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ABSTRACT
We study the stability regions and families of periodic orbits of two planets locked in a co-
orbital configuration. We consider different ratios of planetary masses and orbital eccentricities;
we also assume that both planets share the same orbital plane. Initially, we perform numerical
simulations over a grid of osculating initial conditions to map the regions of stable/chaotic
motion and identify equilibrium solutions. These results are later analysed in more detail using
a semi-analytical model.

Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian
points L4 and L5, we also find a new regime of asymmetric periodic solutions. For low
eccentricities these are located at (�λ, �� ) = (±60◦, ∓120◦), where �λ is the difference in
mean longitudes and �� is the difference in longitudes of pericentre. The position of these
anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are
found for eccentricities as high as ∼0.7.

Finally, we also applied a slow mass variation to one of the planets and analysed its effect
on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as
long as the mass variation is adiabatic, with practically no change in the equilibrium values of
the angles.

Key words: methods: analytical – methods: numerical – celestial mechanics – planets and
satellites: general – planetary systems.

1 IN T RO D U C T I O N

In the restricted three-body problem, there are different domains of
stable motion associated with co-orbital motion. Each can be classi-
fied according to the centre of libration of the critical argument, σ =
λ − λ′, where λ denotes the mean longitude of the minor body and
λ′ the same variable for the disturbing planet. These types of motion
are known as (i) tadpole orbits, corresponding to a libration of σ

around L4 or L5; (ii) horseshoe orbits, where motion occurs around
σ = 180◦ and encompasses both equilateral Lagrangian points; and
(iii) quasi-satellite (QS) orbits, where σ oscillates around zero.

The term ‘quasi-satellites’ was originally introduced by Mikkola
& Innanen (1997) and can be viewed as an extension of retro-
grade periodic orbits in the circular restricted three-body problem
(e.g. Jackson 1913; Hénon 1969). Although not present for circular
orbits, they exist for moderate to high eccentricities of the particle.
In a reference frame rotating with the planet, QS orbits circle the
planet like a retrograde satellite, although at distances so large that
the particle is not gravitationally bounded to the planetary mass
(Mikkola et al. 2006).

The first object confirmed in a QS configuration was the asteroid
2002 VE68 (Mikkola et al. 2004) with Venus as the host planet.
The Earth has one temporary co-orbital object, (3753 Cruithne;

�E-mail: cristian@oac.uncor.edu

Namouni 1999) and one alternating horseshoe–QS object (2002
AA29; Connors et al. 2002). The co-orbital asteroidal population in
the inner Solar system was studied in Brasser et al. (2004) by nu-
merical integrations. All QS orbits appear to be temporary, escaping
in time-scales of the order of 102–104 yr.

Wiegert, Innanen & Mikkola (2000) numerically investigated
the stability of QS orbits around the giant planets of the Solar
system. Although no stable solutions were found for Jupiter and
Saturn, some initial conditions around Uranus and Neptune lead
to QS orbits that survive for time-scales of the order of 109 yr.
It thus appears that a primordial population of such objects may
still exist in the Solar system. Kortenkamp (2005) used N-body
simulations to model the combined effects of solar nebula gas drag
and gravitational scattering of planetesimals by a protoplanet. He
showed that a significant fraction of scattered planetesimals could
become trapped into QS trajectories. It then seems plausible that
this trapped-to-captured transition may be important not only for
the origin of captured satellites but also for continued growth of
protoplanets.

At variance with these results, in the case of the general (non-
restricted) three-body problem, although equilateral solutions and
horseshoe orbits are well known, QS configurations have only
been studied very recently. Hadjidemetriou, Psychoyos & Voyatzis
(2009) performed a detailed study of periodic orbits in the 1/1
mean-motion resonance (MMR) for fictitious planetary systems
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Dynamics of two planets in co-orbital motion 391

with different mass ratios. They found that stable QS solutions oc-
cur for σ = �λ = λ2 − λ1 = 0◦ and �� = � 2 − � 1 = 180◦, where
the subscripts identify each planet. Unstable trajectories were found
at σ = 180◦, �� = 0◦. Although at present there are no confirmed
cases of exoplanets in QS configurations, Goździewski & Konacki
(2006) found that the radial velocity curves of the HD 82943 and
HD 128311 planets could correspond to co-orbital motion in highly
inclined orbits. Numerical simulations of both systems show QS
trajectories, instead of Trojan orbits as initially believed.

In this work we aim to revisit the 1/1 MMR in the planar planetary
three-body problem, trying to identify possible domains of stable
solutions and their location in the phase space. Section 2 presents
several dynamical maps constructed from numerical simulations
for different initial conditions. These maps allow us to identify
stable fixed points and periodic orbits as well as the domains of
regular motions. In Section 3 we develop a semi-analytical model
for co-orbital planets, which is then applied in Section 4 to calculate
the families of stable periodic orbits. In the same section, we also
present a brief study of the effects of an adiabatically slow mass
variation in one of the planetary bodies. Finally, conclusions close
the paper in Section 5.

2 DYNA M ICAL MAPS WITH EQUA L-MAS S
PLANETS

Consider two planets with masses m1 and m2 in coplanar orbits
around a star with mass m0 = M�. We will begin considering the
case m2 = m1; other mass ratios will also be discussed in later
sections. Let ai denote the semimajor axes, ei the eccentricities,
λi the mean longitudes and � i the longitudes of pericentre. All
orbital elements considered in this paper are assumed astrocentric
and osculating. Throughout this work, m1 will be our ‘reference’
planet: its mass will be fixed at one Jovian mass (m1 = MJup) and the
system scaled to initial condition a1 = 1 au. The angular variables
for co-orbital motion will then be defined as σ = λ2 − λ1 and �� =
� 2 − � 1.

As pointed out by Hadjidemetriou et al. (2009), for equal-mass
planets the periodic orbits are such that are located at a1 = a2 and
e1 = e2. Accordingly, we fixed the semimajor axes and eccentricities
and constructed a 100 × 100 grid of initial conditions varying both
σ and �� between 0◦ and 360◦. Each point in the grid was then
numerically integrated over 3000 orbital periods using a Bulirsch–
Stoer-based N-body code, and we calculated the averaged MEGNO
chaos indicator 〈Y〉 (Cincotta & Simó 2000) to identify regions of
regular or chaotic motion. Results are shown in Fig. 1 for six values
of the initial eccentricities ei; dashed regions correspond to unstable
orbits while white was used to identify stable solutions. An analysis
of these plots shows the following characteristics.

(i) For low initial eccentricities (ei = 0.05) the maps show
two disconnected strips of regular motion, corresponding to mo-
tion around σ = ±60◦ and any value of �� .

(ii) For moderate low to intermediate initial eccentricities (ei =
0.15 and ei = 0.30), the vertical strips of regular motion become
thinner and slightly distorted. A new stable domain is now present,
associated with QS orbits and located around σ = 0◦.

(iii) For high initial eccentricities (ei ≥ 0.40), the domain of QS
orbits increases and covers a significant portion of the plane of initial
conditions. Conversely, the distorted vertical strips shrink and each
seems to break into two islands of stable motion. The smaller islands
encompass equilateral solutions, although they almost disappear
for ei = 0.70. The larger islands correspond to a different type of

Figure 1. Results of numerical integrations of initial conditions in a grid
in the (σ , �� ) plane. Planetary masses were taken equal to m1 = m2 =
mJup and initial semimajor axes equal to a1 = a2 = 1 au. Regions of regular
motion are shown in white, while the dashed regions correspond to chaotic
and unstable trajectories.

asymmetric solution, and their locations tend towards the centre of
the plots as the eccentricities increase.

(iv) Due to symmetry present in the dynamical system, the re-
sults are invariant to transformations of the type (σ , �� ) → (−σ ,
−�� ). In fact, since m1 = m2, both equilateral solutions are ac-
tually the same solution, since we can pass from one to the other
just by redefining the reference planet. However, since later sections
will discuss the case m2 �= m1, we prefer to treat both equilateral
solutions separately.

Although MEGNO is a very efficient tool to identify chaotic
motion, it is not suited to distinguish between different types of reg-
ular orbits (e.g. fixed points, periodic orbits, etc.). Sometimes this
task is performed with a Fourier transform of the numerical data
(e.g. Michtchenko, Beaugé & Ferraz-Mello 2008a,b); however, here
we have chosen a different route. Starting from the output of each
numerical simulation, we calculated the amplitudes of oscillation
in each angular variable. Initial conditions with zero amplitude
in σ correspond to σ -family periodic orbits of the co-orbital sys-
tem, while solutions with zero amplitude in �� will correspond
to periodic orbits of the so-called �� -family (see Michtchenko
et al. 2008a,b). Finally, stationary solutions of the averaged
problem, identified as intersections of both families, may be thought

C© 2010 The Authors. Journal compilation C© 2010 RAS, MNRAS 407, 390–398

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/407/1/390/985383 by guest on 10 D
ecem

ber 2025



392 C. A. Giuppone et al.

Figure 2. Semi-amplitude maps. The left-hand (right-hand) column shows
the amplitude variation for σ (�� ) in grey scale. Light domains corre-
spond to near-zero amplitude families, darker regions indicate oscillation
amplitudes up to 90◦ and dashed regions correspond to unstable orbits. Ini-
tial values of eccentricities are indicated in each panel. The colour scale is
indicated at bottom and ACR solutions are marked in the right-hand panels.

as analogous to the apsidal corotation resonances (ACR) found in
other MMR (e.g. Beaugé, Ferraz-Mello & Michtchenko 2003). The
equilateral Lagrangian solutions will appear as ACR in these plots.

The grey-scale graphs in Fig. 2 show values of the amplitudes in
σ (left) and �� (right) for four of the plots shown in Fig. 1. White
regions represent initial conditions with semi-amplitudes smaller
than 2◦ and thus indicate the families of periodic orbits in each angle.
Darker regions correspond to increasing amplitudes (up to 45◦) and
denote initial conditions with quasi-periodic motion. The dashed

Table 1. Approximate location for the stable
ACR solutions in the (σ , �� ) plane, cal-
culated from the dynamical maps with e1 =
e2 = 0.15. For equal-mass planets, all station-
ary solutions occur for a1 = a2.

σ (deg) �� (deg)

QS 0 180
L4 60 60
L5 300 300

AL4 60 240
AL5 300 120

areas are unstable solutions. Finally, it is worthwhile mentioning that
symmetric configurations may correspond to either an alignment
(�� = 0◦) or an anti-alignment of the apses (�� = ± 180◦) while
asymmetric configurations have stationary values of �� different
from the above.

For low eccentricities (ei = 0.05), we observe four asymmetric
ACR solutions. Two are the well-known Lagrangian equilateral
solutions located at (σ , �� ) = (±60◦, ±60◦). By analogy with the
restricted problem, we will denote them L4 and L5. As far as we
know, the remaining two ACR have not been previously reported
and are located at approximately (σ , �� ) = (±60◦, ∓120◦). We
have called them anti-Lagrangian solutions and they are connected
to the classical equilateral Lagrangian solutions by the σ -family of
periodic orbits. By analogy, we have denoted the new solutions as

AL4 : σ ∈ [0, 180◦] �� ∈ [180◦, 360◦]

AL5 : σ ∈ [180◦, 360◦] �� ∈ [0◦, 180◦]. (1)

As with all previous stationary solutions, these asymmetric points
are found at a1 = a2.

As the eccentricities grow (e.g. ei = 0.40), the QS region at (σ ,
�� ) = (0◦, 180◦) causes a distortion and compression of the stable
asymmetric domain. The anti-Lagrangian zone seems less affected
and surrounded by a larger island of stable motion. This effect is
even more pronounced for ei = 0.60 and ei = 0.70 where the stable
domain around L4 and L5 almost disappears. The regions around
AL4 and AL5 are still visible, although they also decrease in size
and their location approaches the unstable symmetric periodic orbit
located at σ = �� = 180◦.

The decrease in the size of the stable regions around the asym-
metric ACR solutions is accompanied by a significant increase in
the stable domains around QS orbits, which, for high eccentricities,
seem to cover a large proportion of the plane. Inside this region,
we also note two families of periodic orbits: the �� -family which
is restricted to a small region around �� = 180◦ and a smaller
σ - family close to the zero value of the resonant angle.

Table 1 summarizes the detected stable stationary solutions in the
planar planetary three-body problem, as well as their location in the
plane of angular variables for low eccentricities.

2.1 Motion around the stationary solutions

In order to visualize the dynamics of stable orbits outside the ACR,
we integrated several orbits with initial elements a1 = a2 = 1 au,
e1 = e2 = 0.4, σ = 0 and different values of �� . Each initial
condition was chosen along line A drawn in Fig. 1 for ei = 0.40.
Results are shown in Fig. 3. The left-hand frame shows the orbital
evolution in the (e2, �� ) plane, while the right-hand frame presents
the variation of (e2, σ ). In both cases, the numerical output was
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Dynamics of two planets in co-orbital motion 393

Figure 3. Variation of the eccentricity of each planet with �� (left-hand
frame) and with σ (right-hand frame). Initial conditions were chosen inside
the QS region following line A in Fig. 1 for e = 0.40. The radial distance
is the value of the osculating eccentricity. The position of the ACR solution
is shown with a filled circle and is located at �� = 180◦. Note, however,
the existence of large-amplitude solutions around �� = 0, even though no
stable ACR solution is found in this region.

filtered to eliminate short-period variations associated with the mean
anomalies of both planets. Note that all trajectories display small-
amplitude oscillations in σ , consistent with starting positions near
the σ -family of periodic orbits.

The behaviour in the (e2, �� ) plane is more intriguing. Initial
conditions with �� ∈ (90◦, 270◦) exhibit oscillations of different
amplitudes around the ACR solutions corresponding to QS motion.
Recall that this ACR solution is located at �� = 180◦. However,
initial conditions with −90◦ < �� < 90◦ display regular mo-
tion that seems associated with large-amplitude oscillations around
�� = 0, even though this is an unstable point leading to close en-
counters and a collision between both planets. Nevertheless, there
appears to be a minimum allowed amplitude for these solutions
(shown in Fig. 3 as a dashed curve), which corresponds to a semi-
amplitude in �� of ∼45◦. Smaller amplitudes are unstable and
lead to the ejection of one of the planets in short time-scales.

Fig. 4 shows results for initial conditions inside the stable region
connecting L4 and AL4. Semimajor axes and eccentricities were the

Figure 4. Variation of the eccentricity of each planet (ei) with �� (left-
hand frame) and with σ (right-hand frame) for initial conditions inside the
stable region connecting L4 and AL4 (selected from line B in Fig. 1 for
e = 0.40). The radial distance is the value of the osculating eccentricity.
The resonant angle �� oscillates around one of two possible centres. One
corresponds to the L4 configuration while the other to the AL4 configuration.
Locations of the ACR solutions are shown with filled circles.

Figure 5. Orbit configuration with initial conditions chosen inside the re-
gions of stable motions (see top left-hand frame). The initial positions of
planets are marked with open circles while crosses indicate the orbital con-
figuration position leading to a minimum distance between the bodies. For
QS, L4 and L5, the minimum distance coincides with the initial condition.

same as in the previous plots. The initial values of �� were varied
from 0◦ to 360◦, and in each case σ was chosen along line B in
Fig. 1 for ei = 0.4 (σ -family).

The (e2, �� ) plane (left-hand frame) shows two centres of os-
cillation, one corresponding to each ACR, and identified by filled
circles. L4 is located at �� = 60◦ while AL4 roughly at �� =
240◦. As before, we see a smooth transition in the dynamical be-
haviour between both modes, with no evidence of any separatrix.
Consequently, it appears that any initial condition will lead to a
stable oscillation of �� around the nearest stationary solution.

The motion of the resonant angle σ (right-hand frame) shows a
different behaviour. Only initial conditions very close to either L4

or AL4 will show a small-amplitude circulation around the corre-
sponding stationary point. As an example, note some trajectories
oscillating around σ = 90◦ without reaching the fixed points. Fi-
nally, due to the intrinsic symmetry in co-orbital motion, the same
behaviour is also noted for initial conditions between L5 and AL5.

To better visualize each stable configuration, Fig. 5 presents the
orbit scheme for five stable solutions, whose initial values of the
angles are shown in the top left-hand frame. Five initial conditions
correspond to the stable ACR solution discussed previously (QS,
L4, L5, AL4, AL5). Each of the other plots shows the orbital represen-
tation of each solution in (x, y) astrocentric Cartesian coordinates.
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394 C. A. Giuppone et al.

Initial conditions for both planets are shown in open circles, with
m1 located along the x-axis. Both axis directions are fixed. The
orbital trajectory of each planet (over one period) is drawn in thin
black lines and the configuration leading to a maximum approach
between both planets is shown with crosses. For QS, L4 and L5, the
minimum distance coincides with the initial condition.

For QS orbits, the relative position of m2 is always located in
the positive x-axis, similar to the behaviour noted in the restricted
three-body problem (Mikkola et al. 2006). All five ACR solutions
are periodic orbits, and symmetric with respect to the x-axis.

3 SE M I - A NA LY T I C A L M O D E L

One drawback in the previous numerical approach is the excessive
CPU time required for the construction of each dynamical map.
In order to extend these results to other values of the parameter
space (e.g. planetary masses, eccentricities), it is useful to construct
a semi-analytical model for the co-orbital motion.

Such a model can be developed along similar lines to other MMR
(e.g. Michtchenko, Beaugé & Ferraz-Mello 2006; Michtchenko
et al. 2008a,b). It requires two main steps: first, a transformation to
adequate resonant variables and, secondly, a numerical averaging
of the Hamiltonian with respect to short-period terms. Both tasks
are detailed below.

We begin introducing the usual mass-weighted Poincaré canoni-
cal variables (e.g Laskar 1990) for each planet mi:

λi ; Li = m′
i

√
μiai

�i ; Gi − Li = −Li

(
1 − √

1 − e2
i

)
,

(2)

where μi = κ2(m0 + mi), κ denotes the gravitational constant and
mi

′ is the reduced mass of each body, given by

m′
i = mim0

mi + m0
. (3)

The Hamiltonian function F can be expressed as F = F0 + F1,
where F0 corresponds to the two-body contribution and has the
form

F0 = −
2∑

i=1

μ2
i m

′3
i

2L2
i

. (4)

The second term, F1, is the disturbing function which can be written
as

F1 = −κ2m1m2
1

�
+ T1, (5)

where � is the instantaneous distance between the two planets and
T1 is the indirect part of the potential energy of the gravitational
interaction (see Laskar 1990; Laskar & Robutel 1995 for more
details).

For initial conditions in the vicinity of co-orbital motion, we
define the following set of planar resonant canonical variables
(I1, I2,K,AM, σ, ��,Q, q), where

σ = λ2 − λ1; I1 = 1
2 (L2 − L1)

�� = �2 − �1; I2 = 1
2 (G2 − G1 − L2 + L1)

q = �2 + �1; J1 = 1
2 (G1 + G2)

Q = λ1 + λ2 − q; J2 = 1
2 (L1 + L2),

(6)

where J1 = 1
2AM and J2 = 1

2K. A generic argument ϕ of the
disturbing function can be written as

ϕ = j1λ1 + j2λ2 + j3�1 + j4�2, (7)

where jk are integers. In terms of the new angles, the same argument
may be written as

ϕ = 1

2
[(j2 − j1) σ + (j4 − j3) �� + (j1 + j2) Q] . (8)

Since q is a cyclic angle, the associated action AM is a constant of
motion (total angular momentum) of the system.

The next step is an averaging of the Hamiltonian over the fast
angle Q. This procedure can be performed numerically, allowing us
to evaluate the averaged Hamiltonian F̄ as

F̄ (I1, I2, σ,�� ;K,AM) ≡ 1

2π

∫ 2π

0
FdQ. (9)

In the averaged variables, K is a new integral of motion which, in
analogy to other MMR (e.g. Michtchenko et al. 2008a), we call the
scaling parameter.

F̄ then constitutes a system with 2 degrees of freedom in the
canonical variables (I1, I2, σ , �� ), parametrized by the values of
both K and AM. Since the numerical integration depicted in equa-
tion (9) is equivalent to a first-order averaging of the Hamiltonian
function (e.g. Ferraz-Mello 2007), only those periodic terms (7)
with j1 + j2 = 0 remain in F̄ . In consequence, we can rewrite the
generic resonant argument of the averaged system as

ϕ = j2σ + j4��, (10)

where the index j2, j4 are integers that may take any value in the
interval (−∞, ∞).

4 FAMI LI ES OF PERI ODI C ORBI TS

In the averaged system defined by F̄ exact zero-amplitude ACR
solutions are given by the stationary conditions

∂F̄

∂σ
= ∂F̄

∂��
= ∂F̄

∂I1
= ∂F̄

∂I2
= 0 (11)

and can therefore be identified as extrema of the averaged Hamilto-
nian function. In this section, we will use this approach to estimate
the families of different ACR as a function of the planetary masses
and eccentricities and compare the results with numerical integra-
tions of the exact equations of motion.

4.1 Families of symmetric ACR. QS

We begin calculating the exact stationary solutions, correspond-
ing to QS configurations, as a function of the eccentricities and
for different values of the planetary masses. As mentioned in
Hadjidemetriou et al. (2009), the locations and stability of the ACR
do not appear to be dependent on the individual values of the masses,
but only on their ratio m2/m1.

In all cases, the stationary values of the canonical momenta Li are
such that n1 = n2, where ni are the mean motions of the planets. For
equal-mass planets, this reduces to the condition a1 = a2. Finally,
the angles of the exact ACR always remain locked at (σ , �� ) =
(0◦, 180◦). Hadjidemetriou et al. (2009) presented similar plots for
the same mass ratios.

Fig. 6 shows the families of stable zero-amplitude QS orbits for
selected mass ratios: m2/m1 = 1/3, m2/m1 = 1 and m2/m1 > 1.
For m1 = m2, all solutions occur for and e1 = e2. Due to the
intrinsic symmetry of the dynamical system, the family of stationary
solutions for m2/m1 = 1/3 is a mirror image of the solution for
m2/m1 = 3, since it may be obtained by simply interchanging e1

with e2. In the case of m2/m1 = 3, we note that e2 < e1 for e2 <

0.565, while e2 > e1 for more elliptic orbits.
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Figure 6. Families of stable QS stationary solutions in the (e1, e2) plane,
for three different mass ratios m2/m1. Notice a locus of solutions at e1 = e2

= 0.565 for all masses. The solutions for m2/m1 < 1 are mirror images of
those for m2/m1 > 1.

Fig. 6 also shows the solutions for m2/m1 = 2, 5, 20 mass ratios.
For mass ratios smaller than unity, the solutions are mirror images
with respect to the family m2/m1 = 1. Note that the families of stable
solutions approach e1 = e2 as m2 → m1. However, as the mass ratio
tends towards the restricted three-body problem, the eccentricity of
the smaller mass approaches unity. Finally, the solution ei = 0.565 is
common to all the QS families and corresponds to a global extrema
of the Hamiltonian in this plane. A similar structure was already
noted by Michtchenko et al. (2006) for other MMR.

4.2 Families of asymmetric ACR solutions. L4 and AL4

The same procedure can also be applied to the Lagrangian L4 and
anti-Lagrangian AL4 configurations. Recall that the dynamical maps
(Fig. 2) showed a symmetry with respect to the transformation
(σ , �� ) → (−σ , −�� ), so the results discussed here can also be
applied to the L5 and AL5 solutions, by applying the same operation
on the variables.

The ACR solution associated with the Lagrangian solution L4

shows no variation in the angles, maintaining constant both angles
at 60◦. The solutions remain stable for initial conditions up to ec-
centricities ei = 0.7. However, AL4 shows significant changes as a
function of the eccentricities. Fig. 7 shows the equilibrium values
of both angles for the family of AL4, as a function of the eccentricity
of the smallest planet, for several values of the mass ratio m2/m1.
The resonant angle σ increases monotonically from 60◦, at quasi-
circular orbits, towards ∼180◦ for near-parabolic trajectories. As
the mass ratio increases, the maximum value of the resonant angle
decreases, reaching σ = 150◦ for a mass ratio of m2/m1 = 10.

The secular angle �� shows a slightly more complex behaviour.
Initially it increases from ∼240◦ until it reaches a maximum value
close to ∼260◦, after which it once again decreases towards �� ∼
180◦. The planetary eccentricity corresponding to the maximum in
the secular angle increases with the mass ratio, approaching the
parabolic limit for m2/m1 ∼ 10.

As shown in Figs 1 and 2, the size of the stable region around
each asymmetric solution decreases with the increase of ei and prac-
tically disappears as the angles approach 180◦. For quasi-parabolic
orbits, only the region around AL4 is discernible. Thus, for high
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Figure 7. Equilibrium values of σ and �� for the family of AL4 solutions
as a function of the eccentricity of the smaller planet, for several mass ratios
m2/m1 ≥ 1.
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Figure 8. Families of AL4 solutions, e2 as a function of e1, for several mass
ratios m2/m1 ≥ 1.

eccentricity planets in co-orbital motion, it appears that the AL4

and AL5 asymmetric solutions are more regular than the classical
equilibrium Lagrangian solutions L4 and L5.

The values of the planetary eccentricities at AL4 for different
mass ratios are presented in Fig. 8. Contrary to the QS trajectories,
there appears to be a purely linear dependence between e2 and e1 as
a function of the mass ratio. In fact, a simple numerical analysis of
the results appears to indicate that

e1 �
(

m2

m1

)
e2. (12)
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Figure 9. Exact numerical integrations of initial conditions close to the AL4

stationary solutions (m2/m1 ≥ 1). Black curves represent the AL4-family of
ACR calculated with the semi-analytical model.

Thus, for mass ratios approaching the restricted three-body problem
(with m2 → 0) it should be expected that the eccentricity of the
massive planet m1 at the AL4 solution would tend towards zero.

Finally, the equilibrium values of the semimajor axes also change
as a function of the mass ratio. Here, however, it is easy to see from
the stationary conditions (11) that a zero-amplitude AL4 trajectory
is characterized by the relation n1 = n2. For equal-mass planets, this
reduces to a1 = a2.

The families of stationary solutions presented in this section were
calculated using our semi-analytical model. In order to compare
them with actual numerical simulations of the exact equations, we
choose four solutions from Fig. 7 with e1 = 0.2, but corresponding
to different mass ratios. Each was then numerically integrated for
several orbital periods, assuming zero initial values for the cyclic
angular variables q and Q. Results are shown in Fig. 9, where the top
frame presents the trajectories in the plane (e1 cos σ , e1 sin σ ) and
the bottom frame in the plane (e2 cos �� , e2 sin �� ). Each initial
condition shows a small amplitude oscillation around the stationary
value, which presents a very good agreement with the family of AL4

solutions calculated with our model (black curve).

4.3 Adiabatic mass variation in AL4

As a final analysis, in this section we study the orbital evolution of
a system initially near AL4, when the mass of one of the planets is
decreased adiabatically. This question is raised for three reasons.
First, as shown by Lee (2004), for two planets in a 2/1 MMR,
a sufficiently slow change in one of the masses will preserve the
resonant configuration and allow us to calculate the variation of

the ACR as a function of m2/m1. In other words, this approach
provides a different numerical test of our semi-analytical model
and an alternative way to calculate the stationary orbits. Secondly,
the results will also allow us to test the robustness of the new
asymmetric co-orbital solutions AL4 and see how they respond to
changes in the parameters of the system. Finally, we wish to analyse
the behaviour of these new solutions in the limit of the restricted
three-body problem, corresponding to m2 = 0.

Fig. 10 shows a typical example. Initial conditions correspond
to an AL4 solution for m2/m1 = 1 and ei = 0.2. While m1 was
maintained fixed, m2 was varied linearly down to m2 = 0 in a
time-scale of 106 orbital periods. We checked using other time-
scales, finding no significant variations. This guarantees that we are
effectively in the adiabatic regime.

The top graph of Fig. 10 shows the evolution of the orbital eccen-
tricities as a function of the mass ratio. As soon as m2/m1 departs
from unity, the value of e2 increases while e1 decreases. The broken
black curve that can be seen over the continuous curve shows the
predicted value of e1 applying relation (12) to each value of e2. The
agreement is excellent, giving an additional corroboration to this
empirical relationship between the eccentricities. It must be noted
that neither the total angular momentum AM nor the scaling pa-
rameter K is preserved during the mass change. The bottom plot
of Fig. 10 shows the behaviour of the angular values during the
mass variation. The equilibrium values of both σ and �� remain
practically unchanged.
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Figure 10. Evolution of AL4 applying a smooth adiabatic decrease in m1.
Initial conditions correspond to m2 = m1 and e1 = e2 = 0.2. The stationary
values of the angles are invariant to the mass change, although the amplitude
of �� increases as e2 approaches zero. The ratio of the equilibrium eccen-
tricities follows relation (12), as shown by the dashed black curve overlaying
the data of e2.
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Figure 11. Orbital trajectories in a Cartesian rotating pulsating reference
frame, where the positions of m0 and m1 are fixed in the x-axis with unit
mutual distance. Both bodies are marked with large filled circles. The brown
circle shows the orbital evolution of m2 when placed in L4, while red dots
correspond to an initial condition for m2 placed in AL4 (see Fig. 10). In
both cases, the plot presents the orbital evolution as m2 → 0. No change
is observed in L4, while the blue curve shows the final orbital trajectory
around AL4 when m2 reaches zero. The oscillation period is equal to the
orbital period between the massive primaries. See the online version of this
article for colour figures.

For smaller mass ratios m1 tends towards a circular orbit, while
the eccentricity of the smaller planet approaches e2 ∼ 0.4. This
seems to imply that the asymmetric AL4 (and consequently AL5)
solutions could also exist in the limit of the restricted three-body
problem. To test this conjecture and compare the trajectories of both
L4 and AL4 solutions in the restricted (m2 → 0) limit, Fig. 11 plots
the (x, y) Cartesian coordinates of two initial conditions in a rotating
pulsating reference frame.

In the rotating pulsating reference frame, the positions of both m0

and m1 are fixed in the x-axis (shown with large solid circles). Three
orbital evolutions are shown: the grey filled circle corresponds to
initial conditions in the asymmetric L4, while black dots map the
evolution of an orbit originally in AL4. In both cases we started
with m2 = m1, but subsequently decreased m2 to zero (restricted
case). No change was noticed in the L4 orbit, and the trajectory
remained in an equilateral configuration with the two finite masses.
However, the AL4 solution converged towards a tadpole-type orbit
of large amplitude (continuous curve) for m2 → 0. This solution
corresponds to a periodic orbit whose period coincides with the
orbital period of the primaries around the centre of mass. Grry dots
map the evolution of an orbit originally in QS. As we can see the
orbit described by QS configuration revolves around m1 in the same
way as was observed in the restricted problem.

Thus, there appears to be a structural difference between the L4

and AL4 planetary solutions discussed in this paper. Although both
appear as ACR (fixed points in the averaged problem) the first are
true stationary solutions in the unaveraged rotating frame, while the
new solutions AL4 are actually large-amplitude periodic orbits that
encompass the classical Lagrangian equilateral solution.

5 C O N C L U S I O N S

We studied the stability regions and families of periodic orbits of
two-planet systems in the vicinity of a 1/1 MMR (i.e. co-orbital
configuration). We considered different ratios of planetary masses
and orbital eccentricities; we also assumed that both planets share
the same orbital plane (coplanar motion).

As a result we identified two separate regions of stability as
follows, each with two distinct modes of motion.

(i) QS region. Originally identified by Hadjidemetriou et al.
(2009) for the planetary problem, QS orbits correspond to oscilla-
tions around an ACR located at (σ , �� ) = (0◦, 180◦). Although
not present for quasi-circular trajectories, they fill a considerable
portion of the phase space in the case of moderate to high eccen-
tricities.

We also found a new regime, associated with stable orbits dis-
playing oscillations around (σ , �� ) = (0◦, 0◦), even though this
point is unstable and corresponds to a collision between the two
planets.

(ii) Lagrangian region. Apart from the previous symmetric so-
lutions, we also found two distinct types of asymmetric ACR orbits
in which both σ and �� oscillate around values different from
0◦ or 180◦. The first is the classical equilateral Lagrangian solu-
tion associated with local maxima of the averaged Hamiltonian
function. Independently of the mass ratio m2/m1 and their eccen-
tricities, these solutions are always located at (σ , �� ) = (±60◦,
±60◦). However, the size of the stable domain decreases rapidly
for increasing eccentricities, being practically undetectable for ei >

0.7.
The second type of asymmetric ACR corresponds to local minima

of the averaged Hamiltonian function. We have dubbed them anti-
Lagrangian solutions (AL4 and AL5). For low eccentricities, they
are located at (σ , �� ) = (±60◦, ∓120◦). Each is connected to
the classical L4 and L5 solutions through the σ -family of periodic
orbits in the averaged system. Contrary to the classical equilateral
Lagrangian solution, their location in the plane (σ , �� ) varies with
the planetary mass ratio and eccentricities. Although their stability
domain also shrinks for increasing values of ei, they do so at a slower
rate than the classical Lagrangian solutions and are still appreciable
for eccentricities as high as ∼0.7.

Finally, we also applied an ad hoc adiabatically slow mass varia-
tion to one of the planetary bodies and analysed its effect on the AL4

configuration. We found that the resonant co-orbital solution was
preserved, with practically no change in the equilibrium values of
the angles. The eccentricities, however, varied with the larger planet
approaching a quasi-circular orbit as the smaller planet had its ec-
centricity increased. These solutions still exist in the limit of the
restricted three-body problem (i.e. m2 → 0), although both types of
asymmetric solutions (L4 and AL4) have different geometries. While
the first are true stationary solutions in the unaveraged system, the
latter are periodic orbits around the classical equilateral Lagrangian
points.
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