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SUMMARY

Large fractures tend to dominate the hydraulic and mechanical properties of fracture networks
and, consequently, of fractured rock masses. Hence, their characterization is of primary interest
in a variety of applications. Seismic reflection is a non-invasive tool that allows for the
characterization of large fractures due to the high mechanical contrast that they commonly
present with respect to their embedding background. Smaller secondary fractures are generally
connected to the large primary fractures, thus, creating a network for fluid flow. This, in turn,
allows for wave-induced fluid pressure diffusion (FPD) to prevail between the intersecting
secondary and the large primary fractures, which may have a pronounced, albeit as of yet
unexplored, impact on the compliance and the reflectivity of the large primary fractures.
To explore this fundamental problem, we investigate the impact that such FPD process has
on the compliance and the reflectivity of large primary fractures. To this end, we consider
several canonical models, which comprise an infinite horizontal primary fracture connected
to vertical smaller secondary fractures embedded in a background deemed impermeable
throughout the seismic frequency range. The individual models differ only with regard to the
secondary fracture properties (e.g. length, aperture, mechanical moduli). For comparison, we
also consider a reference model that disregards the secondary fractures. To constrain the effect
of FPD on the primary fracture, we evaluate its effective seismic response by means of vertical
compressional oscillatory tests over samples of the aforementioned models, to subsequently
perform averaging of the vertical components of stress and strain. We use these results to
estimate first the P-wave modulus and then to compute the normal compliance and reflectivity
of the primary fracture. Our results show that both the compliance and reflectivity of the
primary fracture increase by more than one order-of-magnitude with respect to the reference
model. These findings point to a very significant enhancement of the seismic visibility of large
fractures due to FPD with connected secondary ones.

Key words: Fracture and flow; Permeability and porosity; Numerical modelling; Geome-
chanics; Acoustic properties; Body waves..

1 INTRODUCTION

Fractures are ubiquitous throughout the Earth’s upper crust and, in
particular, larger-scale fractures tend to dominate the mechanical
and hydraulic propreties of the embedding rock masses (e.g. Liu
2005; Jaeger et al. 2007). For instance, preferential flow, which is
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a common occurrence in fractured rocks (e.g. Tsang & Neretnieks
1998; Faulkner et al. 2010), is, as simulations suggest, further en-
hanced by the presence of large fractures (e.g. De Dreuzy et al. 2001;
Hyman et al. 2016). These computational findings are supported by
field evidence, which shows that high-permeability zones are often
dominated by large fractures, which, in turn, are commonly inter-
connected to a network of smaller fractures (e.g. Sausse & Genter
2005; Vidal et al. 2017). Similary, large fractures can accentuate
rock deformation. Laboratory experiments and field observations
suggest that fracture compliance scales with fracture length (Wor-
thington & Lubbe 2007; Hobday & Worthington 2012). This implies
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that large open fractures tend to be more compliant and, hence, de-
form more readily than smaller fractures. The numerical analysis
performed by Morris et al. (2017) supports the scaling of compli-
ance with fracture length, although their results show that fracture
compliance also depends on the confining stress. Since large frac-
tures tend to control the mechanical and hydraulic properties of the
embedding rock masses, their characterization is of great interest for
a wide range of applications, such as geothermal energy extraction,
CO, storage, ground water management, oil and gas exploration
and nuclear waste storage, among others.

From a seismic perspective, fractures are deemed large when
their size is much greater than the dominant wavelength and act as
first-order discontinuities governing the reflection and transmission
of impinging seismic waves (e.g. Schoenberg 1980; Pyrak-Nolte
et al. 1990; Fang et al. 2013). Seismic reflection methods are useful
tools for fracture characterization due to the generally high reflec-
tivity that large open fractures exhibit as a consequence of their
strong mechanical constrast with respect to their embedding back-
ground. In fact, multiple studies show that the reflected seismic
signals from a fracture plane correlate with the ratio of the fracture
compliance to the seismic impedance of the background as well as
with the dominant frequency of the seismic wave (e.g. Pyrak-Nolte
et al. 1990; Liu et al. 1995; Gu et al. 1996). Relevant examples of
seismic reflection applications for fracture characterization are the
inversion of fracture compliance from angle-dependent reflection
data (e.g. Minato & Ghose 2016; Cui et al. 2017) as well as the
estimation of fracture properties from the scattered wavefield gen-
erated by the spatial heterogeneities of the fracture under study (e.g.
Minato & Ghose 2014). However, these and similar methodologies
have been largely developed within an elastic framework, which
cannot account for fluid—solid interactions prevailing in fractured
rocks (e.g. Chapman 2003; Miiller ez al. 2010; Rubino et al. 2014).
Addressing such problems from a poroelastic perspective therefore
allows for a more realistic description of the governing physical
processes.

The works of Rubino ef al. (2015), Barbosa et al. (2017), and
Wang et al. (2017) show that poroelastic effects between fractures
and their embedding porous background produce a frequency-
dependent behaviour of the normal compliance of the fractures.
In fact, the experimental work of Nakagawa (2013) had already
evidenced this behaviour. In this work, the author uses samples
of water-saturated Berea sandstones with artificial through-going
fractures. He measures the deformation across the fractures caused
by an applied axial stress at different frequencies to obtain the
frequency-dependent characteristics of the compliance. His results
reveal the dispersive nature of the normal compliance of the frac-
tures. A similar behaviour of the normal compliance of fractures
due to poroelastic effects is suggested by a more recent experi-
mental work (Wang et al. 2018). Here, the authors measure the
P-wave velocity of synthetic water-saturated samples containing
vertically stacked penny-shaped cracks, where the measurements
are performed at a single frequency and at different angles of in-
cidence. Subsequently, they compare the results with two different
analytical models. The measured velocites show a better agreement
with an analytical model that considers the frequency-dependent be-
haviour of the normal compliance of the penny-shaped fractures as
a consequence of poroelastic effects in comparison to a model that
disregards these interactions and represents the fractures as purely
elastic interfaces. Similarly, estimations of normal compliance from
field measurements also point to the prevalence of poroelastic in-
teractions between fractures and their surroundings, as evidenced

by the relatively large imaginary component of the estimated com-
pliance (e.g. Barbosa et al. 2019; Zhou et al. 2022). Furthermore,
poroelastic effects between a fracture and its embedding background
also impact the behaviour of the fracture reflectivity causing its gen-
eral increase in the seismic frequency range (Nakagawa & Schoen-
berg 2007; Barbosa et al. 2016).

Poroelastic effects on the reflectivity and compliance of fractures
are a direct consequence of wave-induced fluid pressure diffusion
(FPD) that takes place when seismic waves induce pressure gra-
dients due to the mechanical contrast between the fracture and its
embedding background (e.g. Miiller et al. 2010). FPD increases
the normal compliance of fractures, and thus their seismic reflec-
tivity, as the stiffening fluid exits the fracture to equilibrate the
pressure (Rubino et al. 2015; Barbosa et al. 2017). However, in
many fractured environments of interest, the background is largely
impermeable within the seismic frequency range, which prevents
FPD to take place. Conversely, there is far-reaching evidence indi-
cating the pervasive presence of damage zones surrounding large
fractures and faults (e.g. Kim et al. 2004; Faulkner et al. 2010;
Savage & Brodsky 2011), which enhance the permeability around
the fracture and, thus, provide the necessary conditions for FPD to
prevail (e.g. Mitchell & Faulkner 2012; Sotelo et al. 2021). Damage
zones predominantly consist of a network of fractures at different
scales, with a decaying density from the fault core (e.g. Chester
et al. 2004; Mitchell & Faulkner 2009). Indeed, there is evidence to
suggest that secondary fractures intersecting the primary fault are a
quite common occurrence. For instance, Bruhn et al. (1994) show
that multiple episodes of fracturing and thermal alteration tend to
create complex secondary fracture patterns in normal fault zones,
which notably include mesoscale fractures intersecting a primary
macroscale fracture at rather steep angles. Similarly, the studies of
Gudmundsson et al. (2001) of a fluid-alterated transform fault zone
demonstrate the presence of veins striking subparallel and subper-
pendicular to the fault. Core and borehole measurements examined
by Vidal et al. (2017) and Glaas et al. (2021) show the presence of
permeable fractures associated with a hydrothermally alterated nor-
mal fault zone. Many of these secondary fractures strike subparallel
to the fault but dip, often quite steeply, in an opposing direction,
and, thus, establish mechanical and hydraulic connections with the
primary fault.

Studies that investigate fracture-to-fracture FPD have so far
mainly focused on mesoscale fractures, which are much larger than
the pore size but much smaller that the dominant wavelength. In
these studies, the main objective has been to investigate the effec-
tive seismic response of the fractured rock mass associated with
the network properties, such as fracture density, fracture length,
degree of fracture connectivity and fluid saturation, among oth-
ers (e.g. Rubino et al. 2013, 2014; Hunziker et al. 2018; Solazzi
et al. 2020). Conversely, FPD effects between a single large frac-
ture and connected mesoscale secondary fractures as well as its
impact on the compliance and reflectivity of the large fracture are
as of yet largely unexplored. Nonetheless, it is expected that, in
particular, a P-wave impinging normally onto a large fracture will
preferentially increase the fluid pressure inside this fracture rather
than in the connected secondary ones due to its more favourable
orientation for FPD (e.g. Rubino et al. 2014; Guo et al. 2017).
Furthermore, due to the commonly very high permeability of large
fractures, there should be sufficient time for FPD to take place with
the connected secondary fractures, thus reducing the stiffening ef-
fect induced by the saturating fluid. This further implies that the
deformation of large fractures that are interconnected to secondary
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Figure 1. Schematic illustration of a fracture system composed of an infinite
horizontal primary fracture connected to equally spaced vertical mesoscale
secondary fractures embedded in a background deemed impermeable at the
frequencies of interest. The inserted box represents a sample 2 used to
estimate the P-wave modulus and the corresponding normal compliance of
the primary fracture. The thick downward arrow indicates the direction of
propagation of an incoming P-wave and the thin arrows inside the fractures
depict the fluid flow induced by FPD during the compressive cycle of the
seismic perturbation.

ones should be more significant than that of their isolated coun-
terparts, and, consequently, their compliance and their reflectivity
should be correspondingly higher. In this work, we seek to test the
aforementioned hypothesis regarding FPD effects between a large
primary fracture and intersecting secondary mesoscale fractures. To
this end, we consider several canonical models that consist of an
infinite horizontal primary fracture connected to multiple vertical
mesoscale fractures. We assume that this fracture system is embed-
ded in a background deemed impermeable for the frequencies of
interest (Fig. 1). We evaluate the sensitivity of the primary frac-
ture compliance and its normal-incidence P-wave (PP) reflectivity
to variations in the properties of the secondary fractures, such as
their lengths, spacings and mechanical moduli. For comparison, we
also evaluate the normal compliance and reflectivity of an isolated
infinite horizontal fracture.

2 THEORY AND METHODS

In this section, we first present the considered fracture model in the
context of Biot’s theory of poroelasticity (Biot 1962). Then, we dis-
cuss the the physical aspects that constrain the validity of the FPD
mechanism in describing wave-induced fluid flow between a large
primary fracture and intersecting mesoscale secondary fractures.
We also describe the pressure relaxation process associated with
FPD, which results in the frequency-dependent behaviour of the
seismic properties of the large primary fracture. We then present
a homogenization method that permits to isolate the FPD effects
on the large primary fracture to estimate its frequency-dependent
P-wave modulus and normal compliance. Finally, we introduce a
simplified model that disregards the presence of the secondary frac-
tures but includes their FPD effect on the large primary fracture
through the estimated frequency-dependent P-wave modulus. This
model is then used to evaluate the normal-incidence PP reflectivity
of the primary fracture.

Impact of connected secondary fractures 3

2.1 Poroelastic representation of fractures and fluid
pressure diffusion effects

Fractures can be adequately modelled using Biot’s theory of poroe-
lasticity (Biot 1962) by representing them as features of a poroelastic
continuum characterized by much higher porosities and permeabil-
ities and much lower bulk and shear moduli than the embedding
background (e.g. Quintal ef al. 2014; Rubino ef al. 2014; Hunziker
et al. 2018). We consider a model in R?> comprised of a fracture
system embedded in a background deemed impermeable for the
frequencies of interest. The fracture system consists of an infinite
primary horizontal fracture that is intersected by equally spaced
vertical smaller secondary fractures (Fig. 1). Seismic wave prop-
agation in such media can be studied using the Biot’s dynamic
equations (Biot 1962), which predict the existence of an S-wave
and a fast and a slow P wave. For sufficiently low frequencies, the
slow P-wave behaves as a FPD process (Dutta & Odé 1979).

We also consider an incoming P-wave impinging normally onto
the infinite horizontal primary fracture depicted in Fig. 1. The asso-
ciated wave-induced deformation produces an increase of the pore
fluid pressure in the primary fracture, which, in turn, equilibrates by
creating fluid flow toward the secondary fractures. For sufficiently
low frequencies, which generally comprise the seismic frequency
range, this fracture-to-fracture wave-induced fluid flow is driven by
FPD (e.g. Miiller ef al. 2010). We are interested in FPD linked to
mesoscale secondary fractures since this is particularly relevant for
seismic applications (e.g. Pride et al. 2004; Miiller et al. 2010).
Mesoscale heterogeneities refer to those that are much smaller than
the prodominant wavelength but much greater than the pore size.
In Appendix A, we provide further details regarding the constraints
related to the scale of the secondary fracture heterogeneities and to
the frequencies at which mesoscale FPD prevails. We also describe
the associated fluid pressure relaxation process, which produces an
equivalent viscoelastic behaviour of the poroelastic medium (e.g.
Norris 1993; Pride ef al. 2004; Rubino et al. 2009). For our spe-
cific case, the pressure relaxation associated with FPD between the
primary and secondary fractures induces a frequency-dependent be-
haviour of the P-wave modulus and of the normal compliance of
the primary fracture. We also describe the two limiting pressure
regimes, relaxed and unrelaxed, and the corresponding transition
zone associated with the pressure relaxation process. We further
specify that the transition zone is characterized by a transition fre-
quency f., which controls the frequency shift between the relaxed
and unrelaxed regimes.

For heterogeneous poroelastic media, the equivalent frequency-
dependent moduli can be obtained by applying a numerical ho-
mogenization procedure, which consists of solving Biot’s (1962)
quasi-static equations on a representative sample using pertinent
oscillatory tests (e.g. Wenzlau et al. 2010; Quintal et al. 2011;
Rubino et al. 2016). In this work, we use a related homogenization
procedure of this kind (Sotelo e al. 2023) to estimate the frequency-
dependent properties of the primary fracture, which we shall outline
in the following.

2.2 Homogenization procedure

We consider the model presented in Fig. 1 to estimate the frequency-
dependent P-wave modulus and the normal compliance of the pri-
mary fracture. For the estimation of the properties of the primary
fracture, we apply a numerical homogenization procedure based on
the work of Sotelo ez al. (2023), which is characterized by a sampling
technique that includes a section of the poroelastic medium together
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Figure 2. Enlarged view of the sample € presented in Fig. 1 consisting
of a portion 2,1 of the large primary fracture connected to a secondary
fracture 2> and the associated section of the embedding background. I' is
the boundary of the sample with I' = Ffr uryu F; U T . The secondary
fracture is centred in the sample and the sample has a width that is equal to
the spacing between consecutive secondary fractures.

with the embedding background. This technique permits to natu-
rally incorporate the boundary conditions (BC) of the embedding
background, which is an important criterion when the poroelastic
medium is not periodic as in this case. Hence, following Sotelo ez al.
(2023), we take a sample 2 of the model shown in Fig. 1, which
consists of a representative part of the fracture system and the em-
bedding background (Fig. 2). The representative part of the fracture
system is composed of a portion of the poroelastic primary fracture
€2, connected to a vertical mesoscopic secondary fracture €2,,,. The
secondary fracture is centred in the sample and the sample’s width
is equal to the spacing between the secondary fractures. Then, we
solve Biot’s quasi-static equations (Biot 1962) for displacements
and pressures over the sample €2 across several frequencies. To find
the solutions, we impose periodic BC including a vertical compres-
sional oscillatory test, which produces a deformation similar to that
one induced by a P-wave impinging normally onto the primary frac-
ture. To isolate the FPD effects on the primary fracture, we compute
the average of the vertical stress and strain components over this
fracture. Finally, these averages are used to calculate the frequency-
dependent P-wave modulus and normal compliance of the primary
fracture. Further details of this homogenization procedure are given
in Appendix B. The overall goal of this homogenization is to con-
sider only the presence of the primary fracture in the reflectivity cal-
culations. It is possible to disregard the secondary fractures because
their effect due to FPD with the primary fracture is incorporated in
the frequency-dependent properties of the latter.

2.3 Normal-incidence P-wave reflectivity of the primary
fracture

We consider a simplified model in R! as shown in Fig. 3. In this
model, the primary fracture is represented by a viscoelastic layer
2, characterized by the frequency-dependent P-wave modulus ob-
tained through the previously described homogenization procedure.

X
—

/\1
D, u,
Q n,
— I |-|2
1 A

Figure 3. Simplified 1-D model of the primary fracture (Fig. 1), which is
represented by a viscoelastic thin layer . In this model, the secondary
fractures are disregarded but their influence is included in the viscoelastic
nature of the primary fracture. The embedding background is represented by
the elastic half-spaces A and A, with the same rock physical properties as
those considered for the embedding background in Fig. 1. We use this model
to compute the PP reflectivities at normal incidence at the the interface IT;
between the primary fracture €2, and the upper half-space A . The downward
arrow represents the incoming P wave, while the upward arrow designates
the reflected P wave.

In this way, we account for the FPD effects on the primary fracture
induced by the presence of the secondary fractures. The primary
fracture is embedded between the elastic half-spaces A, and A,
(Fig. 3), which have the same rock physical properties as the em-
bedding background depicted in Fig. 1. In summary, we have further
idealized the initial model presented in Fig. 1 to the one shown in
Fig. 3, which disregards the presence of the secondary fractures.
This is possible because we consider a P-wave propagating nor-
mally to the plane of the primary fracture. Under this scenario, the
propagating wave will mostly be affected by changes in the P-wave
modulus of the primary fracture due to the FPD interactions with
the secondary fractures. Conversely, the secondary fractures are un-
likely to affect the P-wave propagation not only because their planes
are parallel to the direction of the propagation but also because their
sizes are very small compared to the dominant wavelength (e.g. Ru-
bino et al. 2014; Song et al. 2020). As stated before, we assume an
incoming P-wave impinging normally on the interface I1; between
the upper elastic half-space and the viscoelastic fracture (Fig. 3). To
solve for the PP-reflection coefficients at this interface, we propose
plane-wave solutions for the elastic and viscoelastic media, respec-
tively. Then, to find the corresponding amplitudes, we assemble a
set of linear equations by imposing continuity of displacements and
tractions. The details of this procedure are described in Appendix C.

3 RESULTS

In the following, we present a sensitivity analysis where we vary the
geometrical and physical properties of the secondary fractures to
investigate their impact on the normal compliance and reflectivity of
the primary fracture. We compare the results against those obtained
in absence of secondary fractures. In this case, the primary fracture
behaves as hydraulically isolated and, hence, can be treated as being
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Table 1. Reference values of the physical properties of the primary and secondary fractures as well as of the background

(Fig. 1).

Property Primary fracture (/) Secondary fracture (/) Background rock
Grain bulk modulus K (GPa) 37 37 37
Porosity ¢ 0.8 0.9 0.015
Frame bulk modulus K, (GPa) 0.004 0.008 37
Frame shear modulus v (GPa) 0.002 0.004 29
Permeability « (D) 1250 1250 1012
Aperture a (m) 0.001 0.001 NA
Length L (m) infinite 3.04 NA
Spacing s (m) NA 3.2 NA
Grain density ps (kg m3) 2730 NA 2730

Table 2. Reference values of the physical properties of pore fluids.

Property Water Gas
Fluid density pf (kgm™—3) 1000 78
Fluid bulk modulus Ky (GPa) 2.25 0.012
Fluid viscosity 1 (Pa.s) 103 1.5x 1074

elastic for the evaluation of its compliance and reflectivity. The
normal compliance of this elastic fracture is the so-called undrained
normal compliance and its reflectivity is calculated by applying
a similar procedure to the one described in Appendix C but, for
this case, we consider that the fracture is represented by an elastic
thin layer instead of a viscoelastic one. Consequently, the applied
governing and the constitutive equations are those as detailed in eqs
(C1) and (C2) of Appendix C.

Table 1 shows the rock physical properties for the primary frac-
ture, secondary fractures and the background, respectively. Table 2
lists the properties of the considered pore fluids. Unless stated oth-
erwise, we assume that the pores of the primary and secondary
fractures are water-saturated. We remark that the grain and frame
bulk moduli of the background are equal. This yields a Biot—Willlis
effective stress coefficient o equal to zero, which implies that the
pore fluid pressure does not have any effect on the total stress
(eq. B2 of Appendix B). Moreover, the background permeability
is so low (107'2 D) that it can be regarded as impermeable for
the typical seismic frequency range. In summary, due to its as-
signed properties, the background behaves effectively as an elastic
medium. To obtain both the frequency-dependent P-wave modulus
and normal compliance of the primary fracture for the different
tested models, we apply the homogenization procedure described
in the previous section using a square sample 2 (Fig. 2) with a side
length of 3.2 m. This homogenization procedure is valid for fre-
quencies that are much lower than Biot’s characteristic frequency
(eq. Al of Appendix A). The corresponding values for the pri-
mary and secondary fractures are 103.2 and 116.1 Hz, respectively,
which are at the high-end of the standard exploration seismic fre-
quency range. Although the upper limit of the seismic band is, for
practical purposes, within the same order-of-magnitude of the com-
puted Biot’s characteristic frequencies, we can still consider that
the results obtained under the FPD assumption are valid. The rea-
son for this is that a smooth transition is expected from the FPD
mechanism characterized by a viscous-dominated solid—fluid drag
forces toward a wave-induced fluid flow mechanism controlled by
an inertia-dominated drag (Rubino et al. 2014). Thus, the results we
present in the following are considered valid for frequencies up to
~100 Hz. Nonetheless, we present them up to 1 kHz for illustration
purposes.

In the following, we analyse plots of the ratio of the frequency-
dependent fracture normal compliance Zy(w) and its undrained
value Z{, thatis Zy ratio = Zy(w)/Z{;. The undrained normal com-
pliance Z{; designates the minimum theoretical value that Zy(w) can
take, which corresponds to its unrelaxed regime. We remark that in
this regime the primary fracture behaves as hydraulically isolated
from the secondary ones. The undrained normal compliance is cal-
culated as Z¥ = a¢/H, where H = Hy + Mca? is the undrained
P-wave modulus and Hj is the drained P-wave modulus, respec-
tively, with Hy = A4 4+ 2. The remaining physical properties are
defined in eq. (B3) of Appendix B. Using the properties for the pri-
mary fracture from Table 1, we find that Z = 3.6 x 107> m Pa~!.
Conversely, the drained normal compliance Z¢ denotes maximum
theoretical value that Zy(w) can take if it were possible to drain all
the pore fluid from the primary fracture. The drained normal com-
pliance is calculated as Zg = ag/H,. Using again the properties
for the primary fracture from Table 1, we find Zg§ = 1.5 x 1071°
m Pa~!. However, it is expected that the magnitude of the relaxed
Zn(w) 1s lower than the drained one since the secondary fractures
provide a limited pore volume to drain the fluid from the primary
fracture. Finally, the theoretical maximum ZJ** ratio prevails when
Zn(w) = Z¢&, which yields Zi™ = 74 /7% = 416.5.

3.1 Sensitivity to the geometrical properties of the
secondary fractures

In this subsection, we investigate the sensitivity of the normal com-
pliance and reflectivy of the primary fracture to variations in the
geometrical properties of the secondary fractures, such as their
length L”, aperture ¢’ and spacing s”. Here, the superscript 4 refers
to the secondary fractures. To perform this sensitivity analysis, we
modify one parameter at a time by repeatedly halving its value to
a maximum eight-fold decrement with regard to its reference value
(Table 1). We remark that the decrease in length of the secondary
fractures produces the same reduction of their pore volume from
the reference case as the corresponding decrease in their aperture
does. In contrast, the decrease in spacing of the secondary fractures
produces an increment of their pore volume with respect to the
reference case.

Fig. 4 presents the Zy ratio as a function of frequency for the
different geometrical parameters of the secondary fractures. The
results show that there is an increase of the normal compliance of
the primary fracture with respect to its unrelaxed value (Zy ratio
of 1) for all tested parameters of the secondary fractures. This is
the consequence of FPD with the secondary fractures prevailing in
regimes other than the unrelaxed one. Specifically, at sufficiently
low frequencies, the Zy ratio shows a constant maximum for each
tested value as the result of FPD occurring in the relaxed regime.

Gzoz eunr z| uoisenb Aq //8/¢18/5914eb6/1/z1Z/e10me/B/wod dno-olwepeoe//:sdyy wol pspeojumoq



6 E. Sotelo et al.
I O Lh-038m]| |
, O Lh=076m
10%¢ O Lh-1s2m|]
o 5 o o o o o . O L"=3.04m| ]
© b o o o o o 8 5 4
=
o
N 101:_7 o o o o o o o o ° 8 3 8 3
P o E
F 3 o ]
i (o] (o] (o] (o] [e] (o] (o] (o] (o] (o] (o] (o] (o] (o] 8 g 8 8 8 :
o
L 8 4
100, ., ) . L . L . L . L H
10° 10° 10 10°
(a)
I O ah-0.125 mm
5 O a"-=025mm
10%E O ah-050mm |7
C h ]
5 o o O a"=1.00mm | ]
-_% b o o 8 g g o o i
LZ b Z z Z ° ° 2 °© o o ]
fo) o
N 101? © o ° o ° g o ° E
E o o o o 1
n o [¢] ° o o o ° ]
i o 5 %2 o g 9o g o 1
I e o 2 o 8 8 g B8 ¢
[e] o E
100—_.‘“| . L] . . . . L . . o
10° 10" 102 108
(b)
I O sh-o04m| ]
5 O sh-08m
10 F o h E
=1.6m| 3
1] 3 3 8 =4 o fe) s 3
° % § § § § °© % o 5 % o 9 5 O s"-32m]| ]
= L ° o o ° o ]
@© o ° o
LZ I ° o °© ° o ’ © o ]
N 1L <] o o o _
10 E o e ° o . o ° o E
u ° 4 o 45 2 o o
i °© o o % o 5 7
L ° o
o
100—_. Ll . L] , . . . L . . L 4
100 10! 102 103

Frequency (Hz)

(€)

Figure 4. Ratio of the frequency-dependent normal compliance of the primary fracture to its undrained compliance (Zy ratio) as a function of frequency
considering secondary fractures of varying (a) lengths L”, (b) apertures a” and (c) spacings s”. Equal colours in (a) and (b) denote equal pore volumes of the

corresponding secondary fractures.

Consequently, we denote this Zy ratio as the relaxed one. We re-
mark that, the theoretical upper limit of the relaxed Zy ratio is the
one associated with the drained compliance of the primary fracture,
which, as previously mentioned, is equal to 416.5. As the frequency
increases, the transitional FPD regime prevails, which induces the
monotonic decrease of the Zy ratio toward its unrelaxed value. The
results show that the relaxed Zy ratio increases with increasing mag-
nitudes of the length L” and aperture a” of the secondary fractures
and with decreasing values of their spacing s”. The largest relaxed
Z\ ratio of 71.2 corresponds to the minimum spacing of 0.4 m of
the secondary fractures (Fig. 4c). This spacing is associated with
the greatest pore volume increase of the secondary fractures with
regard to the reference case.

These results also show that, in the relaxed regime, secondary
fractures with equivalent pore volumes but different geometrical
configurations, with regard to their length and aperture, induce the
flow of different volumes of fluid from the primary fracture (Figs 4a
and b). Shorter secondary fractures allow for less fluid to flow from
the primary fracture than narrower ones. This, in turn, produces a
lower increase of the associated relaxed Zy ratio of the primary
fracture. A possible explanation for this effect is the smaller frame
deformations induced in shorter secondary fractures compared to
those produced in narrower ones.

Besides, these results show that the sensitivity of the relaxed
Zy ratio is different for each of the tested geometrical properties
of the secondary fractures. The relaxed Zy ratio is most sensitive
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to variations in length L" of the the secondary fractures (Fig. 4a)
and is least sensitive to variations in their spacing s" (Fig. 4c).
An intermediate sensitivity is associated with variations in their
aperture a” (Fig. 4b). Specifically, the relaxed Zy ratio shows an
increase of ~13-fold, from 3.3 to 43.5, for the corresponding eight-
fold increase in length L”. Then, the relaxed Zy ratio increases
close to three-fold, from 15.0 to 43.5, for an eight-fold aperture a”
increase. Finally, the relaxed Zy ratio presents the lowest increase of
~1.5-fold, from 43.5 to 71.2, in response to an eight-fold decrease
in spacing s". The higher sensitivity of the relaxed Zy ratio to
variations in length of the secondary fractures can be associated to a
higher deformation or strain induced on these fractures per variation
of unit length, which allows for greater fluid volume to flow from
the primary fracture. This effect of the strain on the relaxed Zy ratio
can be deduced from eqs (B7) and (B8) of Appendix B.

On the other hand, the considered properties of the secondary
fractures influence differently the characteristic transition frequency
feo of the primary fracture normal compliance. For instance, f.
presents the highest sensitivity to changes in length L" of the
secondary fractures (Fig. 4a), showing decreasing values from ~
1.0 kHz to ~ 5.6 Hz as L" increases. In contrast, f; is the least
sensitive to changes in the aperture a’ of the secondary fractures
(Fig. 4b). In this case f;, takes increasing values from ~4.0 to ~
5.6 Hz as a" increases. Finally, f; presents an intermediate sensi-
tivity to the spacing s” of the secondary fractures (Fig. 4c), where it
decreases from ~44.6 to ~5.6 Hz with increasing spacing. Accord-
ing to eqs (A4) and (A5) of Appendix A, £, is directly proportional
to the fractional volume S occupied by the fractures but inversely
proportional to their size squared /2. This points to a trade-off be-
tween these two parameters since an increase in their size will also
increase their fractional volume. However, their overall effect on f;
will depend on their relative magnitudes. A geometric increase ei-
ther in the length L” or in the aperture a” of the secondary fractures
produces the same pore volume increase, that is an equal increase
of their fractional volume B. Under this scenario, our results re-
veal that, because of its relative higher magnitude, the increase in
length L" of the secondary fractures tends to dominate f;, causing
its decrease. In contrast, when increasing the aperture a” of the sec-
ondary fractures, it is the increase of their fractional volume f that
takes control, increasing, consequently, f.. Finally, the increase in
spacing s” of the secondary fractures produces a reduction of their
fractional volume S while their size remains constant. In this case,
as the results show, f. decreases.

Next, we explore how an increase in normal compliance of the
primary fracture as a consequence of FPD effects with the sec-
ondary fractures impacts the reflectivity of the primary fracture.
Fig. 5 presents the absolute value of normal-incidence PP reflec-
tivities of the primary fracture as a function of frequency for the
same geometrical parameters of the secondary fractures presented
in Fig. 4. The results show that, for sufficiently low frequencies, the
reflectivity of the primary fracture presents a maximum increase
from the reference case, which disregards the secondary fracture.
This is a consequence of FPD toward the secondary fractures pre-
vailing in the relaxed regime. However, for progressively higher
frequencies, the primary fracture reflectivity decreases monotoni-
cally toward its elastic limit, which is the result of FPD transitioning
toward its unrelaxed state. Regarding the reflectivity of the primary
fracture in the relaxed FPD regime, the strongest increase of ~65-
fold is associated with most closely spaced secondary fractures (s”
= 0.4 m in Fig. 5c). The second largest increase in reflectivity of
~44-fold corresponds to both the largest (L” = 3.04 m in Fig. 5a)
and the widest (¢" = 0.001 m in Fig. 5c) secondary fractures.

Impact of connected secondary fractures 7

Regarding the sensitivity of the reflectivity of the primary fracture
to changes in the geometrical properties of the secondary fractures,
the results show a similar behaviour as the one described for its
normal compliance. That is, its reflectivity at normal incidence is
most sensitive to changes in length L”, then aperture a”, and, finally,
spacing s

3.2 Sensitivity to the physical properties of the secondary
fractures

In this subsection, we investigate the sensitivity of the normal com-
pliance and the reflectivy of the primary fracture to variations in the
physical properties of the secondary fractures, such as their bulk
K and shear " moduli, permeability «" and type of pore fluid f”.
To perform this sensitivity analysis, we again modify one param-
eter at a time, taking as the reference values the ones specified in
Table 1. For the mechanical moduli, we repeatedly double the bulk
modulus K/, keeping the ratio K" /u" constant and equal to two.
To investigate the sensitivity to the permeability «”, we repeatedly
decrease its value by 50 per cent. Finally, to study the sensitivity to
the pore fluid f*, we compare the results for water or gas as satu-
rating fluids in the secondary fractures, while the primary fracture
remains water-saturated.

Fig. 6 presents the resulting Zy ratio as a function of frequency for
the different physical properties of the secondary fractures. These
results show that the presence of the secondary fractures increases
the normal compliance of the primary fracture with respect to its
unrelaxed value (Zy ratio of 1) for frequencies associated with FPD
prevailing in regimes other than the unrelaxed one. As remarked in
the previous subsection, at sufficiently low frequencies, the relaxed
Zy ratio shows a constant maximum for each of the tested values.
This occurs as a consequence of FPD prevailing in the relaxed
regime. The largest relaxed Zy ratio of 150.1 is associated with
gas-saturated secondary fractures (Fig. 6¢). This is a consequence
of the much larger compressibility of gas compared to that of the
water, which allows for more fluid to flow from the primary fracture
as FPD occurs.

We also observe that the relaxed Zy ratio shows sensitivity to
changes in the bulk modulus K’ (Fig. 6a) and in the type of pore
fluid /" (Fig. 6¢c) of the secondary fractures but not to changes in
their permeaility. In fact, Fig. 6(a) shows that the relaxed Zy ratio
increases close to three-fold, from 15.9 to 43.5, which corresponds
to an eight-fold decrease in the bulk modulus K,’;, from 0.064 to
0.008 GPa. These results suggest that more deformable secondary
fractures can accommodate larger fluid volumes coming from the
primary fracture because their pores can expand more readily. Sim-
ilarly, Fig. 6(c) shows an increase of ~3.5-fold in the relaxed Zy
ratio, from 43.5 to 150.1, when changing the saturating pore fluid
from water to gas. As previously noted, this increase is the result of
the higher compressibility of gas compared to that of water, which
permits to accommodate more water flowing from the primary frac-
ture into the pores of the secondary fractures as the gas compresses.
However, the relaxed Zy ratio is insensitive to variations in the
permeability of the secondary fractures (Fig. 6b). That is, for all
tested permeabilities «”, the relaxed Zy ratio remains unchanged.
The only effect that permeability has is with regard to the charac-
teristic transition frequency of the primary fracture compliance as
described below.

Regarding the sensitivity of the characteristic transition fre-
quency f. of the normal compliance of the primary fracture, our
results show that £ increases from ~5.6 to ~15.8 Hz as the bulk
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Figure 5. Absolute value of normal-incidence P-wave reflection coefficients as a function of frequency considering different frequency-dependent P-wave

moduli of the primary fracture. These moduli include the effect of FPD interactions with secondary fractures of varying (a) lengths L”, (b) apertures a

" and

(c) spacings s” as shown in Fig. 4. For comparison, we also show the reflectivity of a primary fracture in absence of secondary fractures, which corresponds to

an elastic one.

modulus K[’Z, increases. Similarly, we observe that £, increases from
~1.4 to ~5.6 Hz as the permeability «” increases. Finally, f; de-
creases from ~5.6 to ~2.8 Hz when the saturating fluid f” changes
from water to gas. According to eqs (A4) and (AS5) of Appendix A,
/. should increase as the permeability " of the secondary fractures
increases and as the viscosity 7 of the saturating fluid /" decreases,
which agrees with the described results. However, the effect of the
bulk modulus K of the secondary fractures on f; is difficult to
predict using the aforementioned equations because K/ is used

in the calculation of several effective parameters of the fractured
medium as the Biot’s storage fluid modulus M™, the drained Hj’
and the low-frequency H" P-wave moduli, which, in turn, impact
f. either in a direct or inverse manner.

Fig. 7 shows that the reflectivity of the primary fracture has a
similar response to that of its associated normal compliance due
to FPD effects with the secondary fractures. We observe that, at
sufficiently low frequencies, there is a maximum increase of the
primary fracture reflectivity with respect to its elastic references
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Figure 6. Ratio of the primary fracture normal compliance to its undrained value (Zy ratio) as a function of frequency considering secondary fractures with

different (a) bulk moduli K/, (b) permeabilities «” and (c) pore fluids f*.

as a consequence of FPD with the secondary fractures prevail-
ing in the relaxed regime. Specifically, our results show that the
largest increase of the reflectivity of the primary fracture of close to
1.5-orders-of-magnitude is associated with gas-saturated secondary
fractures (Fig. 7c). Similary, the second largest reflectivity increase
of ~44-fold is associated with the softest secondary fractures (K
= 0.008 GPa in Fig. 7a) and with any of the tested permeabilities
of the secondary fractures (Fig. 7b). This lack of sensitivity of the
reflectivity of the primary fracture in the relaxed regime to changes
of the permeability of the secondary fractures is consistent with the
corresponding results for its compliance (Fig. 6b).

3.3 Summary of the sensitivity analyses

In this subsection, we provide an analysis regarding the effect that
the geometrical and physical properties of the secondary fractures
have on the normal compliance of the primary fracture at its relaxed
state and on the corresponding characteristic transition frequency
f.. To this end, Fig. 8 presents the Zy ratio of the primary fracture
associated with its relaxed state (relaxed Zy ratio) versus the transi-
tion frequency f; of its normal compliance for all of the previously
tested properties of the secondary fractures. We further remark that
the relaxed Zy ratio reflects the maximum increase that the nor-
mal fracture compliance can attain with respect to its unrelaxed
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Figure 7. Absolute value of normal-incidence P-wave reflection coefficients as a function of frequency considering different frequency-dependent P-wave
moduli of the primary fracture. These moduli include the effect of FPD interactions with secondary fractures with different (a) bulk moduli X x]:v (b) permeabilities
«" and (c) pore fluids /" . For comparison, we also show the reflectivity curve of an isolated, that is, elastic, primary fracture.

value for a given set of secondary fracture parameters (Figs 4
and 6).

The results show that, overall, the relaxed Zy ratio is most sen-
sitive to changes in the length L of the secondary fractures, with
an increase of ~13-fold, from 3.3 to 43.5, for an eight-fold increase
of the length L". This is followed by the the impact of changing

the saturating pore fluid of the secondary fractures from water to
gas, which produces an increase of the relaxed Zy ratio of the pri-
mary fracture of ~3.5-folds, from 43.5 to 150.1. Next, the changes
in the bulk moduli K" and in the aperture a” of the secondary
fractures have a similar impact on the sensitivity of the relaxed
Zy ratio. That is, an eight-fold decrease in the bulk modulus and
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Figure 8. Relaxed Zy ratio of the primary fracture as a function of the characteristic transition frequency f; of its normal compliance for the different properties
of the secondary fractures (Figs 4 and 6). The arrows point toward the direction in which the properties of the secondary fractures increase in magnitude.

a similar increase in the aperture generate close to three-fold in-
crease in the corresponding relaxed Zy ratio, from ~16 to 43.5.
The spacing s” of the secondary fractures has a much lower im-
pact than the aforementioned properties on the sensitivity of the
relaxed Zy ratio, where an eight-fold decrease of spacing produces
roughly a doubling of the the relaxed Zy ratio, from 43.5 to 71.2.
Finally, as previously stated, changes in the permeability " of the
secondary fractures do not have any impact on the relaxed Zy

ratio.

Changes in permeability of the secondary fractures affect the
transition frequency f; of the normal compliance of the primary
fracture. Higher permeabilities increase its transition frequency in
agreement with eqs (A4) and (AS5) of Appendix A. Our results also
show a similar direct relationship of £, with the bulk modulus K
of the secondary fractures. Conversely, we observe an inverse rela-
tionship of £, with the length L” and spacing s” of the secondary
fractures. Indeed, it is possible to verify that f. decreases linearly
with the inverse of the length to the power of 2.5 ((L")~%?) and as
well as with the inverse of the spacing ((s")™"), respectively. These
results are consistent with eq. (A5) of Appendix A, which predicts
an inverse proportionality between the transition frequency and the
size of the characteristic heterogeneity, albeit to the power of two
((ln)~>%). Next, we observe that changes in the aperture a” of the
secondary fractures do not increase f. in every case. As discussed
in Section 3.1, the increase of the fractional volume and aperture
of the secondary fractures have opposing effects on f. (eq. A4
of Appendix A), and their overall impact depends on their rela-
tive magnitudes. Finally, we observe that gas-saturated secondary
fractures induce a lower transition frequency f. compared to the
water-saturated case. As previously discussed, this is the direct con-
sequence of the lower viscosity of gas compared to that of water
(eqs A4 and A5 of Appendix A). The previous sensitivity anal-
yses together with the current results show that the characteristic
transition frequency f. constrains the upper frequency limit up to

which the relaxed state of the fracture normal compliance prevails,
hence, controlling its seismic visibility. That is, relatively high val-
ues of f, higher than the upper bound of the seismic frequency
range, render the normal fracture compliance in its relaxed state
seismically visible. In contrast, lower f; values can either limit the
seismic visibility of the relaxed normal fracture compliance or ren-
der it not visible at all. The results also show that f; is controlled
by the fractional volume of the secondary fractures and the relative
magnitudes of their geometrical and physical properties, as well as
the viscosity of the saturating fluid.

3.4 Effects of correlated properties of the secondary
fractures

So far, we have assessed the sensitivity of the normal compliance
and reflectivity of the primary fracture to variations in several prop-
erties of the secondary fractures. In doing so, the property of in-
terest was incrementally modified, while all other properties were
kept constant. Now we shall assume that the properties of the sec-
ondary fractures are not independent from each other but directly
or indirectly correlated to their length, which is indeed consis-
tent with much of the available observational evidence (e.g. Hat-
ton et al. 1994; Renshaw 1995; Bonnet et al. 2001; Morris et al.
2017).

Following this evidence, we use a power law relationship to esti-
mate the aperture ¢’ using the length L” of the secondary fractures
(e.g. Hatton et al. 1994): a" = ¢ (L")", where ¢, = 1073 and
d; = 1.05, respectively. We also relate the permeability " of the
secondary fractures to their hydraulic aperture H”" through (Zim-
merman & Bodvarsson 1996; Jaeger et al. 2007): k" = (H")?/12,
where the hydraulic aperture is related to the arithmetic mean aper-
ture of the secondary fractures as (Renshaw 1995; Jaeger et al.
2007): (H"y> = (a")*(1 +r?)~!. In doing so, we assume that the
previously estimated aperture a” is the arithmetic mean aperture
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Table 3. Properties of the secondary fractures correlated to their length.

Property Secondary fracture (/)

Length L (m) 0.7 1.5 2.9
Aperture a (m) 3x 1074 6x 107* 1.2 %1073
Permeability « (D) 51.9 257.0 1026.1
Frame bulk modulus K, (GPa) 0.010 0.012 0.014
Frame shear modulus p (GPa) 0.006 0.008 0.009
Drained normal compliance Zy (m/Pa) 1.5 x 10711 2.7 x 10711 4.5 % 10711
Tangential compliance Zt (m/Pa) 43 x 10711 7.8 x 10711 1.3x 10710

of the secondary fractures and r is the ratio between the cor-
responding standard deviation and the mean aperture, which we
assume to be equal to 11. This value is consistent with obser-
vations on natural fractures with pronounced asperities (Renshaw
1995).

It is also possible to relate the bulk K/ and shear 1" moduli
of the secondary fractures to their drained normal Zf; and tan-
gential Z" compliances (Nakagawa & Schoenberg 2007; Rubino
etal 2014): p" = a"/Z! and K" = a"/Zl — 44" /(3 Z1), where
the normal compliance of the secondary fractures can be further
related to their length by a power law relationship Z# = ¢, (L)%,
with ¢; = 1071%7 and d, =0.77, respectively. This curve follows
the trend of the data presented in Barbosa et al. (2019). Besides,
reported ranges of the ratio Zy/Zr for dry fractures are for in-
stance from 0.2 to 0.55 (Lubbe & Worthington 2006) and from
0.2 to 0.77 (Pyrak-Nolte et al. 1990; Verdon & Wiistefeld 2013).
For this example we consider a Z[/Z% ratio of 0.35 for the sec-
ondary fractures. Notice that the relationships for estimating the
aperture and permeability of the secondary fractures show a mono-
tonically increasing trend with respect to their length and aperture,
respectively.

Table 3 summarizes the geometrical and physical properties for
three different secondary fracture lengths considered in this anal-
ysis: 0.7, 1.5 and 2.9 m. All other properties are assumed to be
the same for all cases and correspond to those listed in Table 1
except for the spacing of the secondary fractures, for which we
consider a value of 1.6 m. As expected, the estimated apertures
and permeabilities of the secondary fractures increase with their
length. For the values considered, the bulk and shear moduli of the
secondary fractures also increase with their length. For reference,
Table 3 also presents the estimated normal and tangential com-
pliances of the secondary fractures, which show an increasingly
compliant behaviour with increasing length. Besides, we assume
that both the primary and secondary fractures are water-saturated
(Table 2).

Fig. 9 shows the impact that the three different sets of properties
of the secondary fractures (Table 3) have on the normal compliance
of the primary fracture (Fig. 9a) and on the corresponding PP re-
flectivity at normal incidence (Fig. 9b) as a function of frequency.
Regarding the effects on the normal compliance of the primary frac-
ture, Fig. 9(a) shows that the relaxed Zy ratio takes progressively
larger values of 7.2, 19.7 and 51.6 as the length L" of the sec-
ondary fractures increases. This behaviour suggests that the length
of the secondary fractures controls the FPD interactions with the
primary fracture despite of their slightly higher bulk modulus. This
indicates that longer secondary fractures, which are also associ-
ated with larger apertures, provide a greater pore volume and thus
permit the drainage of more fluid from the primary fracture during
FPD. Fig. 9(a) also shows that the characteristic transition frequency
f. has the same value of 11.2 Hz for the three considered cases.
This result implies that the tendency of the progressively longer

fractures to decrease f. (Fig. 4a) is counterbalanced by the opposite
effect that the increasing permeabilities have on f.. We also remark
that the relaxed Zy ratio of 51.6 induced by the longest secondary
fractures (2.9 m) is higher than the one obtained in the sensitivity
analyses for a secondary fracture length of 3.04 m, for which, the
associated relaxed Zy ratio is 43.5. This higher relaxed Zy ratio is
a consequence of the narrower spacing of the secondary fractures,
1.6 m instead of 3.2 m, which also has an influence on the charac-
teristic transition frequency f. by increasing its magnitude (Figs 4c
and 8).

Fig. 9(b) shows that the absolute value of the PP reflectivity at
normal incidence of the primary fracture increases with increasing
length L” of the secondary fractures compared to its elastic refer-
ence for frequencies corresponding to FPD regimes other than the
unrelaxed one. This reflectivity behaviour is produced by the soft-
ening of the normal compliance of the primary fracture that occurs
as the secondary fractures lengthen (Fig. 9a). Correspondingly, the
maximum increase of the reflectivity of the primaray fracture of
~50-fold is associated with the longest secondary fracture (2.9 m)
for frequencies in the relaxed FPD regime.

4 DISCUSSION

4.1 Evidence of FPD effects in fracture zones embedded in
largely impermeable environments

The main finding of our work is that FPD between large primary
and interconnected smaller secondary fractures embedded in largely
impermeable environments enhances the seismic visibility of the
former. The reason for this is that FPD effects produce an increase
of the compliance of the primary fractures, which, in turn, leads
to an increase of their mechanical contrast with respect to the em-
bedding background. In general, reflectivity-based assessments in
hard rock environments are quite challenging due to the often low
signal-to-noise ratio of such data in conjunction with the typically
low impedance contrasts (e.g. Adam ez al. 2000; Ahmed et al. 2015;
Cheraghi et al. 2021). However, some of these studies show unusu-
ally strong reflectors associated with faults and dense fracture zones
(e.g. Harjes et al. 1997; Bergman et al. 2002; Casini et al. 2010),
which arguably can be best explained by notable FPD effects be-
tween connected fractures. For instance, Harjes ef al. (1997) and
Bergman et al. (2002) associated imaged reflectors in crystalline
rock with a fluid-saturated fracture zone after assessing complemen-
tary information from borehole seismic and petrophysical measure-
ments. Further interwell hydraulic communication tests confirmed
that fractures in these zones were highly interconnected. A similar
analysis was performed by Casini ez al. (2010) who also associated
strong reflectors in crystalline rock with interconnected fractures af-
ter performing production tests in several boreholes intersecting the
imaged targets. Likewise, the interpretation performed by Szalaiova
et al. (2015) of strong seismic reflections in the upper crystalline
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Figure 9. (a) Ratio of the primary fracture normal compliance to its undrained value (Zx ratio) as a function of frequency considering secondary fractures
presenting different properties correlated to their lengths L” (Table 3). (b) Absolute value of the normal-incidence P-wave reflection coefficient as a function of
frequency considering different frequency-dependent P-wave moduli of the primary fracture. These moduli include the FPD effects with secondary fractures

having the same properties as in panel (a).

crust revealed their relation to both large- and small-scale fractures.
An associated percolation analysis using seismic-derived fracture
density pointed to the likely connectivity of these fractures. The re-
sults point to the existence of fracture zones with a high probability
of interconnected pathways for fluid flow. Schreiter et al. (2015)
estimated the reflection coefficients of imaged reflectors associated
with fault zones. One of the highest reflectivities, as quantified by
an average reflection coefficient of ~—0.2 was interpreted as be-
ing due to the interaction of the seismic waves with a low-velocity
region associated with a particular fault zone. In an independent
analysis, Liischen et al. (2015) suggested that the enhanced seis-
mic attenuation found in some regions along this fault zone was an
indication of a region of highly fractured and porous rock, which,
in turn, would allow for enhanced energy dissipation due to FPD.
These works provide evidence that secondary fractures associated

with primary faults zones enhance their seismic visibility. Quite
importantly, the available evidence also demonstrates that these
fault-fracture systems tend to be characterized by a high degree of
hydraulic interconnectivity.

4.2 Directions of future research

While there is strong evidence that FPD between large primary
and smaller secondary fractures can contribute to the overall seis-
mic visibility of the former, the quantitative analysis and inter-
pretation of the underlying FPD effects remain to be resolved.
In this regard, an interesting and important outcome of our work
is that this problem could be addressed through finding an effec-
tive frequency-dependent P-wave modulus for the primary fracture,
which incorporates the FPD effects of the secondary fractures. A
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potential application would then be to estimate this modulus from
reflected signals partitioned at several frequency bands to establish
whether or not the modulus has a frequency-dependent character,
which could be indicative of the presence of connected secondary
fractures.

In this work, we have considered idealized models to represent
a large primary fracture connected to smaller secondary fractures.
Although, in actual geological settings, fracture zones surrounding
primary faults generally present more complex patterns, the major
advantage of this simplified modelling approach is that it allows for
a rigorous analysis and an intuitive understanding of the governing
physical processes associated with FPD effects that these smaller
secondary fractures have on the seismic reflectivity of the larger
primary fracture. Indeed, it is the inherent minimalistic nature and
the associated simplicity of our model that allows for establishing
first-order relationships of cause and effect, as it retains the es-
sential physics of the prevailing poroealastic interactions. In this
context, it is important to note that in order to effectively investigate
the potential impact of FPD effects, the proposed models consider
arrangements of primary and secondary fractures that maximize
FPD effects: secondary fractures orthogonally intersecting the pri-
mary fracture and a P-wave impinging normally onto the latter.
This readily allows us to evaluate the associated wave propagation
characteristics and, thus, to relate the properties of the secondary
fractures and the associated FPD effects to the seismic reflectivity
and compliance of the primary fracture. Unravelling these funda-
mental relationships would not have been possible with more com-
plex models. However, now that the underlying physics has been
elucidated, future works should focus on more realistic scenarios
and applications.

In our models we have considered equally spaced secondary
fractures. Nonetheless, we would like to discuss the possible FPD
effects of randomly spaced secondary fractures on the seismic prop-
erties of primary fractures. We present this scenario as an example
of the kind of increasing complexity that our modelling approach
could evaluate under certain sampling considerations. Specifically,
we assume a random spacing of secondary fractures such that: First,
the spacing is in the mesoscale. Second, there exists a typical sam-
ple, which contains an average number of secondary fractures per
sample size that adequately represents the fracture density of the
entire system. Third, the size of the typical sample is smaller than
or equal to the prevailing Fresnel zone. These considerations permit
to obtain a typical sample for the homogenization procedure, and
to ensure that it is affected by an impinging wave in its totality.
For comparison, we consider an equal sample size that contains the
same number of equally spaced secondary fractures as the average
of the randomly spaced case. Note that the average spacing of the
randomly spaced secondary fractures is expected to be compara-
ble to that of the equally spaced case since in both cases a similar
number of fractures per sample size is considered. In the follow-
ing, we comment on the possible impact that the randomly spaced
secondary fractures could have on the properties (compliance and
reflectivity) of the associated primary fracture due to FPD. For the
low-frequency regime, we suggest that the effect on the compli-
ance and reflectivity of the primary fracture is similar to the one
produced by the equally spaced counterpart. This is because the
number of secondary fractures in both cases are similar, which pro-
vides comparable pore volume availability for FPD. On the other
hand, it is expected that some differences arise in the transitional
regime because this regime is very sensitive to the particular dis-
position of heterogeneities, in this case the individual spacing of
secondary fractures in the randomly spaced scenario. Finally, the

effect on the high-frequency regime would be as expected based on
our current work because, in this regime, the primary fracture can
be regarded as hydraulically isolated, which, in turn, causes it to
behave elastically.

In our study, we have only considered the case of a largely imper-
meable background. This type of background constrains the FPD
effects to prevail exclusively between the primary and secondary
fractures. However, if we were to consider a background deemed
permeable for the frequencies of interest, then FPD effects associ-
ated with this background would also arise. In the following, we
discuss the impact that these additional FPD effects would have on
the primary fracture properties, as well as the associated challenges
to account for these effects in a quantitative analysis. To this end, we
refer to the work of Rubino e al. (2014) who compare FPD effects
in media with intersecting and non-intersecting fractures embedded
in permeable backgrounds. Although they perform their analysis in
the mesoscale, and, thus, consider an effective response of the frac-
tured media, we believe that their results provide valuable insights to
address this question. Rubino et al. (2014) demonstrate that consid-
ering intersecting fractures embedded in a permeable background
involves two different types of FPD interactions: fracture-to-fracture
and fracture-to-background. They also show that this, in turn, af-
fects the frequency-dependent behaviour of the effective P-wave
velocity with respect to the case of non-intersecting fractures. Like-
wise, we should also expect these two types of FPD interactions in
our models in the presence of a permeable background: primary-to-
secondary fractures and fractures-to-background. In this case, the
term fractures refers to both primary and secondary. We therefore
argue that the work of Rubino ef al. (2014) suggests that adding
a permeable background will modify the frequency-dependent be-
haviour of the the primary fracture properties to reflect both of these
FPD interactions. However, a corresponding quantitative analysis
with a homogenization method is still an unresolved problem since
the challenge is to find boundary conditions that allow us to repre-
sent the effects of an infinite background in the considered sample.
An alternative would be to perform numerical simulations of poroe-
lasitc wave propagation.

Another important subject for future research is to test experimen-
tally the numerical results presented in this study with respect to the
normal compliance and reflectivity of primary large fractures due
to the poroelastic effects induced by connected secondary fractures.
As stated in the introduction, related experimental works, which
explore poroelastic effects between fractures and their embedding
porous background, show that the normal compliance of fractures
has a frequency-dependent-behaviour due to the aforementioned
poroelastic interactions and that models considering these effects
explain better the available experimental data than solutions that
disregard the poroelastic interactions.

5 CONCLUSIONS

We have investigated FPD effects between a water-saturated large
primary fracture and perpendicular intersecting smaller mesoscale
secondary fractures induced by a P-wave impinging normally onto
the primary fracture. We have performed a sensitivity analysis of
the compliance and of the normal-incidence PP reflectivity of the
primary fracture with regard to variations of different geometrical
and physical properties of the secondary fractures.

Our results show that FPD interactions between the primary and
secondary fractures in the relaxed and transitional regimes produce
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an increase of the normal compliance and normal-incidence PP re-
flectivity of the primary fracture with respect to the case that disre-
gards the secondary fractures, in which the primary fracture behaves
as an elastic medium. However, secondary fractures with different
sets of physical and geometrical properties affect the magnitude of
the relaxed normal compliance of the primary fracture in varying
ways. For instance, gas-saturated secondary fractures induce the
highest increase, ~150-folds, of the relaxed normal compliance.
This, in turn, produces a maximum increase of the reflectivity of
the primary fracture of ~1.5-orders-of-magnitude. On the other
hand, results of the sensitivity analyses show that it is the variations
of the length of the secondary fractures that have the largest im-
pact on changes of the relaxed normal compliance of the primary
fracture.

Our results also show that the characteristic transition frequency
f. associated with the normal compliance of the primary fracture
controls the seismic visibility of the reflectivity of the primary frac-
ture since it determines the frequency shift from the relaxed toward
the unrelaxed FPD regime. The value of fc is, in turn, influenced
either in a direct or inverse manner by the fractional volume of the
secondary fractures, their geometrical and physical properties as
well as the viscosity of their saturating fluid. Overall, the results of
our study suggest that mesoscopic secondary fractures connected
to a large primary fracture can induce FPD effects that substantially
enhance the seismic visibility of the primary fracture.

In this study, we have considered an idealized but instructive
canonical model of secondary fractures, which has allowed us to
investigate the impact that the associated FPD has on the normal
compliance and the PP reflectivity of a primary fracture connected
to secondary ones. To deepen our understanding of the influence
of mesoscopic secondary fractures on the seismic behaviour of
macroscale primary fractures due to FPD effects, it will be essential
to explore more realistic scenarios of secondary fractures networks.
Another important extension of the current work will be the eval-
uation of the reflectivity of such fracture systems for non-normal
angles of incidence.
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APPENDIX A: MESOSCALE FPD AND
ITS ASSOCIATED PRESSURE
RELAXATION MECHANISM

Mesoscale FPD prevails between heterogeneities presenting char-
acteristic length scales /;, much larger than the pore scale /, but
much smaller than the wavelength X,. For the considered frac-
ture system (Fig. 1), the mesoscale heterogeneities are governed
by the characteristic sizes of the secondary fractures, for instance,
their length or aperture (Rubino et al. 2014). FPD describes a flow
mechanism where viscous drag between the rock frame and the
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pore fluid dominates. This mechanism prevails at sufficiently low
frequencies. As frequencies increase, the drag becomes increasingly
influenced by inertia, limiting the applicability of FPD for describ-
ing wave-induced fluid flow. The transition frequency between these
two regimes is known as Biot’s characteristic frequency fg. There-
fore, FPD is valid only for frequencies f that are much lower than
Biot’s characteristic frequency fg, which can be defined as (e.g.
Biot 1956; Dutta & Odé 1979)
1 n¢

fB - E,OfKS’

(AD)

where ¢ is the porosity, « the static permeability, 1 the fluid vis-
cosity, pr the fluid density and S the tortuosity of the pore space.
The aformentioned considerations regarding frequencies and scales
constraining mesoscale FPD can be summarized as

< fs,

(A2)
L Kl K Ay

Studies have shown that a diffusion equation governing FPD can
be obtained from Biot’s 1962 quasi-static poroelasticity equations.
Alternatively, it can be derived from the corresponding dynamic
equations by neglecting inertial terms (Dutta & Odé¢ 1979; Chandler
& Johnson 1981). This diffusion equation is linked to the slow,
diffusive P-wave (Dutta & Odé 1979) and it is associated to a
frequency-dependent diffusion length L4 given by (Norris 1993)

D
Ly = \/; (A3)

where w is the angular frequency, with w =27 f, and D is the
diffusion coefficient.

Guo et al. (2017) suggest the following expression for the dif-
fusion coefficient D for a fractured medium consisting of mutually
orthogonal fracture sets embedded in a background deemed imper-
meable for the frequencies of interest

M H™ fr
D= Hmd (ﬁK ) ’ (A4)
s n

where M™ is the Biot’s storage fluid modulus, H}* and H" are the
drained and the low-frequency P-wave moduli, respectively. Here,
the superscript m refers to the effective properties of the fractured
medium and the term low-frequency refers to the frequency range in
which the relaxed pressure regime prevails. This implies that there is
enough time for the pressure to equilibrate as fluid flows between the
primary and secondary fractures. Next, § is the fractional volume
occupied by the fractures and « ' is the permeability of the fractures.
Eq. (A4) assumes that the fractured medium is represented by an
effective one and that the size of the fractures are in the mesoscopic
scale range. However, these assumptions do no longer apply to the
model under study, which considers an infinite horizontal primary
fracture intersected by mesoscale secondary ones embedded in a
full-space background (Fig. 1). Nevertheless, eq. (A4) can be used
as a reference since the FPD process is very similar in both fracture
systems. For the medium with intersecting orthogonal mesoscale
fractures, a P-wave impinging normally onto one of the fracture
sets creates a fluid pressure increase inside their pores that equi-
librates as the fluid flows into the intersecting fractures. We argue
that this FPD process is comparable to the one prevailing in our
model, in that a P-wave impinging normally onto the large primary
fracture increases, in a similar way, the pressure inside this frac-
ture, which, in turn, also induces fluid flow onto the orthogonally
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intersecting secondary ones as pressure equilibrates. If we addition-
ally assume that the properties of the background and the primary
fracture remain invariant, then, according to eq. (A4), variations in
the diffusion coefficient D depend solely on the properties of the
secondary fractures.

FPD exhibits two distinct regimes, the relaxed and the unre-
laxed states, which are governed by the frequency-dependent dif-
fusion length L4 and the characteristic size of the heterogeneities
Iy The relaxed regime dominates at sufficiently low frequencies
where L4 is much larger than /,. In this regime, there is ample time
for pressure between the primary and secondary fractures to equal-
ize. The unrelaxed regime prevails at sufficiently high frequencies
where Lq4 is significantly smaller than /,. Consequently, there is
not enough time for pressure to equilibrate, and, as a result, the
fractures become hydraulically isolated. A transition zone exists
between these regimes at intermediate frequencies, for which L4
approaches /. This zone is characterized by a critical transition
frequency, denoted by f. = w./2m, which is determined by the dif-
fusion coefficient D and the size of the heterogeneities /;, (Guo et al.
2017)

2D

APPENDIX B:
POROELASTIC-TO-VISCOELASTIC
HOMOGENIZATION PROCEDURE

B1 Mathematical model

In the following, we detail the homogenization procedure of the
considered fracture system (Fig. 1), which consists of an infinite
horizontal primary fracture intersected by secondary vertical ones
embedded in a background deemed impermeable for the frequencies
of interest.

First, we present the governing equations used in the homoge-
nization procedure. These are Biot’s quasi-static equations (Biot
1962), which we solve over the sample 2 (Fig. 2) for the ver-
tical compressional oscillatory relaxation test. We express these
equations in the solid displacement—pressure (# — p) formulation
in the frequency domain (e.g. Quintal er al. 2011; Favino et al.
2020), with # = u(x, w) and p = p(x, w), where x € Q is the
position and w € F is the angular frequency, with F = (0, W].
This yields

—V-0=0 in QxF,

1 BI
—fav.u—i£+—v-<fvp>=o n axr O
M o n

where o is the total stress and 7 is the imaginary unit, « is the Biot—
Willis effective stress coefficient, M is Biot’s fluid storage modu-
lus, « is the permeability and the term (%V p) denotes the Darcy
flux.

The constitutive equation relating the total stress o to u and p is

o=2ue+Xgtr(e) —ap)l, with
1 , (B2)
&= E(Vu+(vu) ).

where & is the strain tensor, I the identity tensor, u is the shear
modulus and A4 is the drained Lamé modulus.

The required rock physical properties are calculated as

2
)"d:Km_gl'La
Ko
a:l—?s, (B3)
A
M = — ,
( Ks +Kf>

where K, K and Ky are the bulk moduli of the drained solid frame,
the solid grains and the pore fluid, respectively.

Next, we describe the vertical compressional oscillatory test ap-
plied as a BC in order to solve the governing equations. To this end,
we consider a Cartesian coordinate system in 2-D space R2. The
associated basis vectors X; and X3 are aligned with the horizontal
and vertical Cartesian axes, respectively. We also let the sample 2
be a quadrilateral. The boundary of this domain, denoted by T, is
comprised by four segments: ', I';', ['{ and I'; . Segments I'}” and
I"; are opposite sides with outer normal vectors X and —X, respec-
tively. Likewise, segments I'y and I'; are opposite sides with outer
normal vectors X3 and —X3, respectively (Fig. 2). For notational
simplicity, we define 7 as the outward normal vector of .

In the following, we define the BC for displacements u, pressure
p, tractions ¢ - i1 and the component normal to the boundary of
the Darcy flux (% V p - it). We impose periodicity for the respective
variables on opposing boundaries of the sample as follows

The BC for displacements are

ll'.if3|1—;—ll~£3|l—3+:—Au,
ll'.i] |F3——u'.if1|r2—:0, (B4)
u|F]+—u|1~1—=0,

where Au is a real displacement difference in the frequency domain.
The first line of eq. (B4) sets the BC corresponding to the vertical
compressional oscillatory test.

The respective BC for pressure, tractions and the Darcy flux are

Pley = plr; =0,

(0 ) |y — (0 - ) | =0,

K n K ~
—Vp-n |rk+— —Vp-n |Fk— =0,
n n

where the subscript & in I'; and '} takes the value of 1 or 3 to
denote opposite boundaries.

Finally, we present the derivation of the P-wave modulus and nor-
mal compliance of the primary fracture. We first obtain the average
of the stress component <U33>9,,1 and that of the strain component
(e33)q,, over the subdomain €2,;, which is the one correspond-
ing to the primary fracture (Fig. 2). The calculation of the average
quantities (O)g,, are performed as follows

(BS)

1

1211 Ja,,

Then, we compute the complex-valued and frequency-dependent
P-wave modulus H(w) of the primary fracture as

(De, 0d2,, with |Qp1|=/ d2,. (B6)
o

(033)Q,

H =
@) (e33)@,,

(B7)
Next, we obtain the complex-valued and frequency-dependent
normal compliance Zy(w) of the primary fracture as

al

Zn(w) = %,

(B?)
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where a/ is the aperture of the primary fracture.

We remark that the transition frequency f. can be evaluated
as the frequency associated with the maximum magnitude of the
imaginary part of the normal compliance (| Im(Zx(w))|) (Rubino
et al. 2015).

B2 Finite element solution

In the following, we present the finite element solution of Biot’s
(1956,1962) governing eq. (B1). The procedure is the one proposed
by Favino et al. (2020), who developed a computationally cost-
effective adaptive meshing approach to discretize domains with
complex heterogeneities. This technique creates non-conforming
meshes and local refinements through automatic adaptions of an

initial uniform mesh.

First, we present the weak formulation of Biot’s (1956, 1962)
eq. (B1). We refer the reader to Favino et al. (2020) for the de-
tails of the mathematical treatment. We consider a complex-valued
vector function v, with complex conjugate v*, which multiplies
the first line of eq. (B1). We also consider a scalar function ¢
in the complex domain, with complex conjugate ¢*, which multi-
plies the second line of eq. (B1). The corresponding inner products
are

/(V< o) v*dQ =0,
’ 1 1 K (B9)
—i/(aV.u)q*dQ —i/ —pqtdQ+ 7/ V. <7Vp> q*dQ =0.
Q oM o Jo n
We then apply the divergence theorem to eq. (B9). We also use the
constitutive eq. (B2) and the BC of eqs (B4) and (B5). However, we
do not yet include the BC pertaining to the oscillatory test. Finally,

we express the weak formulation of Biot’s equation as: find # and
p such that

alu,v) — b(v*, p*) =0,

) (B10)
—iblu,q)—d{p,q) =0,
where
alu,v) = /(ZM e(u) : e(0*)+ AV -uV-0*)dQ,
Q
b(u,q):/av-uq*dﬂ, (B11)
Q

1 K
d(p,q):i/ —pq*dQ—l—/ —Vp-Vg*dQ.
oM Qn

To include oscillatory tests, we express the displacement as u =
u, + Au. Using this expression, eq. (B10) becomes

alu,, v) — b(v*, p*) = —a(Au, v),
—iblu, q) —d{p,q) =ib(Au,q),

To find the finite element approximation of eq. (B12), we use
a mesh 7, which discretizes the domain Q2. We also consider the
approximated solutions u" = u" + Au and p", and we let the test
functions v and ¢ be the interpolating basis functions ® and ¢,
respectively, defined in the mesh . We then express the solutions

u and p as a linear combination of the basis functions ® and

o

¢, respectively. Finally, eq. (B12) reduces to the following linear
system

A —BT
—iB —-D

(B12)

U_
bl =

f
g‘, (B13)

where the U and P are the vectors associated with the unknown
coefficients of the discrete solutions of displacement u” and pres-
sure p” defined at every node of the mesh. 4, B and D are the
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matrices associated with the bilinear forms a, b and d, respectively,
where A,j = a(CDj, ¢i)> Bk] = b(cbj, ¢]‘) and Dk[ = a(¢l, ¢k> The
components of the right-hand side vectors f and g are defined as
Ji = —a({Au, ®;) and g, =i b(Au, ¢), respectively.

APPENDIX C: PP REFLECTION
COEFFICIENT OF A VISCOELASTIC
FRACTURE EMBEDDED IN ELASTIC
HALF-SPACES

We consider a model as shown in Fig. 3, which consists of an infi-
nite horizontal fracture represented by a thin viscoelastic layer €2,
embedded in the elastic half-spaces A and A,. We further assume
that both elastic half-spaces have the same rock physical proper-
ties. We are interested in finding the PP reflection coefficient of a
normally incident wave striking at the interface of the viscoelastic
fracture with the upper half-space A;. We describe in the follow-
ing the procedure to find the aformentioned PP reflectivity, which
entails defining the governing equations, proposing the plane-wave
solutions and setting the appropriate continuity equations to find the
wave amplitudes.

We formulate the elastic and viscoelastic wave equations in
the space-frequency domain. For the elastic case, we define
the displacement vector u¢ = u‘(x, ) for any position x € n,
with n = {A;, A,} and angular frequency w € F, with F =
(0, W]. We also introduce the stress tensor field ¢¢ acting upon
the medium. We then express the corresponding equation of
motion as

— pp?u‘=V.6¢ in nxF. (C1)

The associated constitutive equation is given by
o=up (Vu' +(Vu)' )+ 1 V.u I, (C2)

where A is the undrained Lamé modulus and is defined as A =
)‘-d —+ M 0[2.

For the viscoelastic case, we define the corresponding displace-
ment vector u¥ = u'(x, w) for any position x € 2, and angular fre-
quency w € F, with F = (0, W]. Additionally, we define " as the
stress tensor acting upon the medium. The expressions for the corre-
sponding equation of motion and constitutive equation remain iden-
tical to eqs (C1) and (C2), respectively. However, for the viscoelastic
version the undrained Lamé modulus is frequency-dependent. This
sk =Mw) = H(w) —2pu.

As previously stated, we consider an incoming P wave that im-
pinges normally onto the interface I, between the upper half-space
and the fracture (Fig. 3). Since the half-spaces and the fracture are
represented by elastic and viscoelastic media, respectively, only P
waves propagate vertically in these media. Then, to find the total
displacement in each medium, we sum the corresponding contribu-
tions of upgoing and downgoing P waves. We propose plane-wave
solutions for the displacements in the elastic half-spaces and in the
viscoelastic thin layer, respectively.

For the elastic half-spaces n = {A;, Ay}, we calculate the total
displacements uf; as

e __ e e _
uy =u,p, +u,y, Wwhenn=Ay, or

(©3)
uy =u,p, Wwhenn= Ay,
where Dp and Up refer to the downgoing and upgoing P waves,
respectively. In the first line of eq. (C3), the first and second terms
on the right-hand side represent the contributions of the incident and

reflected waves in the upper half-space A, respectively. Likewise,
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in the second line of the same equation, the right-hand side term
denotes the contribution of the transmitted wave in the lower half-
space A,.

Then, we express the corresponding displacements u;, ; with n =
Ay and A,,and j = Dp or Up, as

ut . =E,; exp[£ik x;3], (C4
nj J n

where E,, ; is the amplitude of the corresponding displacement and
x5 is the position. Negative and positive signs in the exponential
correspond to downgoing and upgoing waves, respectively, k¢ is
the elastic scalar wavenumber for the P wave in medium #, calcu-
lated as k{ = w/ V}, where V} is the P-wave velocity of medium
n,with Vp = /(A" +2 ")/ py, where p; = ¢"pff + (1 — ¢")pl' is
the bulk density of medium 7.

For the viscoelastic medium €2, we calculate the total displace-
ment u" as

u'=u'p, +uy,. (C5)

Then, we express the solution of the displacement uj, with j =
Dp,Up as

u; =V; expli k" x3], (Co)

where V; is the displacement amplitude, k¥ is the viscoelastic
scalar wavenumber for the P wave calculated as k¥ = w/ Vp(®),
where Vp(w) is the complex-valued and frequency-dependent P-
wave velocity that is computed as Vp(w) = /H(w)/p;, where
pL=¢'pf + (1 — ¢¥)p! is the bulk density of viscoelastic medium

If we assume that the amplitude of the incident P wave is one,
then the reflection coefficient R p at the upper half-space is equal to
E A, up (eq. C4). To solve for the unknown amplitudes, we assemble
a system of equations by imposing continuity of both displacements
and tractions across the interfaces I, withg = 1, 2, which separate
the elastic and viscoelastic media, respectively (Fig. 3).

(u% — ”v)‘nq =0,
(- )]y, =0.

Here, n = Ay, t§ = (on° - X3) - X3 and ¥ = (0" - X3) - X3 are the
normal traction components on the elastic and viscoelastic sides of
the interface, respectively.

(€7
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