, we can follow the same steps as in the proof of Lemma 3.2, and using 
Lemma 3.1 we obtain (3.10). □
4. Examples

In this last section we show several examples to clarify several points previously men
tioned. We omit details since the examples follow from continue variants of Theorem 1.3 
in [14].

Let −∞ < γ ≤ 1, we denote

wγ(x) = 1 (︁
1 + μn( B(0, dH(0, x) ) 

)︁γ .
Examples 4.1. 

(1) If 0 ≤ γ ≤ 1, then

M(wγ)(x) ≲ wγ(x)

In particular if γ < 1 taking s > 1 such that γs ≤ 1 we have that

Ms(wγ)(x) ≲ wγ(x)
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Therefore there are non trivial weights satisfying Ms(w) ≲ w. On the other 
hand, Mw1(x) ≲ w1(x). However, the weak type (1, 1) of M with respect to w1
fails. In fact, taking fk(x) = χ𝒞k

(x) for k big, it is not difficult to show that 
w1{x : M(fk)(x) > 1/2} ≥ k and the L1(w1)-norm of fk is uniformly bounded. 
In particular, this example shows that in Theorem 1.1 is not possible to put s = 1. 
In fact, it is not possible to put any iteration (Mm(f) = M(Mm−1f)) of M for any 
fixed natural number m.

(2) Let p > 1. Then w1−p(x) satisfies the hypothesis of Corollary 1.6 and therefore

∥Mf∥Lp,∞(w1−p) ≲ ∥f∥Lp(w1−p)

holds. Nevertheless, ∥Mf∥Lp(w1−p) ≲ ∥f∥Lp(w1−p) does not. This can be seen by con
sidering the function f = χB(0,1), and taking into account that w ≃ (MχB(0,1))1−p.

(3) Fixed γ ∈ (0, 1). We have seen in the item 1 that the maximal function satisfies a 
weak type (1, 1) inequality for this weight. In particular, for every q > 1,

∥Mf∥Lq(wγ) ≲ ∥f∥Lq(wγ).

However, it is not difficult to see that, for any fixed p > 1, it holds that

sup
r>0 

1 
μn(B(0, r))

∫︂
B(0,r)

wγ

⎛
⎜⎝ 1 
μn(B(0, r))

∫︂
B(0,r)

w
− 1 

p−1
γ

⎞
⎟⎠

p−1

= ∞.

This example shows that boundedness of M does not imply the natural condition 
Ap for any p > 1 in this setting. In the Euclidean setting in the context of a general 
measure μ an example in this line was also obtained by Lerner in [8].

Appendix A. The ball model of the hyperbolic space

Let ℬn = {x ∈ Rn : ∥x∥ < 1}, where ∥ · ∥ denotes the euclidean norm in Rn. In this 
ball we will consider the following Riemannian structure

ds2
x(v) = 2∥v∥2

(1 − ∥x∥2)2 .

The hyperbolic distance in this model can be computed by

dn(x, y) = arctanh
(︄

∥x− y∥ 

(1 − 2 ⟨x, y ⟩ + ∥x∥2∥y∥2) 1
2

)︄
.

The group of isometries ℐ(ℬn) in this representation coincides with the group of 
conformal diffeomorphisms from ℬn onto itself. For n = 2, we can identify R2 with C, 
and this group is the one generated by:
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• Rotations: z ↦→ eitz, t ∈ R.
• Möbius maps: z ↦→ z − w 

1 − w̄z
.

• Conjugation: z ↦→ z.

For dimension n > 2, recall that, by Liouville’s theorem, every conformal map between 
two domains of Rn has the form

x ↦→ λA ◦ ιx0,α(x) + b

where λ > 0, b ∈ Rn, A belongs to the orthogonal group O(n), and for x0 ∈ Rn, α ∈ R

ιx0,α(x) = α
x− x0

∥x− x0∥2 + x0.

Note that, when α > 0, the maps ιx0,α correspond to a reflection with respect to the 
sphere

Sn−1(x0, α) = {x ∈ Rn : ∥x− x0∥2 = α}.

If α < 0, it is a composition of the inversion with respect to the sphere Sn−1(x0,−α)
and the symmetry centered at x0. Using this result, we get that the group ℐ(ℬn) consists 
of the maps of the form

A ◦ θ

where A belongs to the orthogonal group O(n) and θ is either the identity or an inversion 
with respect to a sphere that intersect orthogonally ∂ℬn. Recall that we say that two 
spheres S1 and S2 intersects orthogonally if for every p ∈ S1 ∩ S2

(TpS1)⊥ ⊥ (TpS2)⊥.

Remark A.1. This representation is also true for n = 2. Indeed, on the one hand, the 
rotations as well as the conjugation belongs to O(2). On the other hand, given α ∈ C

such that |α| < 1, the circle of center α−1 and squared radius |α|−2 − 1 is orthogonal to 
∂ℬ2, and if ι denotes the inversion with respect to this circle then

ι(z) = z − w 
1 − w̄z

.

In this model, the r-dimensional hyperbolic subspaces that contains the origin are 
precisely the intersection the r-dimensional linear subspaces of Rd with ℬn. The other 
ones, are images of these ones by isometries. So, they are r-dimensional spheres orthog
onal to ∂ℬn. The orthogonality in this case, as before, is defined in the natural way in 
terms of the orthogonal complements of the corresponding tangent spaces.
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