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ABSTRACT

We study the stability regions and families of periodic orbits of two planets locked in a co-
orbital configuration. We consider different ratios of planetary masses and orbital eccentricities;
we also assume that both planets share the same orbital plane. Initially, we perform numerical
simulations over a grid of osculating initial conditions to map the regions of stable/chaotic
motion and identify equilibrium solutions. These results are later analysed in more detail using
a semi-analytical model.

Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian
points L4 and Ls, we also find a new regime of asymmetric periodic solutions. For low
eccentricities these are located at (AA, Aw ) = (£60°, F120°), where AX is the difference in
mean longitudes and Aw is the difference in longitudes of pericentre. The position of these
anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are
found for eccentricities as high as ~0.7.

Finally, we also applied a slow mass variation to one of the planets and analysed its effect
on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as
long as the mass variation is adiabatic, with practically no change in the equilibrium values of

the angles.

Key words: methods: analytical — methods: numerical — celestial mechanics — planets and
satellites: general — planetary systems.

1 INTRODUCTION

In the restricted three-body problem, there are different domains of
stable motion associated with co-orbital motion. Each can be classi-
fied according to the centre of libration of the critical argument, o =
A — A/, where A denotes the mean longitude of the minor body and
)’ the same variable for the disturbing planet. These types of motion
are known as (i) tadpole orbits, corresponding to a libration of o
around L4 or Ls; (ii) horseshoe orbits, where motion occurs around
o = 180° and encompasses both equilateral Lagrangian points; and
(iii) quasi-satellite (QS) orbits, where ¢ oscillates around zero.

The term ‘quasi-satellites” was originally introduced by Mikkola
& Innanen (1997) and can be viewed as an extension of retro-
grade periodic orbits in the circular restricted three-body problem
(e.g. Jackson 1913; Hénon 1969). Although not present for circular
orbits, they exist for moderate to high eccentricities of the particle.
In a reference frame rotating with the planet, QS orbits circle the
planet like a retrograde satellite, although at distances so large that
the particle is not gravitationally bounded to the planetary mass
(Mikkola et al. 2006).

The first object confirmed in a QS configuration was the asteroid
2002 VE68 (Mikkola et al. 2004) with Venus as the host planet.
The Earth has one temporary co-orbital object, (3753 Cruithne;
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Namouni 1999) and one alternating horseshoe—QS object (2002
AA29; Connors et al. 2002). The co-orbital asteroidal population in
the inner Solar system was studied in Brasser et al. (2004) by nu-
merical integrations. All QS orbits appear to be temporary, escaping
in time-scales of the order of 10>~10* yr.

Wiegert, Innanen & Mikkola (2000) numerically investigated
the stability of QS orbits around the giant planets of the Solar
system. Although no stable solutions were found for Jupiter and
Saturn, some initial conditions around Uranus and Neptune lead
to QS orbits that survive for time-scales of the order of 10° yr.
It thus appears that a primordial population of such objects may
still exist in the Solar system. Kortenkamp (2005) used N-body
simulations to model the combined effects of solar nebula gas drag
and gravitational scattering of planetesimals by a protoplanet. He
showed that a significant fraction of scattered planetesimals could
become trapped into QS trajectories. It then seems plausible that
this trapped-to-captured transition may be important not only for
the origin of captured satellites but also for continued growth of
protoplanets.

At variance with these results, in the case of the general (non-
restricted) three-body problem, although equilateral solutions and
horseshoe orbits are well known, QS configurations have only
been studied very recently. Hadjidemetriou, Psychoyos & Voyatzis
(2009) performed a detailed study of periodic orbits in the 1/1
mean-motion resonance (MMR) for fictitious planetary systems
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with different mass ratios. They found that stable QS solutions oc-
curforo =AA=XA, — A =0°and Aw =w, — w| = 180°, where
the subscripts identify each planet. Unstable trajectories were found
ato = 180°, A = 0°. Although at present there are no confirmed
cases of exoplanets in QS configurations, Gozdziewski & Konacki
(2006) found that the radial velocity curves of the HD 82943 and
HD 128311 planets could correspond to co-orbital motion in highly
inclined orbits. Numerical simulations of both systems show QS
trajectories, instead of Trojan orbits as initially believed.

In this work we aim to revisit the 1/1 MMR in the planar planetary
three-body problem, trying to identify possible domains of stable
solutions and their location in the phase space. Section 2 presents
several dynamical maps constructed from numerical simulations
for different initial conditions. These maps allow us to identify
stable fixed points and periodic orbits as well as the domains of
regular motions. In Section 3 we develop a semi-analytical model
for co-orbital planets, which is then applied in Section 4 to calculate
the families of stable periodic orbits. In the same section, we also
present a brief study of the effects of an adiabatically slow mass
variation in one of the planetary bodies. Finally, conclusions close
the paper in Section 5.

2 DYNAMICAL MAPS WITH EQUAL-MASS
PLANETS

Consider two planets with masses m; and m, in coplanar orbits
around a star with mass my = M. We will begin considering the
case my = my; other mass ratios will also be discussed in later
sections. Let a; denote the semimajor axes, e; the eccentricities,
A; the mean longitudes and @ ; the longitudes of pericentre. All
orbital elements considered in this paper are assumed astrocentric
and osculating. Throughout this work, m; will be our ‘reference’
planet: its mass will be fixed at one Jovian mass (m; = My,,) and the
system scaled to initial condition a; = 1 au. The angular variables
for co-orbital motion will then be definedaso = A, — A and Aw =
Wy, — W].

As pointed out by Hadjidemetriou et al. (2009), for equal-mass
planets the periodic orbits are such that are located at a; = a, and
e; = e;. Accordingly, we fixed the semimajor axes and eccentricities
and constructed a 100 x 100 grid of initial conditions varying both
o and Aw between 0° and 360°. Each point in the grid was then
numerically integrated over 3000 orbital periods using a Bulirsch—
Stoer-based N-body code, and we calculated the averaged MEGNO
chaos indicator (¥) (Cincotta & Simé 2000) to identify regions of
regular or chaotic motion. Results are shown in Fig. 1 for six values
of the initial eccentricities e;; dashed regions correspond to unstable
orbits while white was used to identify stable solutions. An analysis
of these plots shows the following characteristics.

(1) For low initial eccentricities (e¢; = 0.05) the maps show
two disconnected strips of regular motion, corresponding to mo-
tion around o = £60° and any value of Aw.

(i1)) For moderate low to intermediate initial eccentricities (¢; =
0.15 and ¢; = 0.30), the vertical strips of regular motion become
thinner and slightly distorted. A new stable domain is now present,
associated with QS orbits and located around o = 0°.

(iii) For high initial eccentricities (e; > 0.40), the domain of QS
orbits increases and covers a significant portion of the plane of initial
conditions. Conversely, the distorted vertical strips shrink and each
seems to break into two islands of stable motion. The smaller islands
encompass equilateral solutions, although they almost disappear
for ¢; = 0.70. The larger islands correspond to a different type of
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Figure 1. Results of numerical integrations of initial conditions in a grid
in the (o, Aw) plane. Planetary masses were taken equal to m; = mp =
myyp and initial semimajor axes equal to a; = a; = 1 au. Regions of regular
motion are shown in white, while the dashed regions correspond to chaotic
and unstable trajectories.

asymmetric solution, and their locations tend towards the centre of
the plots as the eccentricities increase.

(iv) Due to symmetry present in the dynamical system, the re-
sults are invariant to transformations of the type (o, Aw) — (—o,
—Aw). In fact, since m; = my, both equilateral solutions are ac-
tually the same solution, since we can pass from one to the other
just by redefining the reference planet. However, since later sections
will discuss the case m, # m;, we prefer to treat both equilateral
solutions separately.

Although MEGNO is a very efficient tool to identify chaotic
motion, it is not suited to distinguish between different types of reg-
ular orbits (e.g. fixed points, periodic orbits, etc.). Sometimes this
task is performed with a Fourier transform of the numerical data
(e.g. Michtchenko, Beaugé & Ferraz-Mello 2008a,b); however, here
we have chosen a different route. Starting from the output of each
numerical simulation, we calculated the amplitudes of oscillation
in each angular variable. Initial conditions with zero amplitude
in o correspond to o-family periodic orbits of the co-orbital sys-
tem, while solutions with zero amplitude in Az will correspond
to periodic orbits of the so-called Aw -family (see Michtchenko
et al. 2008a,b). Finally, stationary solutions of the averaged
problem, identified as intersections of both families, may be thought
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Figure 2. Semi-amplitude maps. The left-hand (right-hand) column shows
the amplitude variation for o (Aw) in grey scale. Light domains corre-
spond to near-zero amplitude families, darker regions indicate oscillation
amplitudes up to 90° and dashed regions correspond to unstable orbits. Ini-
tial values of eccentricities are indicated in each panel. The colour scale is
indicated at bottom and ACR solutions are marked in the right-hand panels.

as analogous to the apsidal corotation resonances (ACR) found in
other MMR (e.g. Beaugé, Ferraz-Mello & Michtchenko 2003). The
equilateral Lagrangian solutions will appear as ACR in these plots.

The grey-scale graphs in Fig. 2 show values of the amplitudes in
o (left) and Ao (right) for four of the plots shown in Fig. 1. White
regions represent initial conditions with semi-amplitudes smaller
than 2° and thus indicate the families of periodic orbits in each angle.
Darker regions correspond to increasing amplitudes (up to 45°) and
denote initial conditions with quasi-periodic motion. The dashed

Table 1. Approximate location for the stable
ACR solutions in the (o, Aw) plane, cal-
culated from the dynamical maps with e; =
ey = 0.15. For equal-mass planets, all station-
ary solutions occur for a; = ay.

o (deg) Aw (deg)
QS 0 180
Ly 60 60
Ls 300 300
ALy 60 240
ALs 300 120

areas are unstable solutions. Finally, it is worthwhile mentioning that
symmetric configurations may correspond to either an alignment
(Aw = 0°) or an anti-alignment of the apses (Azw = £ 180°) while
asymmetric configurations have stationary values of Aw different
from the above.

For low eccentricities (¢; = 0.05), we observe four asymmetric
ACR solutions. Two are the well-known Lagrangian equilateral
solutions located at (o, Aw') = (£60°, £60°). By analogy with the
restricted problem, we will denote them L, and Ls. As far as we
know, the remaining two ACR have not been previously reported
and are located at approximately (o, Aw) = (£60°, F120°). We
have called them anti-Lagrangian solutions and they are connected
to the classical equilateral Lagrangian solutions by the o -family of
periodic orbits. By analogy, we have denoted the new solutions as

ALy : o €0, 180°] Aw € [180°, 360°]
ALs : o € [180°, 360°] Aw € [0°, 180°]. (1)

As with all previous stationary solutions, these asymmetric points
are found at a; = a,.

As the eccentricities grow (e.g. ¢; = 0.40), the QS region at (o,
Aw) = (0°, 180°) causes a distortion and compression of the stable
asymmetric domain. The anti-Lagrangian zone seems less affected
and surrounded by a larger island of stable motion. This effect is
even more pronounced for ¢; = 0.60 and ¢; = 0.70 where the stable
domain around L, and Ls almost disappears. The regions around
AL, and ALs are still visible, although they also decrease in size
and their location approaches the unstable symmetric periodic orbit
located at 0 = A = 180°.

The decrease in the size of the stable regions around the asym-
metric ACR solutions is accompanied by a significant increase in
the stable domains around QS orbits, which, for high eccentricities,
seem to cover a large proportion of the plane. Inside this region,
we also note two families of periodic orbits: the Az -family which
is restricted to a small region around Az = 180° and a smaller
o - family close to the zero value of the resonant angle.

Table 1 summarizes the detected stable stationary solutions in the
planar planetary three-body problem, as well as their location in the
plane of angular variables for low eccentricities.

2.1 Motion around the stationary solutions

In order to visualize the dynamics of stable orbits outside the ACR,
we integrated several orbits with initial elements a; = a, = 1 au,
ey = eo = 04,0 = 0 and different values of Az . Each initial
condition was chosen along line A drawn in Fig. 1 for ¢; = 0.40.
Results are shown in Fig. 3. The left-hand frame shows the orbital
evolution in the (e, Aw) plane, while the right-hand frame presents
the variation of (ey, o). In both cases, the numerical output was
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Figure 3. Variation of the eccentricity of each planet with Az (left-hand
frame) and with o (right-hand frame). Initial conditions were chosen inside
the QS region following line A in Fig. 1 for e = 0.40. The radial distance
is the value of the osculating eccentricity. The position of the ACR solution
is shown with a filled circle and is located at Azw = 180°. Note, however,
the existence of large-amplitude solutions around Az = 0, even though no
stable ACR solution is found in this region.

filtered to eliminate short-period variations associated with the mean
anomalies of both planets. Note that all trajectories display small-
amplitude oscillations in o, consistent with starting positions near
the o -family of periodic orbits.

The behaviour in the (e, Aw) plane is more intriguing. Initial
conditions with Az € (90°, 270°) exhibit oscillations of different
amplitudes around the ACR solutions corresponding to QS motion.
Recall that this ACR solution is located at Aw = 180°. However,
initial conditions with —90° < Aw < 90° display regular mo-
tion that seems associated with large-amplitude oscillations around
Aw = 0, even though this is an unstable point leading to close en-
counters and a collision between both planets. Nevertheless, there
appears to be a minimum allowed amplitude for these solutions
(shown in Fig. 3 as a dashed curve), which corresponds to a semi-
amplitude in Az of ~45°. Smaller amplitudes are unstable and
lead to the ejection of one of the planets in short time-scales.

Fig. 4 shows results for initial conditions inside the stable region
connecting Ly and AL4. Semimajor axes and eccentricities were the

90

A®

Figure 4. Variation of the eccentricity of each planet (e;) with Aw (left-
hand frame) and with o (right-hand frame) for initial conditions inside the
stable region connecting L4 and AL4 (selected from line B in Fig. 1 for
e = 0.40). The radial distance is the value of the osculating eccentricity.
The resonant angle Az oscillates around one of two possible centres. One
corresponds to the L4 configuration while the other to the AL4 configuration.
Locations of the ACR solutions are shown with filled circles.
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Figure 5. Orbit configuration with initial conditions chosen inside the re-
gions of stable motions (see top left-hand frame). The initial positions of
planets are marked with open circles while crosses indicate the orbital con-
figuration position leading to a minimum distance between the bodies. For
QS, L4 and Ls, the minimum distance coincides with the initial condition.

same as in the previous plots. The initial values of Az were varied
from 0° to 360°, and in each case o was chosen along line B in
Fig. 1 for ¢; = 0.4 (o-family).

The (e;, Aw) plane (left-hand frame) shows two centres of os-
cillation, one corresponding to each ACR, and identified by filled
circles. L, is located at Az = 60° while AL, roughly at Aw =
240°. As before, we see a smooth transition in the dynamical be-
haviour between both modes, with no evidence of any separatrix.
Consequently, it appears that any initial condition will lead to a
stable oscillation of Az around the nearest stationary solution.

The motion of the resonant angle o (right-hand frame) shows a
different behaviour. Only initial conditions very close to either Ly
or ALy will show a small-amplitude circulation around the corre-
sponding stationary point. As an example, note some trajectories
oscillating around o = 90° without reaching the fixed points. Fi-
nally, due to the intrinsic symmetry in co-orbital motion, the same
behaviour is also noted for initial conditions between Ls and ALs.

To better visualize each stable configuration, Fig. 5 presents the
orbit scheme for five stable solutions, whose initial values of the
angles are shown in the top left-hand frame. Five initial conditions
correspond to the stable ACR solution discussed previously (QS,
Ly, Ls, ALy, ALs). Each of the other plots shows the orbital represen-
tation of each solution in (x, y) astrocentric Cartesian coordinates.
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Initial conditions for both planets are shown in open circles, with
m; located along the x-axis. Both axis directions are fixed. The
orbital trajectory of each planet (over one period) is drawn in thin
black lines and the configuration leading to a maximum approach
between both planets is shown with crosses. For QS, L4 and Ls, the
minimum distance coincides with the initial condition.

For QS orbits, the relative position of m, is always located in
the positive x-axis, similar to the behaviour noted in the restricted
three-body problem (Mikkola et al. 2006). All five ACR solutions
are periodic orbits, and symmetric with respect to the x-axis.

3 SEMI-ANALYTICAL MODEL

One drawback in the previous numerical approach is the excessive
CPU time required for the construction of each dynamical map.
In order to extend these results to other values of the parameter
space (e.g. planetary masses, eccentricities), it is useful to construct
a semi-analytical model for the co-orbital motion.

Such a model can be developed along similar lines to other MMR
(e.g. Michtchenko, Beaugé & Ferraz-Mello 2006; Michtchenko
et al. 2008a,b). It requires two main steps: first, a transformation to
adequate resonant variables and, secondly, a numerical averaging
of the Hamiltonian with respect to short-period terms. Both tasks
are detailed below.

We begin introducing the usual mass-weighted Poincaré canoni-
cal variables (e.g Laskar 1990) for each planet m;:

iy Li = mjJia;
mi G- Li=—L(1-y/T=¢),

where u; = k>(my + m;), k denotes the gravitational constant and
m;’ is the reduced mass of each body, given by

©))

, . Mmimg

i

. 3
m; + mo 3
The Hamiltonian function F can be expressed as F = Fy + F,
where F corresponds to the two-body contribution and has the
form

2 Wim’

i=1

The second term, Fy, is the disturbing function which can be written
as

1
Fy =—K2m1m2X+T1, (6]

where A is the instantaneous distance between the two planets and
T, is the indirect part of the potential energy of the gravitational
interaction (see Laskar 1990; Laskar & Robutel 1995 for more
details).

For initial conditions in the vicinity of co-orbital motion, we
define the following set of planar resonant canonical variables
I, L, K, AM, 0, Aw, Q, q), where

0= — A} 1|=%(L2—L1)

A = o, — @y; L=3(G,—G —Ly+Ly
q =w,+ o Jy = 3(G1 4 Gy) 6)
OQ=t+r—q; Jr = 3(Ly + L),

where J; = %A./\/l and J, = %IC. A generic argument ¢ of the
disturbing function can be written as

© = jih + joro + 3@ + jaw2, @)

where j; are integers. In terms of the new angles, the same argument
may be written as

1
<p=5[(j2—j1)a—|—(j4—j3)Aw+(j1+j2)Q]. ®

Since ¢ is a cyclic angle, the associated action .AM is a constant of
motion (total angular momentum) of the system.

The next step is an averaging of the Hamiltonian over the fast
angle Q. This procedure can be performed numerically, allowing us
to evaluate the averaged Hamiltonian F as

27
F(Iy, I, 0, Aw;lC,AM)s%/ FdQ. ®
0

In the averaged variables, K is a new integral of motion which, in
analogy to other MMR (e.g. Michtchenko et al. 2008a), we call the
scaling parameter.

F then constitutes a system with 2 degrees of freedom in the
canonical variables (I, I,, o, Aw), parametrized by the values of
both IC and AM. Since the numerical integration depicted in equa-
tion (9) is equivalent to a first-order averaging of the Hamiltonian
function (e.g. Ferraz-Mello 2007), only those periodic terms (7)
with j; 4 j, = 0 remain in F. In consequence, we can rewrite the
generic resonant argument of the averaged system as

¢ = o + jslAw, (10)

where the index j,, j4 are integers that may take any value in the
interval (—oo, 00).

4 FAMILIES OF PERIODIC ORBITS

In the averaged system defined by F exact zero-amplitude ACR
solutions are given by the stationary conditions
OF 9F 9dF OF

3% ~daw dn oL "

and can therefore be identified as extrema of the averaged Hamilto-
nian function. In this section, we will use this approach to estimate
the families of different ACR as a function of the planetary masses

and eccentricities and compare the results with numerical integra-
tions of the exact equations of motion.

an

4.1 Families of symmetric ACR. QS

We begin calculating the exact stationary solutions, correspond-
ing to QS configurations, as a function of the eccentricities and
for different values of the planetary masses. As mentioned in
Hadjidemetriou et al. (2009), the locations and stability of the ACR
do not appear to be dependent on the individual values of the masses,
but only on their ratio m,/m;.

In all cases, the stationary values of the canonical momenta L; are
such that n; = n,, where n; are the mean motions of the planets. For
equal-mass planets, this reduces to the condition a; = a,. Finally,
the angles of the exact ACR always remain locked at (o, Aw) =
(0°, 180°). Hadjidemetriou et al. (2009) presented similar plots for
the same mass ratios.

Fig. 6 shows the families of stable zero-amplitude QS orbits for
selected mass ratios: my/m, = 1/3,my/m; = 1 and my/m; > 1.
For m; = m,, all solutions occur for and e; = e,. Due to the
intrinsic symmetry of the dynamical system, the family of stationary
solutions for my/m; = 1/3 is a mirror image of the solution for
my/m; = 3, since it may be obtained by simply interchanging e;
with e;. In the case of m,/m; = 3, we note that e, < e; for e; <
0.565, while e, > e, for more elliptic orbits.
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Figure 6. Families of stable QS stationary solutions in the (ej, ¢3) plane,
for three different mass ratios my /m; . Notice a locus of solutions at e; = e
= 0.565 for all masses. The solutions for my/m; < 1 are mirror images of
those for my/m; > 1.

Fig. 6 also shows the solutions for m,/m; = 2,5, 20 mass ratios.
For mass ratios smaller than unity, the solutions are mirror images
with respect to the family m, /m; = 1. Note that the families of stable
solutions approach e; = e, as m, — m;. However, as the mass ratio
tends towards the restricted three-body problem, the eccentricity of
the smaller mass approaches unity. Finally, the solution ¢; = 0.565 is
common to all the QS families and corresponds to a global extrema
of the Hamiltonian in this plane. A similar structure was already
noted by Michtchenko et al. (2006) for other MMR.

4.2 Families of asymmetric ACR solutions. Ly and AL4

The same procedure can also be applied to the Lagrangian L, and
anti-Lagrangian AL, configurations. Recall that the dynamical maps
(Fig. 2) showed a symmetry with respect to the transformation
(0, Aw) — (—o, —Aw), so the results discussed here can also be
applied to the Ls and ALs solutions, by applying the same operation
on the variables.

The ACR solution associated with the Lagrangian solution L,
shows no variation in the angles, maintaining constant both angles
at 60°. The solutions remain stable for initial conditions up to ec-
centricities ¢; = 0.7. However, AL, shows significant changes as a
function of the eccentricities. Fig. 7 shows the equilibrium values
of both angles for the family of AL,, as a function of the eccentricity
of the smallest planet, for several values of the mass ratio m,/m;.
The resonant angle o increases monotonically from 60°, at quasi-
circular orbits, towards ~180° for near-parabolic trajectories. As
the mass ratio increases, the maximum value of the resonant angle
decreases, reaching o = 150° for a mass ratio of m,/m; = 10.

The secular angle Az shows a slightly more complex behaviour.
Initially it increases from ~240° until it reaches a maximum value
close to ~260°, after which it once again decreases towards Aw ~
180°. The planetary eccentricity corresponding to the maximum in
the secular angle increases with the mass ratio, approaching the
parabolic limit for m, /m; ~ 10.

As shown in Figs 1 and 2, the size of the stable region around
each asymmetric solution decreases with the increase of ¢; and prac-
tically disappears as the angles approach 180°. For quasi-parabolic
orbits, only the region around AL, is discernible. Thus, for high
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Figure 7. Equilibrium values of o and Az for the family of AL4 solutions
as a function of the eccentricity of the smaller planet, for several mass ratios
my / my > 1.
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Figure 8. Families of AL4 solutions, e; as a function of e, for several mass
ratios my /my > 1.

eccentricity planets in co-orbital motion, it appears that the AL,
and ALs asymmetric solutions are more regular than the classical
equilibrium Lagrangian solutions L4 and Ls.

The values of the planetary eccentricities at AL, for different
mass ratios are presented in Fig. 8. Contrary to the QS trajectories,
there appears to be a purely linear dependence between e, and e; as
a function of the mass ratio. In fact, a simple numerical analysis of
the results appears to indicate that

0 ~ ("”) es. (12)
m
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Figure 9. Exact numerical integrations of initial conditions close to the AL4
stationary solutions (my/m; > 1). Black curves represent the AL4-family of
ACR calculated with the semi-analytical model.

Thus, for mass ratios approaching the restricted three-body problem
(with m, — 0) it should be expected that the eccentricity of the
massive planet m, at the AL, solution would tend towards zero.

Finally, the equilibrium values of the semimajor axes also change
as a function of the mass ratio. Here, however, it is easy to see from
the stationary conditions (11) that a zero-amplitude AL, trajectory
is characterized by the relation n; = n,. For equal-mass planets, this
reduces to a; = a;.

The families of stationary solutions presented in this section were
calculated using our semi-analytical model. In order to compare
them with actual numerical simulations of the exact equations, we
choose four solutions from Fig. 7 with ¢; = 0.2, but corresponding
to different mass ratios. Each was then numerically integrated for
several orbital periods, assuming zero initial values for the cyclic
angular variables g and Q. Results are shown in Fig. 9, where the top
frame presents the trajectories in the plane (e; coso, e; sino) and
the bottom frame in the plane (e, cos Aw, e, sin Aw ). Each initial
condition shows a small amplitude oscillation around the stationary
value, which presents a very good agreement with the family of AL,
solutions calculated with our model (black curve).

4.3 Adiabatic mass variation in AL,

As a final analysis, in this section we study the orbital evolution of
a system initially near AL4, when the mass of one of the planets is
decreased adiabatically. This question is raised for three reasons.
First, as shown by Lee (2004), for two planets in a 2/1 MMR,
a sufficiently slow change in one of the masses will preserve the
resonant configuration and allow us to calculate the variation of

the ACR as a function of m,/m;. In other words, this approach
provides a different numerical test of our semi-analytical model
and an alternative way to calculate the stationary orbits. Secondly,
the results will also allow us to test the robustness of the new
asymmetric co-orbital solutions AL, and see how they respond to
changes in the parameters of the system. Finally, we wish to analyse
the behaviour of these new solutions in the limit of the restricted
three-body problem, corresponding to m, = 0.

Fig. 10 shows a typical example. Initial conditions correspond
to an AL, solution for m,/m; = 1 and ¢; = 0.2. While m; was
maintained fixed, m, was varied linearly down to m, = 0 in a
time-scale of 10° orbital periods. We checked using other time-
scales, finding no significant variations. This guarantees that we are
effectively in the adiabatic regime.

The top graph of Fig. 10 shows the evolution of the orbital eccen-
tricities as a function of the mass ratio. As soon as m,/m; departs
from unity, the value of e, increases while e; decreases. The broken
black curve that can be seen over the continuous curve shows the
predicted value of e; applying relation (12) to each value of e,. The
agreement is excellent, giving an additional corroboration to this
empirical relationship between the eccentricities. It must be noted
that neither the total angular momentum AM nor the scaling pa-
rameter /C is preserved during the mass change. The bottom plot
of Fig. 10 shows the behaviour of the angular values during the
mass variation. The equilibrium values of both o and Aw remain
practically unchanged.

0.4 I

eccentricity
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I

0.1 —

m, /m

400
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=
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0 \ \ \ \
0 0.2 04 0.6 0.8 1
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Figure 10. Evolution of AL applying a smooth adiabatic decrease in m;.
Initial conditions correspond to my = mj and e; = e, = 0.2. The stationary
values of the angles are invariant to the mass change, although the amplitude
of Aw increases as ep approaches zero. The ratio of the equilibrium eccen-
tricities follows relation (12), as shown by the dashed black curve overlaying
the data of e5.
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Figure 11. Orbital trajectories in a Cartesian rotating pulsating reference
frame, where the positions of m( and m are fixed in the x-axis with unit
mutual distance. Both bodies are marked with large filled circles. The brown
circle shows the orbital evolution of my when placed in L4, while red dots
correspond to an initial condition for my placed in AL4 (see Fig. 10). In
both cases, the plot presents the orbital evolution as my; — 0. No change
is observed in L4, while the blue curve shows the final orbital trajectory
around AL4 when my reaches zero. The oscillation period is equal to the
orbital period between the massive primaries. See the online version of this
article for colour figures.

For smaller mass ratios m,; tends towards a circular orbit, while
the eccentricity of the smaller planet approaches e, ~ 0.4. This
seems to imply that the asymmetric AL, (and consequently ALs)
solutions could also exist in the limit of the restricted three-body
problem. To test this conjecture and compare the trajectories of both
L, and AL, solutions in the restricted (m, — 0) limit, Fig. 11 plots
the (x, y) Cartesian coordinates of two initial conditions in a rotating
pulsating reference frame.

In the rotating pulsating reference frame, the positions of both n1
and m, are fixed in the x-axis (shown with large solid circles). Three
orbital evolutions are shown: the grey filled circle corresponds to
initial conditions in the asymmetric L,, while black dots map the
evolution of an orbit originally in AL4. In both cases we started
with m, = m,, but subsequently decreased m, to zero (restricted
case). No change was noticed in the L, orbit, and the trajectory
remained in an equilateral configuration with the two finite masses.
However, the AL, solution converged towards a tadpole-type orbit
of large amplitude (continuous curve) for m, — 0. This solution
corresponds to a periodic orbit whose period coincides with the
orbital period of the primaries around the centre of mass. Grry dots
map the evolution of an orbit originally in QS. As we can see the
orbit described by QS configuration revolves around m; in the same
way as was observed in the restricted problem.

Thus, there appears to be a structural difference between the Ly
and AL, planetary solutions discussed in this paper. Although both
appear as ACR (fixed points in the averaged problem) the first are
true stationary solutions in the unaveraged rotating frame, while the
new solutions AL, are actually large-amplitude periodic orbits that
encompass the classical Lagrangian equilateral solution.

© 2010 The Authors. Journal compilation © 2010 RAS, MNRAS 407, 390-398
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5 CONCLUSIONS

We studied the stability regions and families of periodic orbits of
two-planet systems in the vicinity of a 1/1 MMR (i.e. co-orbital
configuration). We considered different ratios of planetary masses
and orbital eccentricities; we also assumed that both planets share
the same orbital plane (coplanar motion).

As a result we identified two separate regions of stability as
follows, each with two distinct modes of motion.

(1) OS region. Originally identified by Hadjidemetriou et al.
(2009) for the planetary problem, QS orbits correspond to oscilla-
tions around an ACR located at (o, Aw) = (0°, 180°). Although
not present for quasi-circular trajectories, they fill a considerable
portion of the phase space in the case of moderate to high eccen-
tricities.

We also found a new regime, associated with stable orbits dis-
playing oscillations around (o, Aw) = (0°, 0°), even though this
point is unstable and corresponds to a collision between the two
planets.

(ii) Lagrangian region. Apart from the previous symmetric so-
lutions, we also found two distinct types of asymmetric ACR orbits
in which both o and Aw oscillate around values different from
0° or 180°. The first is the classical equilateral Lagrangian solu-
tion associated with local maxima of the averaged Hamiltonian
function. Independently of the mass ratio m,/m; and their eccen-
tricities, these solutions are always located at (o, Aw) = (£60°,
+60°). However, the size of the stable domain decreases rapidly
for increasing eccentricities, being practically undetectable for ¢; >
0.7.

The second type of asymmetric ACR corresponds to local minima
of the averaged Hamiltonian function. We have dubbed them anti-
Lagrangian solutions (AL4 and ALs). For low eccentricities, they
are located at (o, Aw) = (£60°, F£120°). Each is connected to
the classical L, and Ls solutions through the o-family of periodic
orbits in the averaged system. Contrary to the classical equilateral
Lagrangian solution, their location in the plane (o, Az ) varies with
the planetary mass ratio and eccentricities. Although their stability
domain also shrinks for increasing values of e;, they do so at a slower
rate than the classical Lagrangian solutions and are still appreciable
for eccentricities as high as ~0.7.

Finally, we also applied an ad hoc adiabatically slow mass varia-
tion to one of the planetary bodies and analysed its effect on the AL,
configuration. We found that the resonant co-orbital solution was
preserved, with practically no change in the equilibrium values of
the angles. The eccentricities, however, varied with the larger planet
approaching a quasi-circular orbit as the smaller planet had its ec-
centricity increased. These solutions still exist in the limit of the
restricted three-body problem (i.e. m, — 0), although both types of
asymmetric solutions (L, and AL,) have different geometries. While
the first are true stationary solutions in the unaveraged system, the
latter are periodic orbits around the classical equilateral Lagrangian
points.
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