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Abstract. We present a new implementation of substructuring methods for flexible multibody ana-
lysis. In previous developed formulations, we fixed the local axes of the superelement to one node.
In this formulation, the reference frame is floating and close, in some sense, to the body center.
The local frame is selected based on the positions of the interface nodes of the superelement, and
completely independent of the order in which the nodes of the superelement are given. Therefore,
the superelement itself depends only on the nodes positions, and on the mass and stiffness proper-
ties, thus allowing a very easy interfacing between the finite element program which computed the
superelement and the mechanism analysis program.
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1. Introduction

Multibody dynamics problems are highly nonlinear, the nonlinearities being due to
the large relative rotations between bodies. In fact, in many cases, the deformation
effects inside each body are small enough to consider that its elastic behavior
remains linear within a local frame. Then, we may say that in some sense, the
nonlinearities are concentrated at the joints. This fact allows the development of
sub-structuring methods for modeling complex elastic mechanism members based
on the linear expansion of the elastic displacement field in a basis of deformation
modes of the body.

The main advantage of substructuring techniques to describe flexible multibody
systems is to allow the detailed modelling of components with complex geometry
and structural function while keeping a relatively simple global dynamic model
with a number of degrees of freedom as small as possible. The namesuperelement
is used to denote the matrix model of the substructures treated using this technique.

These methods are based on the assumption that elastic effects are linear in a
local frame relative to the body. Consequently, the concept of mechanical imped-
ance/admittance, representing the dynamic behavior of any linear system(S,M),
can be integrated within a modelization of articulated and flexible multibody struc-
tures. Each body is then represented by a superelement permitting to connect it
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to its neighbours and containing the internal modal information. The so-called
superelement consists of reduced stiffness and mass matrices coming, for instance,
from a Craig and Bampton, Mac Neal or Rubin modal synthesis.

We assume a standard finite element software for structural analysis is available
to perform first a modal analysis of the substructure under concern. The results
from this analysis are the modal parameters in terms of which the superelement
is constructed. However, superelement matrices can also be derived analytically or
after identification from experimental measurements.

The flexible mechanism analysis software is used to perform the dynamic re-
sponse analysis of the articulated system by coupling the superelement obtained in
the previous step to the rest of the structure, the connection being achieved through
a set of kinematic constraints at the attachment nodes. The degrees of freedom
of the superelement are the translations and rotations at boundary nodes, plus the
intensities of the internal modes to the model.

Several authors have proposed forms of substructuring methods for analyzing
multibody systems [1, 11–18]. Most of them used vibration modes to model the
dynamics of flexible multibodies with the limitation that the bodies are modeled
by finite elements embedded in the mechanism analysis program. This paper is
based on an implementation we have presented that elliminates this restriction [5, 7,
10]. Computation of the inertia terms is based on a co-rotational approximation of
kinetic energy. It leads to a simple formulation and easy interfacing of the vibration
analysis and dynamic response modules. The sole information transmitted from the
vibration analysis module to build the superelement is the set of reduced stiffness
and mass matrices.

Our previous formulation was based on building the local reference frame by
attaching it to one node. This way of doing presents the inconvenience that when
the user changes the location of the reference frame, results change (although
slightly, if the hypothesis of small displacements is verified). Also, it was observed
by experience that in most cases it is better, from the point of view of accuracy, to
place the local frame close to the body center. In this paper, we are presenting a
new formulation in which a floating local frame is defined based on the positions
and rotations of the boundary nodes of the superelement. The origin of this local
frame is placed as close as possible to the body center of mass. The characteristic
of easy interfacing with the linear vibration analysis modules is retained, and the
only information transmitted to the mechanism analysis program is, again, the set
of reduced stiffness and mass matrices of the body.

The kinetic energy of the superelement is described using a corotational tech-
nique, as before. We analyze two different alternatives: a first technique, using
angular velocities rotated to the local frame of the element, and a second one, in
which the material angular velocities at each node of the boundary are used to
construct the inertia terms. Examples have shown that, although the first alternat-
ive seems better since it is consistent with the treatment given to the translation
velocities, the second alternative gave more accurate results.
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Two examples of application are shown, illustrating the possibilities of the
proposed technique.

2. The Component Mode Method in Dynamic Linear Analysis

The component mode method proposed by Craig and Bampton is based on a par-
titioning of the substructure degrees of freedom intoboundary degrees of freedom
qB and internal degrees of freedomqI . The eigenvalue problem of the free-free
substructure takes then the form[

SBB SBI
SIB SII

]{
qB
qI

}
= ω2

[
MBB MBI

MIB MII

]{
qB
qI

}
. (1)

The boundary modes8B are obtained by making the hypothesis that the internal
DOF generate no inertia. They verify thus the approximate equation

SIBqB + SIIqI ' 0, (2)

hence the dependence relationship

qI = −S−1
II SIBqB, (3)

which allows to construct the basis of boundary modes

8B =
[

1
−S−1

II SIB

]
. (4)

The internal vibration modes8I are next obtained by solving the internal eigen-
value problem of the substructureclamped on its boundary

SIIqI = ω2MIIqI , (5)

giving the eigensolutions{ω2
i ,φ(i)}. The matrix of internal modes is obtained by

collecting them� NI first modes

8I =
[

0
φ(1), . . . ,φ(m)

]
. (6)

The reduced stiffness and mass matrices of the superelement are then obtained by
projecting the finite element stiffness and mass onto the basis formed by the sets of
boundary and internal vibration modes.

3. Kinematic Hypotheses for a Superelement in Mechanism Analysis

The starting point consists to obtain the nodal positions and orientations through
superposition of elastic displacements and rotations in a local frame convected with
the rigid body motion of the substructure:{

xi
9i

}
=
{
x0+R0(Xi + ui)

90 ◦ ψ i

}
(7)
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Figure 1. Flexible body kinematics.

with xi ,9 i the position and rotation vector of nodei in the global frame,x0,R0

the position and rotation of the reference frame,Xi the initial position of nodei in
the local frame,ui ,ψ i the elastic displacements and rotations of nodei in the local
frame and◦ the rotation composition operator [2, 3].

The hypothesis of infinitesimal elastic displacements and rotations in the local
frame is made next:

‖ui‖
‖Xi‖ , ‖ψ i‖ � 1. (8)

The elastic displacements are expressed through superposition of component
modes{

xi
9i

}
=
{
x0+R0(Xi +8iy)

90 ◦ (8iy)

}
, (9)

where8i are the modal shape values evaluated at nodei and y are the new
generalized displacements.

The modal basis used is that obtained from the linear analysis:

8 y = 8B yB +8I yI (10)

with the boundary modes8B and the internal modes8I calculated from Equa-
tions (4) and (6).

In particular, the amplitudes of the constrained boundary modes may be
expressed in the form

yB =
{
uB
ψB

}
=
{
RT

0 (xB − x0)−XB

(−90) ◦ (9B)

}
. (11)
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Figure 2. Construction of the local reference frame.

The superelement is built by using as generalized coordinatesq the set of posi-
tions and rotations of the boundary nodes in the global frame, and the set of internal
vibration modes

qT = 〈xTB 9T
B inc yTI 〉 . (12)

In fact, rotations at nodes are handled by an updated Lagrangian approach [2, 3], in
which the current value is expressed as an increment with respect to a previously
computed rotation:

9 i = 9i ref ◦9 i inc. (13)

Subscripts ‘ref’ and ‘inc’ indicate nodal reference and increment rotation vectors,
respectively. The nodal rotation unknowns are the increments with respect to the
nodal reference rotation. This reference is updated after reaching convergence.

The position and orientation of the local frame is given in the form of a weighted
mean of positions and orientations of the boundary nodes of the superelement.
Positionx0 will be computed as follows:

x0 =
∑
j

αjxj , (14)

where constant coefficientsαj are calculated as indicated below (Section 3.1).
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In order to be able to compute a weighted mean of incremental rotations, we
express them as increments with respect to a common reference frame. Letβj
be the rotation increment at nodej , with respect to a common reference rotation
90 ref:

90 = 90 ref ◦ β0

9j = 90 ref ◦ βj . (15)

The current orientation of the local frame of the superelement90 will be computed
by requiring that

β0 =
∑
j

αjβj . (16)

The reference rotation vector90 ref is selected as the rotation of the local frame in
the previous converged configuration. After reaching convergence, this reference
is updated and made equal to90.

Variations of local displacements and rotations are

δui = RT
0 (δxi − δx0)+ (RT

0 (xi − x0))× δ20,

δψ i = T −1(ψ i)(δ2i − exp(ψ̃ i )
T δ20). (17)

Note that variations of positions and orientations of the reference frame can be
expressed in terms of variations of positions and orientations at each boundary
node:

δx0 =
∑
j

αj δxj ,

δβ0 =
∑
j

αj δβj . (18)

After replacing into Equation (17), we get

δui = RT
0

(
δxi −

∑
j

αj δxj

)
+ (RT

0 (xi − x0))T (β0)
∑
j

αjT
−1(βj )δ2j ,

δψ i = T −1(ψ i)δ2i − T −1(ψ i)exp(ψ̃ i)
T T (β0)

∑
j

αjT
−1(βj )δ2j . (19)

Finally, using the hypothesis of small rotation incrementsβ i , ψ i � 1, we may
write

δui = RT
0

(
(1− αi)δxi −

∑
j 6=i

αj δxj

)
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+ (RT
0 (xi − x0))

∑
j

αj [21+ ψ̃ j ]
/

2 δ2j

δψ i = [2(1− αi)1+ ψ̃ i]
/

2 δ2i −
∑
j 6=i

αj [21+ ψ̃ j − ψ̃ i]
/

2 δ2j . (20)

3.1. COMPUTATION OF THE WEIGHT COEFFICIENTSα

Weights are computed from the mass and stiffness properties of the substructure.
They express the form in which positions and rotations at the boundary nodes
contribute to the reference frame global positioning and orientation. The choice
for these coefficients is far from unique. From experience, we have found that the
better option is one in which the reference frame corresponds, approximately, to a
material frame located at the mass center of the substructure.

The algorithm we followed to compute the weightsα is next described:

1. Compute the position of the center of massxcm from the stiffness and mass
matrices of the superelement

2. Calculate weightsαi using

α = pinv(A)v, (21)

where matrixA and vectorv are given by

A =
[
XTX

eT

]
, v =

{
XT xcm

1

}
, (22)

and whereX = [ x1 x2 . . . ], eT = 〈1 1 . . . 〉, and pinv(A) is the
Moore–Penrose pseudoinverse ofA.

The computation of these weight factors through the Moore–Penrose pseudoin-
verse ofA assures that (i)

∑
i αixi = xcm is verified in a least-squares sense,

(ii)
∑

i αi = 1, and (iii)‖α‖ is minimum. Usually, all factors will have a non-zero
contribution to the reference frame position and/or rotation.

Remark.Floating local frames coincident with thecurrent principal axes, i.e.
Tisserand axes[9] have the advantage of fully uncoupling the nonlinear inertia
of the body. However, their use in flexible multibody dynamics requires a rather
cumbersome algebraic manipulation and a full knowledge of the nonlinear matrices
at the global level.

Remark.Note that different sets of weights can be defined for the positions and
for the rotations, by considering the set of nodes that are retained in either case. The
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only restriction is that the triplet of positions and/or rotations at the considered node
should be included in the set of generalized displacements of the superelement.

Remark.Because of the particular form of the nonlinear kinematic relations
between local and global variables (11), values at the boundaries should be given

by triplets of positions and/or rotations at each node. Then,

{
xB
9B

}
is in fact an

abbreviate notation for:

{
xB
9B

}
=





{
xa
9a

}
{
xb
9b

}
...



T 
xia
xib
...


T 

9ja

9jb

...


T



T

. (23)

Nodesa, b, . . . at the boundary have the six degrees of freedom defined. At nodes
ia, ib, . . ., only the translation degrees of freedom have been retained to build the
superelement while at nodesja, jb, . . ., only the rotation degrees of freedom have
been conserved.

4. Strain Energy and Internal Forces

Owing to the hypothesis of linear behavior in the local frame, the strain energy of
the substructure may be written in the form

π = 1

2
yT Sy = 1

2

{
uB
ψB

yI

}T
S

{
uB
ψB
yI

}
, (24)

whereS is the reduced stiffness obtained from the linear model

S = 8T S8 =
[
SBB 0

0 SII

]
. (25)

The variation of generalized displacements follows

δy = ϒ δq =
[
ϒB 0
0 1

]{ δxB
δ2B

yI

}
, (26)

where matrixϒB reads

ϒB =


ϒ1 u

ϒ1 ψ

ϒ2 u

ϒ2 ψ
...

 , (27)
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and where matricesϒ i u,ϒ i ψ are computed from Equation (11) giving:

ϒ i u =
[
− α1R

T
0 α1

˜[RT
0 (x1− x0)][21+ ψ̃1]

/
2 . . .

(1− αi)RT
0 αi

˜[RT
0 (xi − x0)][21+ ψ̃ i]

/
2 . . .

]
, (28)

ϒ i ψ =
[

0 α1[21+ ψ̃1− ψ̃ i]
/

2 . . .

0 [2(1− αi)1+ ψ̃ i]
/

2 . . .

]
. (29)

The superelement internal forces are obtained through variation of the strain
energy

δπ = δq ·ϒT Sy = δq ·Gint. (30)

Finally, the tangent stiffness matrix is obtained through linearization of the
internal forces

1Gint = ∂Gint

∂q
·1q ' ϒT Sϒ1q = Ssup1q. (31)

5. Kinetic Energy

The kinetic energy of the superelement is computed using the velocities rotated to
the reference frame, in a corotational approach:

T = 1

2

∫
V

ẋ · ẋ ρ dV = 1

2

∫
V

(RT0 ẋ) · (RT
0 ẋ) ρ dV, (32)

R0 gives the rotation of the reference frame.
We next compute thediscrete formof the kinetic energy. Let us denote the

velocities rotated to the reference frame byẋ∗(X) = RT
0 ẋ and interpolate them in

terms of nodal velocities:

ẋ∗(X) =
n∑
i=1

Ni(X) ẋ
∗
i (33)

where the summation extends to all nodes of the flexible member.
We have analyzed two different options for computingT . In the first one,

angular velocities are consistently rotated to the reference frame in the form
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�∗(X) = RT
0ω, whereω are (spatial) rotation velocities. After performing the

volume integral, the kinetic energy of the superelement is written:

T = 1

2

∑
i

∑
j

{
ẋ∗i
�∗i

}T ∫
V

NT
i N j ρ dV

{
ẋ∗j
�∗j

}

= 1

2

∑
i

∑
j

{
ẋ∗i
�∗i

}T
M ij

{
ẋ∗j
�∗j

}
(34)

withM ij the mass matrix block coupling nodesi andj . The second option consists
into computing the kinetic energy in terms of material angular velocities, as it was
already described in [5, 10] within the context of a node attached reference frame
formulation. Now, the kinetic energy reads:

T = 1

2

∑
i

∑
j

{
ẋ∗i
�i

}T
M ij

{
ẋ∗j
�j

}
. (35)

The first option gives a consistent treatment to both translation and rotation velo-
cities. However, the second form of computing the kinetic energy gave us better
accuracy, as it will be shown in the examples.

Remark.Note that the interpolation of velocities is not consistent with the
interpolation of displacements used to build the strain energy expression.

6. Option A: Angular Velocities in the Reference Frame

The reduced form of the discrete kinetic energy (component modes approach) is
next computed. First, a second stage discretization is made by assuming that the
material velocities can be expressed in terms of a few global shape functions{

ẋ∗i
�∗i

}
= 8i ẏ =

[
[8Bu 8B9 ]i 8I i

] { ẋ∗B
�∗B
ẏI

}
, (36)

where ẋ∗B,�
∗
B are the velocities at the boundary nodes of the superelement ro-

tated to the reference frame, andẏI are the time derivatives of the internal mode
amplitudes.

By replacing into (34), the kinetic energy of the superelementT may be written
as follows:

T = 1

2
ẏTMẏ = 1

2

{
ẋ∗B
�∗B
ẏI

}T
M

{
ẋ∗B
�∗B
ẏI

}
. (37)
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The mass matrixM results from the projection of the element mass matrices over
the modal basis

M = 8TM8 =
[
MBB MBI

MIB 1

]
. (38)

Remark.The vector of generalized velocities at the boundary

{
ẋ∗B
�∗B

}
is in fact

an abbreviate notation for:

{
ẋ∗B
�∗B

}
=





{
ẋ∗a
�∗a

}
{
ẋ∗b
�∗b

}
...



T 
ẋ∗ia
ẋ∗ib
...


T 

�∗ja
�∗jb
...


T



T

(39)

in a consistent manner to what has already been pointed out in Section 3.1 before.

6.1. VARIATION OF KINETIC ENERGY AND INERTIA FORCES

The first variation ofT is:

δT = δẏT M ẏ. (40)

The vector of variations of generalized velocities reads:

δẏ =
{
δẋ∗B
δ�∗B
δẏI

}
(41)

with the variation of material and angular velocities

δẋ∗B = RT
0 δẋB − δ20× (RT

0 ẋB),

δ�∗B = RT
0RBδ2̇B − δ20× RT0RB�B. (42)

The variation of the reference frame rotation can be computed in terms of
variations of generalized displacements at the global frame giving:

δ20 =
∑
i

αi[21+ ψ̃ i]
/

2 δ2i = U δq, (43)

where matrixU is:

U = [ 0 α1[21+ ψ̃1]
/

2 0 α2[21+ ψ̃2]
/

2 . . . ] . (44)
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By introducing the latter expressions into (40) and by integrating by parts we
get

δT = −δq ·Giner

= −δq ·
(
P T M ÿ + P T (O0−OB)Mẏ

)
+ δ20 · V TMẏ

= −δq ·
(
P T M ÿ + (P T (O0−OB)+ UTV T

)
Mẏ

)
, (45)

where the local accelerationsÿ are

ÿ =
{

RT
0 ẍB

RT
0RBAB
ÿI

}
+
 ˜̇x∗B�̃∗B

0

�0 = P q̈ + V�0, (46)

and where

O0 =
[
�̃0

�̃0

0

]
, OB =

[ 0
�̃
∗
B

0

]
,

P =
[
RT

0
RT

0RB

1

]
, V =

 ˜̇x∗B�̃∗B
0

 . (47)

6.2. TANGENT MASS AND PSEUDODAMPING MATRICES

The superelement tangent mass matrix is computed by differentiating the inertia
forces with respect to the generalized accelerations in the global frameq̈:

Msup= P T M P . (48)

The inertia forces depend on the velocitiesq̇ – and, in fact, also on the gener-
alized displacementsq. In order to improve convergence, we compute the matrix
of derivatives of the inertia forces with respect to velocities, i.e. the superelement
tangent pseudodamping matrix. This is a non symmetric matrix, which proved to
be of great value for improving convergence in several examples.

Csup= C1 sup︸ ︷︷ ︸
symm

+C2 sup︸ ︷︷ ︸
skew

+C3 sup, (49)

where

C1 sup = P T
(
O0M +MOT

0

)
P ,

C2 sup = P T
(
MV + V 1

)
U − UT

(
V T

1 + V TM
)
P T ,

C3 sup = −P TOBMP + P
0

(̃Mẏ)9
0

 , (50)
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and where

V 1 =
 (̃Mẏ)x˜
(Mẏ)ψ

0

 . (51)

7. Option B: Angular Velocities in the Material Frame

In this case, the second stage discretization applies to the material angular
velocities instead of the reference frame angular velocities:{

ẋ∗i
�i

}
= 8i ẏ =

[
[8Bu 8B9 ]i 8I i

] { ẋ∗B
�B
ẏI

}
(52)

with ẋ∗B,�B the velocities at the boundary nodes of the superelement, the former
rotated to the reference frame and the latter terms expressed in the material frame.

By replacing into (35), the kinetic energy of the superelementT may be written
as follows:

T = 1

2
ẏTMẏ = 1

2

{
ẋ∗B
�B
ẏI

}T
M

{
ẋ∗B
�B
ẏI

}
(53)

with the mass matrixM given by the projection of the global mass matrix over
the modal basis (38). Again, the vector of generalized velocities at the boundary{
ẋ∗B
�B

}
is an abbreviate notation for the whole set of velocities at the boundary, as

pointed out in (39).

7.1. VARIATION OF KINETIC ENERGY AND INERTIA FORCES

The first variation ofT reads:

δT = δẏT M ẏ (54)

with the vector of variations of generalized velocities:

δẏ =
{
δẋ∗B
δ�B
δẏI

}
(55)

and with the variations

δẋ∗B = RT
0 δẋB − δ20× (RT

0 ẋB),

δ�B = δ2̇B − δ2B ×�B. (56)
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By introducing the latter expressions into (54), together with the expression of
variations of the reference frame rotation (43), and by integrating by parts between
two arbitrary time instants (Hamilton principle), we get

δT = −δq ·Giner,

= −δq · (P T M ÿ + P T (O0+OB)Mẏ)+ δ20 · V TMẏ,

= −δq ·
(
P T M ÿ + (P T (O0+OB)+ UTV T )Mẏ

)
, (57)

where the local accelerationsÿ are

ÿ =
{
RT

0 ẍB
AB
ÿI

}
+
[˜̇x∗B

0
0

]
�0 = P q̈ + V�0, (58)

and where matricesO0,OB,P andV are given, in this option, by the expressions:

O0 =
[
�̃0

0
0

]
, OB =

[ 0
�̃B

0

]
,

P =
[
RT

0
1

1

]
, V =

[˜̇x∗B
0
0

]
. (59)

7.2. TANGENT MASS AND PSEUDODAMPING MATRICES

After differentiating the inertia forces with respect to the generalized accelerations
in the global framëq, we get the tangent mass matrix of the superelement:

Msup= P T M P . (60)

The inertia forces also depend on the generalized velocitiesq̇ and displacements
q. In order to improve convergence, it is necessary to compute the matrix of deriv-
atives of the inertia forces with respect to velocities, i.e. the superelement tangent
pseudodamping matrix.

Csup= C1 sup︸ ︷︷ ︸
symm

+C2 sup︸ ︷︷ ︸
skew

+C3 sup, (61)

where

C1 sup = P T
(
O0M +MOT

0

)
P ,

C2 sup = P T
(
MV + V 1

)
U − UT

(
V T

1 + V TM
)
P T ,

C3 sup = OBMP −
0

(̃Mẏ)9
0

 , (62)
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and where

V 1 =
 (̃Mẏ)x0

0

 . (63)

Remark.In both options A and B, all contributions to the inertia terms (inertia
forcesGiner, mass matrixMsup and pseudodamping matrixCsup) are evaluated
directly from the reduced mass matrixM . In this way, we can very easily interface
the vibration analysis code and the mechanism analysis module. This represents a
great advantage with respect to other techniques, as that we presented earlier in [6].

8. Examples

The equations of motion we get by following the techniques described in the
preceding sections were time-integrated using a particular implementation of the
Hilber–Hughes–Taylor algorithm to solve flexible mechanisms problems. This im-
plementation of the HHT integrator was particularly adapted to treat large finite
rotations and equations of constraint, and is fully described in [4, 8].

8.1. HINGED BEAM

The first example is a hinged flexible beam, initially at rest, submitted to a time-
varying torque at its base. The beam is linked to the foundation through a hinge
joint (Figure 3). Its physical properties are: length 141.42, mass density 7.8×10−3,
cross section 9.0, moment of inertia 6.75, Young modulus 2.1× 106 and Poisson
ratio 0.3. All computations were made with a time step1t = 0.01.

The dynamic response was computed using a reduced model in which transla-
tions and rotations are retained at the two extremes of the beam, and four internal
vibration modes are included, resulting in a 16 degrees-of-freedom model. Res-
ults were compared to those of a model formed by five equally-spaced nonlinear
beam finite elements, described in [3]. We have also made computations using a
superelement with a node-attached local reference frame, as described in [5].

Figure 4 shows results computed with the node-attached reference frame for-
mulation. We compare results obtained when changing the reference node; i.e. in
one case the node at the base of the beam was used to attach the reference frame
and in the second case the node at the tip was used for this purpose. We see that
results in both cases, although similar, differ from each other.

In Figure 5 we compare one of the solutions of the node-attached formulation
with the solution obtained by integrating the nonlinear beam finite element model.
We can appreciate that the reduced model results are enough accurate for practical
purposes.
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Figure 3. Hinged beam.

                      

Figure 4. Hinged beam. Time evolution of the angular velocity at the base of the beam. Results
obtained when changing the reference node in the node-attached reference frame formulation.

In Figures 6 and 7 we display the time evolution of the angular velocity at the
base node of the beam computed with the new formulation presented here, for both
options A and B of computing the kinetic energy. They are again compared to the
nonlinear beams finite element solution. We can appreciate an accurate computed
response in both reduced models. The solution is slightly more accurate than the
solution computed using the attached-node formulation. We should remark that



SUPERELEMENTS MODELLING IN FLEXIBLE MULTIBODY DYNAMICS 261

                      

Figure 5. Hinged beam. Angular velocity at the base of the beam. Results obtained with the
node-attached reference frame formulation (reference at the base of the beam) compared to
the nonlinear beam finite element solution.

                      

Figure 6. Hinged beam. Angular velocity at the base of the beam. Results obtained with the
floating reference frame formulation, inertia option A, compared to the nonlinear beam finite
element solution.
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Figure 7. Hinged beam. Angular velocity at the base of the beam. Results obtained with the
floating reference frame formulation, inertia option B, compared to the nonlinear beam finite
element solution.

this formulation is completely invariant with respect to the order given to the
superelement nodes, a fact verified also by computations.

8.2. BEAM ON A SPHERICAL JOINT

This second example is again a flexible beam articulated to the foundation. In this
case, the beam is linked through a spherical joint to the ground and a vertical
impulse is applied at timet = 15 in order to get full three-dimensional motion
(Figure 8). Physical data coincide with those of the first example. Now, computa-
tions were made with a time step1t = 0.02. This example is intended to compare
results given by both forms of computing the inertia terms in the floating reference
frame formulation.

The reduced model was again built by retaining translations and rotations at the
two extremes of the beam, and by including four internal vibration modes. Results
were compared to those of a five equally-spaced nonlinear beam finite elements
model.

Figure 9 displays thez-angular velocity computed using the node-attached ref-
erence frame formulation. On the other hand, Figures 10 and 11 show the results
of computations using both options for computing the inertia terms in the floating
reference frame formulation. In all cases, the responses are compared to that of the
nonlinear beams model. We can see that results are almost identical in all cases, up
to the time instant in which the vertical impulse is applied. Afterwards, the response
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Figure 8. Beam on a spherical joint.

                      

Figure 9. Beam on spherical joint. Angular velocity at the base of the beam. Results obtained
with the node-attached reference frame formulation, compared to the nonlinear beam finite
element solution.
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Figure 10. Beam on spherical joint. Angular velocity at the base of the beam. Results obtained
with the floating reference frame formulation, inertia option A, compared to the nonlinear
beam finite element solution.

                      

Figure 11. Beam on spherical joint. Angular velocity at the base of the beam. Results obtained
with the floating reference frame formulation, inertia option B, compared to the nonlinear
beam finite element solution.
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computed using option A of the kinetic energy presents large amplitude spurious
oscillations. The node-attached formulation and the floating reference frame for-
mulation (option B), display similar behaviors comparing well to the results of the
nonlinear beam finite element model. We remark again a slightly better accuracy
in the floating frame formulation, option B, than in the node-attached formulation.

9. Concluding Remarks

A new formulation of a superelement for flexible mechanisms analysis has been
presented. This formulation is based on using a floating reference frame and a
corotational inertia approach. The floating reference frame presents a better way of
modeling flexible bodies than with the fixed reference frame approach, since results
are completely independent of the choice of reference frame node. Also, with the
corotational inertia approach, the formulation allows to very easily interface the
mechanisms analysis program with the linear vibrations analysis module.

Two different alternatives of computing the kinetic energy have been proposed
and compared. In the first alternative, angular velocities in the reference frame are
used to evaluate the kinetic energy while the second one uses angular velocities
expressed in the material frame for this purpose. Although the former alternative
is consistent to the treatment given to the traslation velocities, the latter gave more
accurate results.

The floating reference frame position and orientation is built in terms of the
boundary nodes positions and rotations (and on the mass properties). Forthcoming
work will be directed to allow constructing a floating reference frame uniquely in
terms of boundary nodes positions.
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