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S U M M A R Y 

Large fractures tend to dominate the hydraulic and mechanical properties of fracture networks 
and, consequently, of fractured rock masses. Hence, their characterization is of primary interest 
in a variety of applications. Seismic reflection is a non-invasive tool that allows for the 
characterization of large fractures due to the high mechanical contrast that they commonly 

present with respect to their embedding background. Smaller secondary fractures are generally 

connected to the large primary fractures, thus, creating a network for fluid flow. This, in turn, 
allows for wave-induced fluid pressure diffusion (FPD) to prevail between the intersecting 

secondary and the large primary fractures, which may have a pronounced, albeit as of yet 
unexplored, impact on the compliance and the reflectivity of the large primary fractures. 
To explore this fundamental problem, we investigate the impact that such FPD process has 
on the compliance and the reflectivity of large primary fractures. To this end, we consider 
several canonical models, which comprise an infinite horizontal primary fracture connected 

to vertical smaller secondary fractures embedded in a background deemed impermeable 
throughout the seismic frequency range. The individual models differ only with regard to the 
secondar y fracture proper ties (e.g. length, aper ture, mechanical moduli). For comparison, we 
also consider a reference model that disregards the secondary fractures. To constrain the effect 
of FPD on the primary fracture, we e v aluate its ef fecti ve seismic response by means of vertical 
compressional oscillatory tests over samples of the aforementioned models, to subsequently 

perform averaging of the vertical components of stress and strain. We use these results to 

estimate first the P -wave modulus and then to compute the normal compliance and reflectivity 

of the primary fracture. Our results show that both the compliance and reflectivity of the 
primary fracture increase by more than one order-of-magnitude with respect to the reference 
model. These findings point to a very significant enhancement of the seismic visibility of large 
fractures due to FPD with connected secondary ones. 

Key wor ds: F racture and flow; Permeability and porosity; Numerical modelling; Geome- 
chanics; Acoustic properties; Body waves.. 
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 I N T RO D U C T I O N  

ractures are ubiquitous throughout the Earth’s upper crust and, in
articular, larger-scale fractures tend to dominate the mechanical
nd hydraulic propreties of the embedding rock masses (e.g. Liu
005 ; Jaeger et al. 2007 ). For instance, preferential flow, which is
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 common occurrence in fractured rocks (e.g. Tsang & Neretnieks
998 ; Faulkner et al. 2010 ), is, as simulations suggest, further en-
anced by the presence of large fractures (e.g. De Dreuzy et al. 2001 ;
yman et al. 2016 ). These computational findings are supported by
eld evidence, which shows that high-permeability zones are often
ominated by large fractures, which, in turn, are commonly inter-
onnected to a network of smaller fractures (e.g. Sausse & Genter
005 ; Vidal et al. 2017 ). Similary, large fractures can accentuate
ock defor mation. Laborator y experiments and field obser vations
uggest that fracture compliance scales with fracture length (Wor-
hington & Lubbe 2007 ; Hobday & Worthington 2012 ). This implies
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that large open fractures tend to be more compliant and, hence, de- 
form more readily than smaller fractures. The numerical analysis 
performed by Morris et al. ( 2017 ) supports the scaling of compli- 
ance with fracture length, although their results show that fracture 
compliance also depends on the confining stress. Since large frac- 
tures tend to control the mechanical and hydraulic properties of the 
embedding rock masses, their characterization is of great interest for 
a wide range of applications, such as geothermal energy extraction, 
CO 2 storage, ground water management, oil and gas exploration 
and nuclear waste storage, among others. 

From a seismic perspective, fractures are deemed large when 
their size is much greater than the dominant wavelength and act as 
first-order discontinuities governing the reflection and transmission 
of impinging seismic waves (e.g. Schoenberg 1980 ; Pyrak-Nolte 
et al. 1990 ; Fang et al. 2013 ). Seismic reflection methods are useful 
tools for fracture characterization due to the generally high reflec- 
tivity that large open fractures exhibit as a consequence of their 
strong mechanical constrast with respect to their embedding back- 
ground. In fact, multiple studies show that the reflected seismic 
signals from a fracture plane correlate with the ratio of the fracture 
compliance to the seismic impedance of the background as well as 
with the dominant frequency of the seismic wave (e.g. Pyrak-Nolte 
et al. 1990 ; Liu et al. 1995 ; Gu et al. 1996 ). Rele v ant examples of
seismic reflection applications for fracture characterization are the 
inversion of fracture compliance from angle-dependent reflection 
data (e.g. Minato & Ghose 2016 ; Cui et al. 2017 ) as well as the 
estimation of fracture properties from the scattered wavefield gen- 
erated by the spatial heterogeneities of the fracture under study (e.g. 
Minato & Ghose 2014 ). Ho wever , these and similar methodologies 
have been largely developed within an elastic framework, which 
cannot account for fluid–solid interactions pre v ailing in fractured 
rocks (e.g. Chapman 2003 ; M üller et al. 2010 ; Rubino et al. 2014 ). 
Addressing such problems from a poroelastic perspective therefore 
allows for a more realistic description of the governing physical 
processes. 

The works of Rubino et al. ( 2015 ), Barbosa et al. ( 2017 ), and 
Wang et al. ( 2017 ) show that poroelastic effects between fractures 
and their embedding porous background produce a frequency- 
dependent behaviour of the normal compliance of the fractures. 
In fact, the experimental work of Nakagawa ( 2013 ) had already 
evidenced this behaviour. In this work, the author uses samples 
of water-saturated Berea sandstones with artificial through-going 
fractures. He measures the deformation across the fractures caused 
by an applied axial stress at different frequencies to obtain the 
frequency-dependent characteristics of the compliance. His results 
reveal the dispersive nature of the normal compliance of the frac- 
tures. A similar behaviour of the normal compliance of fractures 
due to poroelastic effects is suggested by a more recent experi- 
mental work (Wang et al. 2018 ). Here, the authors measure the 
P -wav e v elocity of synthetic water-saturated samples containing 
vertically stacked penny-shaped cracks, where the measurements 
are performed at a single frequency and at different angles of in- 
cidence. Subsequently, they compare the results with two different 
analytical models. The measured velocites show a better agreement 
with an analytical model that considers the frequency-dependent be- 
haviour of the normal compliance of the penny-shaped fractures as 
a consequence of poroelastic effects in comparison to a model that 
disregards these interactions and represents the fractures as purely 
elastic interfaces. Similarly, estimations of normal compliance from 

field measurements also point to the pre v alence of poroelastic in- 
teractions between fractures and their surroundings, as evidenced 
b y the relati vel y large imaginary component of the estimated com- 
pliance (e.g. Barbosa et al. 2019 ; Zhou et al. 2022 ). Fur ther more, 
poroelastic effects between a fracture and its embedding background 
also impact the behaviour of the fracture reflectivity causing its gen- 
eral increase in the seismic frequency range (Nakagawa & Schoen- 
berg 2007 ; Barbosa et al. 2016 ). 

Poroelastic effects on the reflectivity and compliance of fractures 
are a direct consequence of wave-induced fluid pressure diffusion 
(FPD) that takes place when seismic waves induce pressure gra- 
dients due to the mechanical contrast between the fracture and its 
embedding background (e.g. M üller et al. 2010 ). FPD increases 
the normal compliance of fractures, and thus their seismic reflec- 
tivity, as the stiffening fluid exits the fracture to equilibrate the 
pressure (Rubino et al. 2015 ; Barbosa et al. 2017 ). Ho wever , in 
many fractured environments of interest, the background is largely 
impermeable within the seismic frequency range, which prevents 
FPD to take place. Conversely, there is far-reaching evidence indi- 
cating the perv asi ve presence of damage zones surrounding large 
fractures and faults (e.g. Kim et al. 2004 ; Faulkner et al. 2010 ; 
Savage & Brodsky 2011 ), which enhance the permeability around 
the fracture and, thus, provide the necessary conditions for FPD to 
pre v ail (e.g. Mitchell & Faulkner 2012 ; Sotelo et al. 2021 ). Damage 
zones predominantly consist of a network of fractures at different 
scales, with a decaying density from the fault core (e.g. Chester 
et al. 2004 ; Mitchell & Faulkner 2009 ). Indeed, there is evidence to 
suggest that secondary fractures intersecting the primary fault are a 
quite common occurrence. For instance, Bruhn et al. ( 1994 ) show 

that multiple episodes of fracturing and thermal alteration tend to 
create complex secondary fracture patterns in normal fault zones, 
w hich notab ly include mesoscale fractures intersecting a primary 
macroscale fracture at rather steep angles. Similarly, the studies of 
Gudmundsson et al. ( 2001 ) of a fluid-alterated transform fault zone 
demonstrate the presence of veins striking subparallel and subper- 
pendicular to the fault. Core and borehole measurements examined 
by Vidal et al. ( 2017 ) and Glaas et al. ( 2021 ) show the presence of
permeable fractures associated with a hydrothermally alterated nor- 
mal fault zone. Many of these secondary fractures strike subparallel 
to the fault but dip, often quite steeply, in an opposing direction, 
and, thus, establish mechanical and hydraulic connections with the 
primary fault. 

Studies that investigate fracture-to-fracture FPD have so far 
mainly focused on mesoscale fractures, which are much larger than 
the pore size but much smaller that the dominant wavelength. In 
these studies, the main objective has been to investigate the effec- 
tive seismic response of the fractured rock mass associated with 
the network properties, such as fracture density, fracture length, 
degree of fracture connectivity and fluid saturation, among oth- 
ers (e.g. Rubino et al. 2013 , 2014 ; Hunziker et al. 2018 ; Solazzi 
et al. 2020 ). Conversel y, FPD ef fects between a single large frac- 
ture and connected mesoscale secondary fractures as well as its 
impact on the compliance and reflectivity of the large fracture are 
as of yet largely unexplored. Nonetheless, it is expected that, in 
particular, a P -wave impinging normally onto a large fracture will 
preferentially increase the fluid pressure inside this fracture rather 
than in the connected secondary ones due to its more fav ourab le 
orientation for FPD (e.g. Rubino et al. 2014 ; Guo et al. 2017 ). 
Fur ther more, due to the commonly very high permeability of large 
fractures, there should be sufficient time for FPD to take place with 
the connected secondary fractures, thus reducing the stiffening ef- 
fect induced by the saturating fluid. This further implies that the 
deformation of large fractures that are interconnected to secondary 
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Figure 1. Schematic illustration of a fracture system composed of an infinite 
horizontal primary fracture connected to equally spaced vertical mesoscale 
secondary fractures embedded in a background deemed impermeable at the 
frequencies of interest. The inserted box represents a sample � used to 
estimate the P -wave modulus and the corresponding normal compliance of 
the primary fracture. The thick downward arrow indicates the direction of 
propagation of an incoming P -wave and the thin arrows inside the fractures 
depict the fluid flow induced by FPD during the compressive cycle of the 
seismic perturbation. 
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nes should be more significant than that of their isolated coun-
erparts, and, consequently, their compliance and their reflectivity
hould be correspondingly higher. In this work, we seek to test the
forementioned hypothesis regarding FPD effects between a large
rimary fracture and intersecting secondary mesoscale fractures. To
his end, we consider several canonical models that consist of an
nfinite horizontal primary fracture connected to multiple vertical
esoscale fractures. We assume that this fracture system is embed-

ed in a background deemed impermeable for the frequencies of
nterest (Fig. 1 ). We e v aluate the sensiti vity of the primary frac-
ure compliance and its normal-incidence P-wave (PP) reflectivity
o variations in the properties of the secondary fractures, such as
heir lengths, spacings and mechanical moduli. For comparison, we
lso e v aluate the normal compliance and reflecti vity of an isolated
nfinite horizontal fracture. 

 T H E O RY  A N D  M E T H O D S  

n this section, we first present the considered fracture model in the
ontext of Biot’s theory of poroelasticity (Biot 1962 ). Then, we dis-
uss the the physical aspects that constrain the validity of the FPD
echanism in describing wave-induced fluid flow between a large

rimary fracture and intersecting mesoscale secondary fractures.
e also describe the pressure relaxation process associated with

PD, which results in the frequency-dependent behaviour of the
eismic properties of the large primary fracture. We then present
 homogenization method that permits to isolate the FPD effects
n the large primary fracture to estimate its frequency-dependent
 -wave modulus and normal compliance. Finally, we introduce a
implified model that disregards the presence of the secondary frac-
ures but includes their FPD effect on the large primary fracture
hrough the estimated frequenc y-dependent P -wav e modulus. This
odel is then used to e v aluate the normal-incidence PP reflectivity

f the primary fracture. 
.1 Poroelastic r epr esentation of fractur es and fluid 

r essur e diffusion effects 

ractures can be adequately modelled using Biot’s theory of poroe-
asticity (Biot 1962 ) by representing them as features of a poroelastic
ontinuum characterized by much higher porosities and permeabil-
ties and much lower bulk and shear moduli than the embedding
ackground (e.g. Quintal et al. 2014 ; Rubino et al. 2014 ; Hunziker
t al. 2018 ). We consider a model in R 

2 comprised of a fracture
ystem embedded in a background deemed impermeable for the
requencies of interest. The fracture system consists of an infinite
rimary horizontal fracture that is intersected b y equall y spaced
ertical smaller secondary fractures (Fig. 1 ). Seismic wave prop-
gation in such media can be studied using the Biot’s dynamic
quations (Biot 1962 ), which predict the existence of an S -wave
nd a fast and a slow P wave. For sufficiently low frequencies, the
low P -wave behaves as a FPD process (Dutta & Od é 1979 ). 

We also consider an incoming P -wave impinging normally onto
he infinite horizontal primary fracture depicted in Fig. 1 . The asso-
iated wave-induced deformation produces an increase of the pore
uid pressure in the primary fracture, which, in turn, equilibrates by
reating fluid flow toward the secondary fractures. For sufficiently
ow frequencies, which generally comprise the seismic frequency
ange, this fracture-to-fracture wave-induced fluid flow is driven by
PD (e.g. M üller et al. 2010 ). We are interested in FPD linked to
esoscale secondary fractures since this is particularly relevant for

eismic applications (e.g. Pride et al. 2004 ; M üller et al. 2010 ).
esoscale heterogeneities refer to those that are much smaller than

he prodominant wavelength but much greater than the pore size.
n Appendix A , we provide further details regarding the constraints
elated to the scale of the secondary fracture heterogeneities and to
he frequencies at which mesoscale FPD pre v ails. We also describe
he associated fluid pressure relaxation process, which produces an
qui v alent viscoelastic behaviour of the poroelastic medium (e.g.
orris 1993 ; Pride et al. 2004 ; Rubino et al. 2009 ). For our spe-

ific case, the pressure relaxation associated with FPD between the
rimar y and secondar y fractures induces a frequency-dependent be-
aviour of the P -wave modulus and of the normal compliance of
he primary fracture. We also describe the two limiting pressure
egimes, relax ed and unrelax ed, and the corresponding transition
one associated with the pressure relaxation process. We further
pecify that the transition zone is characterized by a transition fre-
uency f c , which controls the frequency shift between the relaxed
nd unrelaxed regimes. 

For heterogeneous poroelastic media, the equi v alent frequency-
ependent moduli can be obtained by applying a numerical ho-
ogenization procedure, which consists of solving Biot’s ( 1962 )

uasi-static equations on a representative sample using pertinent
scillatory tests (e.g. Wenzlau et al. 2010 ; Quintal et al. 2011 ;
ubino et al. 2016 ). In this work, we use a related homogenization
rocedure of this kind (Sotelo et al. 2023 ) to estimate the frequency-
ependent properties of the primary fracture, which we shall outline
n the following. 

.2 Homogenization procedure 

e consider the model presented in Fig. 1 to estimate the frequency-
ependent P -wave modulus and the normal compliance of the pri-
ary fracture. For the estimation of the properties of the primary

racture, we apply a numerical homogenization procedure based on
he work of Sotelo et al. ( 2023 ), which is characterized by a sampling
echnique that includes a section of the poroelastic medium together

art/ggaf165_f1.eps
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Figure 2. Enlarged view of the sample � presented in Fig. 1 consisting 
of a portion �p1 of the large primary fracture connected to a secondary 
fracture �p2 and the associated section of the embedding background. � is 
the boundary of the sample with � = � 

+ 
1 ∪ � 

−
1 ∪ � 

+ 
3 ∪ � 

−
3 . The secondary 

fracture is centred in the sample and the sample has a width that is equal to 
the spacing between consecutive secondary fractures. 

Figure 3. Simplified 1-D model of the primary fracture (Fig. 1 ), which is 
represented by a viscoelastic thin layer �v . In this model, the secondary 
fractures are disregarded but their influence is included in the viscoelastic 
nature of the primary fracture. The embedding background is represented by 
the elastic half-spaces � 1 and � 2 with the same rock physical properties as 
those considered for the embedding background in Fig. 1 . We use this model 
to compute the PP reflectivities at normal incidence at the the interface � 1 

between the primary fracture �v and the upper half-space � 1 . The downward 
arrow represents the incoming P wave, while the upward arrow designates 
the reflected P wave. 
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with the embedding background. This technique permits to natu- 
rally incorporate the boundary conditions (BC) of the embedding 
background, which is an important criterion when the poroelastic 
medium is not periodic as in this case. Hence, following Sotelo et al. 
( 2023 ), we take a sample � of the model shown in Fig. 1 , which 
consists of a representative part of the fracture system and the em- 
bedding background (Fig. 2 ). The representative part of the fracture 
system is composed of a portion of the poroelastic primary fracture 
�p1 connected to a vertical mesoscopic secondary fracture �p2 . The 
secondary fracture is centred in the sample and the sample’s width 
is equal to the spacing between the secondary fractures. Then, we 
solve Biot’s quasi-static equations (Biot 1962 ) for displacements 
and pressures over the sample � across several frequencies. To find 
the solutions, we impose periodic BC including a vertical compres- 
sional oscillatory test, which produces a deformation similar to that 
one induced by a P -wave impinging normally onto the primary frac- 
ture. To isolate the FPD effects on the primary fracture, we compute 
the average of the vertical stress and strain components over this 
fracture. Finally, these averages are used to calculate the frequency- 
dependent P -wave modulus and normal compliance of the primary 
fracture. Further details of this homogenization procedure are given 
in Appendix B . The overall goal of this homogenization is to con- 
sider only the presence of the primary fracture in the reflectivity cal- 
culations. It is possible to disregard the secondary fractures because 
their effect due to FPD with the primary fracture is incorporated in 
the frequency-dependent properties of the latter. 

2.3 Normal-incidence P -w av e r eflecti vity of the primary 
fracture 

We consider a simplified model in R 

1 as shown in Fig. 3 . In this 
model, the primary fracture is represented by a viscoelastic layer 
�v characterized by the frequency-dependent P -wave modulus ob- 
tained through the pre viousl y described homo genization procedure. 
In this way, we account for the FPD effects on the primary fracture 
induced by the presence of the secondary fractures. The primary 
fracture is embedded between the elastic half-spaces � 1 and � 2 

(F ig. 3 ), w hich have the same rock physical properties as the em- 
bedding background depicted in Fig. 1 . In summary, we have further 
idealized the initial model presented in Fig. 1 to the one shown in 
F ig. 3 , w hich disregards the presence of the secondary fractures. 
This is possible because we consider a P -wave propagating nor- 
mally to the plane of the primary fracture. Under this scenario, the 
propagating wave will mostly be affected by changes in the P -wave 
modulus of the primary fracture due to the FPD interactions with 
the secondary fractures. Conversely, the secondary fractures are un- 
likel y to af fect the P -w ave propagation not onl y because their planes 
are parallel to the direction of the propagation but also because their 
sizes are very small compared to the dominant wavelength (e.g. Ru- 
bino et al. 2014 ; Song et al. 2020 ). As stated before, we assume an 
incoming P -wave impinging normally on the interface � 1 between 
the upper elastic half-space and the viscoelastic fracture (Fig. 3 ). To 
solve for the PP-reflection coefficients at this interface, we propose 
plane-wave solutions for the elastic and viscoelastic media, respec- 
ti vel y. Then, to find the corresponding amplitudes, we assemble a 
set of linear equations by imposing continuity of displacements and 
tractions. The details of this procedure are described in Appendix C . 

3  R E S U LT S  

In the following, we present a sensitivity analysis where we vary the 
geometrical and physical properties of the secondary fractures to 
investigate their impact on the normal compliance and reflectivity of 
the primary fracture. We compare the results against those obtained 
in absence of secondary fractures. In this case, the primary fracture 
behaves as hydraulically isolated and, hence, can be treated as being 

art/ggaf165_f2.eps
art/ggaf165_f3.eps
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Table 1. Reference values of the physical properties of the primary and secondary fractures as well as of the background 
(Fig. 1 ). 

Property Primary fracture ( f ) Secondary fracture ( h ) Background rock 

Grain bulk modulus K s (GPa) 37 37 37 
Porosity φ 0.8 0.9 0.015 
Frame bulk modulus K m 

(GPa) 0.004 0.008 37 
Frame shear modulus μ (GPa) 0.002 0.004 29 
Permeability κ (D) 1250 1250 10 −12 

Aperture a (m) 0.001 0.001 NA 

Length L (m) infinite 3.04 NA 

Spacing s (m) NA 3.2 NA 

Grain density ρs ( kg m 

−3 ) 2730 NA 2730 

Table 2. Reference values of the physical properties of pore fluids. 

Property Water Gas 

Fluid density ρf ( kg m 

−3 ) 1000 78 
Fluid bulk modulus K f (GPa) 2.25 0.012 
Fluid viscosity η (Pa.s) 10 −3 1 . 5 × 10 −4 
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lastic for the e v aluation of its compliance and reflectivity. The
ormal compliance of this elastic fracture is the so-called undrained
ormal compliance and its reflectivity is calculated by applying
 similar procedure to the one described in Appendix C but, for
his case, we consider that the fracture is represented by an elastic
hin layer instead of a viscoelastic one. Consequently, the applied
overning and the constitutive equations are those as detailed in eqs
 C1 ) and ( C2 ) of Appendix C . 

Table 1 shows the rock physical properties for the primary frac-
ure, secondary fractures and the background, respecti vel y. Table 2
ists the properties of the considered pore fluids. Unless stated oth-
rwise, we assume that the pores of the primary and secondary
ractures are water-saturated. We remark that the grain and frame
ulk moduli of the background are equal. This yields a Biot–Willlis
f fecti ve stress coef ficient α equal to zero, which implies that the
ore fluid pressure does not have an y ef fect on the total stress
eq. B2 of Appendix B ). Moreover, the background permeability
s so low ( 10 −12 D) that it can be regarded as impermeable for
he typical seismic frequency range. In summary, due to its as-
igned proper ties, the backg round behaves ef fecti vel y as an elastic
edium. To obtain both the frequency-dependent P -wave modulus

nd normal compliance of the primary fracture for the different
ested models, we apply the homogenization procedure described
n the previous section using a square sample � (Fig. 2 ) with a side
ength of 3.2 m. This homogenization procedure is valid for fre-
uencies that are much lower than Biot’s characteristic frequency
eq. A1 of Appendix A ). The corresponding values for the pri-
ary and secondary fractures are 103.2 and 116.1 Hz, respecti vel y,
hich are at the high-end of the standard exploration seismic fre-
uency range. Although the upper limit of the seismic band is, for
ractical purposes, within the same order-of-magnitude of the com-
uted Biot’s characteristic frequencies, we can still consider that
he results obtained under the FPD assumption are valid. The rea-
on for this is that a smooth transition is expected from the FPD
echanism characterized by a viscous-dominated solid–fluid drag

orces toward a wave-induced fluid flow mechanism controlled by
n inertia-dominated drag (Rubino et al. 2014 ). Thus, the results we
resent in the following are considered valid for frequencies up to
100 Hz. Nonetheless, we present them up to 1 kHz for illustration 

urposes. 
In the following, we analyse plots of the ratio of the frequency-
ependent fracture normal compliance Z N ( ω) and its undrained
alue Z 

u 
N , that is Z N ratio = Z N ( ω) /Z 

u 
N . The undrained normal com-

liance Z 

u 
N designates the minimum theoretical value that Z N ( ω) can

ake, which corresponds to its unrelaxed regime. We remark that in
his regime the primary fracture behaves as hydraulically isolated
rom the secondary ones. The undrained normal compliance is cal-
ulated as Z 

u 
N = a f /H , where H = H d + Mα2 is the undrained

 -wave modulus and H d is the drained P -wave modulus, respec-
i vel y, with H d = λd + 2 μ. The remaining physical properties are
efined in eq. ( B3 ) of Appendix B . Using the properties for the pri-
ary fracture from Table 1 , we find that Z 

u 
N = 3 . 6 × 10 −13 m Pa −1 .

onversely, the drained normal compliance Z 

d 
N denotes maximum

heoretical value that Z N ( ω) can take if it were possible to drain all
he pore fluid from the primary fracture. The drained normal com-
liance is calculated as Z 

d 
N = a f /H d . Using again the properties

or the primary fracture from Table 1 , we find Z 

d 
N = 1 . 5 × 10 −10 

 P a −1 . Howev er, it is e xpected that the magnitude of the relaxed
Z N ( ω) is lower than the drained one since the secondary fractures
rovide a limited pore volume to drain the fluid from the primary
racture. Finally, the theoretical maximum Z 

max 
N ratio prevails when

Z N ( ω) = Z 

d 
N , which yields Z 

max 
N = Z 

d 
N /Z 

u 
N = 416.5. 

.1 Sensitivity to the geometrical properties of the 
econdary fractures 

n this subsection, we investigate the sensitivity of the normal com-
liance and reflectivy of the primary fracture to variations in the
eometrical properties of the secondary fractures, such as their
ength L 

h , aperture a h and spacing s h . Here, the superscript h refers
o the secondary fractures. To perform this sensiti vity anal ysis, we

odify one parameter at a time b y repeatedl y halving its value to
 maximum eight-fold decrement with regard to its reference value
Table 1 ). We remark that the decrease in length of the secondary
ractures produces the same reduction of their pore volume from
he reference case as the corresponding decrease in their aperture
oes. In contrast, the decrease in spacing of the secondary fractures
roduces an increment of their pore volume with respect to the
eference case. 

Fig. 4 presents the Z N ratio as a function of frequency for the
ifferent geometrical parameters of the secondary fractures. The
esults show that there is an increase of the normal compliance of
he primary fracture with respect to its unrelaxed value ( Z N ratio
f 1) for all tested parameters of the secondary fractures. This is
he consequence of FPD with the secondary fractures pre v ailing in
egimes other than the unrelaxed one. Specifically, at sufficiently
ow frequencies, the Z N ratio shows a constant maximum for each
ested value as the result of FPD occurring in the relaxed regime.
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Figure 4. Ratio of the frequency-dependent normal compliance of the primary fracture to its undrained compliance ( Z N ratio ) as a function of frequency 
considering secondary fractures of varying (a) lengths L 

h , (b) apertures a h and (c) spacings s h . Equal colours in (a) and (b) denote equal pore volumes of the 
corresponding secondary fractures. 
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Consequently, we denote this Z N ratio as the relaxed one. We re- 
mark that, the theoretical upper limit of the relaxed Z N ratio is the 
one associated with the drained compliance of the primary fracture, 
which, as pre viousl y mentioned, is equal to 416.5. As the frequency 
increases, the transitional FPD regime pre v ails, which induces the 
monotonic decrease of the Z N ratio toward its unrelaxed value. The 
results show that the relaxed Z N ratio increases with increasing mag- 
nitudes of the length L 

h and aperture a h of the secondary fractures 
and with decreasing values of their spacing s h . The largest relaxed 
Z N ratio of 71.2 corresponds to the minimum spacing of 0.4 m of 
the secondary fractures (Fig. 4 c). This spacing is associated with 
the greatest pore volume increase of the secondary fractures with 
regard to the reference case. 
These results also show that, in the relaxed regime, secondary 
fractures with equi v alent pore volumes but different geometrical 
configurations, with regard to their length and aperture, induce the 
flow of different volumes of fluid from the primary fracture (Figs 4 a 
and b). Shor ter secondar y fractures allow for less fluid to flow from 

the primary fracture than narrower ones. This, in turn, produces a 
lower increase of the associated relaxed Z N ratio of the primary 
fracture. A possible explanation for this effect is the smaller frame 
deformations induced in shorter secondary fractures compared to 
those produced in narrower ones. 

Besides, these results show that the sensitivity of the relaxed 
Z N ratio is different for each of the tested geometrical properties 
of the secondary fractures. The relaxed Z N ratio is most sensitive 
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o variations in length L 

h of the the secondary fractures (Fig. 4 a)
nd is least sensitive to variations in their spacing s h (Fig. 4 c).
n intermediate sensitivity is associated with variations in their

perture a h (Fig. 4 b). Specifically, the relaxed Z N ratio shows an
ncrease of ∼13-fold, from 3.3 to 43.5, for the corresponding eight-
old increase in length L 

h . Then, the relaxed Z N ratio increases
lose to three-fold, from 15.0 to 43.5, for an eight-fold aperture a h 

ncrease. Finally, the relaxed Z N ratio presents the lowest increase of
1.5-fold, from 43.5 to 71.2, in response to an eight-fold decrease

n spacing s h . The higher sensitivity of the relaxed Z N ratio to
ariations in length of the secondary fractures can be associated to a
igher deformation or strain induced on these fractures per variation
f unit length, which allows for greater fluid volume to flow from
he primary fracture. This effect of the strain on the relaxed Z N ratio
an be deduced from eqs ( B7 ) and ( B8 ) of Appendix B . 

On the other hand, the considered properties of the secondary
ractures influence dif ferentl y the characteristic transition frequency
f c of the primary fracture normal compliance. For instance, f c 
resents the highest sensitivity to changes in length L 

h of the
econdary fractures (Fig. 4 a), showing decreasing values from ∼
.0 kHz to ∼ 5.6 Hz as L 

h increases. In contrast, f c is the least
ensitive to changes in the aperture a h of the secondary fractures
Fig. 4 b). In this case f c , takes increasing values from ∼4.0 to ∼
.6 Hz as a h increases. Finally, f c presents an intermediate sensi-
ivity to the spacing s h of the secondary fractures (Fig. 4 c), where it
ecreases from ∼44.6 to ∼5.6 Hz with increasing spacing. Accord-
ng to eqs ( A4 ) and ( A5 ) of Appendix A , f c is directly proportional
o the fractional volume β occupied by the fractures but inversely
roportional to their size squared l 2 h . This points to a trade-off be-
ween these two parameters since an increase in their size will also
ncrease their fractional volume. Ho wever , their overall effect on f c 
ill depend on their relative magnitudes. A geometric increase ei-

her in the length L 

h or in the aperture a h of the secondary fractures
roduces the same pore volume increase, that is an equal increase
f their fractional volume β. Under this scenario, our results re-
eal that, because of its relative higher magnitude, the increase in
ength L 

h of the secondary fractures tends to dominate f c , causing
ts decrease. In contrast, when increasing the aperture a h of the sec-
ndary fractures, it is the increase of their fractional volume β that
akes control, increasing, consequently, f c . Finally, the increase in
pacing s h of the secondary fractures produces a reduction of their
ractional volume β while their size remains constant. In this case,
s the results show, f c decreases. 

Ne xt, we e xplore how an increase in normal compliance of the
rimary fracture as a consequence of FPD effects with the sec-
ndary fractures impacts the reflectivity of the primary fracture.
ig. 5 presents the absolute value of normal-incidence PP reflec-

ivities of the primary fracture as a function of frequency for the
ame geometrical parameters of the secondary fractures presented
n Fig. 4 . The results show that, for suf ficientl y low frequencies, the
eflectivity of the primary fracture presents a maximum increase
rom the reference case, which disregards the secondary fracture.
his is a consequence of FPD toward the secondary fractures pre-
ailing in the relaxed re gime. Howev er, for progressiv ely higher
requencies, the primary fracture reflectivity decreases monotoni-
all y tow ard its elastic limit, which is the result of FPD transitioning
oward its unrelaxed state. Regarding the reflectivity of the primary
racture in the relaxed FPD regime, the strongest increase of ∼65-
old is associated with most closely spaced secondary fractures ( s h 

 0.4 m in Fig. 5 c). The second largest increase in reflectivity of
44-fold corresponds to both the largest ( L 

h = 3.04 m in Fig. 5 a)
nd the widest ( a h = 0.001 m in Fig. 5 c) secondary fractures.
egarding the sensitivity of the reflectivity of the primary fracture
o changes in the geometrical properties of the secondary fractures,
he results show a similar behaviour as the one described for its
ormal compliance. That is, its reflectivity at normal incidence is
ost sensitive to changes in length L 

h , then aperture a h , and, finally,
pacing s h . 

.2 Sensitivity to the physical properties of the secondary 
ractures 

n this subsection, we investigate the sensitivity of the normal com-
liance and the reflectivy of the primary fracture to variations in the
hysical properties of the secondary fractures, such as their bulk

K 

h 
m 

and shear μh moduli, permeability κh and type of pore fluid f h .
o perform this sensitivity analysis, we again modify one param-
ter at a time, taking as the reference values the ones specified in
able 1 . For the mechanical moduli, we repeatedly double the bulk
odulus K 

h 
m 

, keeping the ratio K 

h 
m 

/μh constant and equal to two.
o investigate the sensitivity to the permeability κh , we repeatedly
ecrease its value by 50 per cent. Finally, to study the sensitivity to
he pore fluid f h , we compare the results for water or gas as satu-
ating fluids in the secondary fractures, while the primary fracture
emains water-saturated. 

Fig. 6 presents the resulting Z N ratio as a function of frequency for
he different physical properties of the secondary fractures. These
esults show that the presence of the secondary fractures increases
he normal compliance of the primary fracture with respect to its
nrelaxed value ( Z N ratio of 1) for frequencies associated with FPD
re v ailing in regimes other than the unrelaxed one. As remarked in
he previous subsection, at sufficiently low frequencies, the relaxed
Z N ratio shows a constant maximum for each of the tested values.

his occurs as a consequence of FPD pre v ailing in the relaxed
egime. The largest relaxed Z N ratio of 150.1 is associated with
as-saturated secondary fractures (Fig. 6 c). This is a consequence
f the much larger compressibility of gas compared to that of the
ater , which allo ws for more fluid to flo w from the primary fracture

s FPD occurs. 
We also observe that the relaxed Z N ratio shows sensitivity to

hanges in the bulk modulus K 

h 
m 

(Fig. 6 a) and in the type of pore
uid f h (Fig. 6 c) of the secondary fractures but not to changes in

heir permeaility. In fact, Fig. 6 (a) shows that the relaxed Z N ratio
ncreases close to three-fold, from 15.9 to 43.5, which corresponds
o an eight-fold decrease in the bulk modulus K 

h 
m 

, from 0.064 to
.008 GPa. These results suggest that more deformable secondary
ractures can accommodate larger fluid volumes coming from the
rimary fracture because their pores can expand more readily. Sim-
larly, Fig. 6 (c) shows an increase of ∼3.5-fold in the relaxed Z N 

atio, from 43.5 to 150.1, when changing the saturating pore fluid
rom water to gas. As previously noted, this increase is the result of
he higher compressibility of gas compared to that of water, which
ermits to accommodate more water flowing from the primary frac-
ure into the pores of the secondary fractures as the gas compresses.
o wever , the relaxed Z N ratio is insensitive to variations in the
ermeability of the secondary fractures (Fig. 6 b). That is, for all
ested permeabilities κh , the relaxed Z N ratio remains unchanged.
he only effect that permeability has is with regard to the charac-

eristic transition frequency of the primary fracture compliance as
escribed below. 

Regarding the sensitivity of the characteristic transition fre-
uency f c of the normal compliance of the primary fracture, our
esults show that f c increases from ∼5.6 to ∼15.8 Hz as the bulk
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Figure 5. Absolute value of normal-incidence P -wave reflection coefficients as a function of frequency considering different frequency-dependent P -wave 
moduli of the primary fracture. These moduli include the effect of FPD interactions with secondary fractures of varying (a) lengths L 

h , (b) apertures a h and 
(c) spacings s h as shown in Fig. 4 . For comparison, we also show the reflectivity of a primary fracture in absence of secondary fractures, which corresponds to 
an elastic one. 
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modulus K 

h 
m 

increases. Similarly, we observe that f c increases from 

∼1.4 to ∼5.6 Hz as the permeability κh increases. Finally, f c de- 
creases from ∼5.6 to ∼2.8 Hz when the saturating fluid f h changes 
from water to gas. According to eqs ( A4 ) and ( A5 ) of Appendix A , 
f c should increase as the permeability κh of the secondary fractures 
increases and as the viscosity η of the saturating fluid f h decreases, 
which agrees with the described results. Ho wever , the effect of the 
bulk modulus K 

h 
m 

of the secondary fractures on f c is difficult to 
predict using the aforementioned equations because K 

h is used 
m 
in the calculation of se veral ef fecti ve parameters of the fractured 
medium as the Biot’s storage fluid modulus M 

m , the drained H 

m 

d 

and the low-frequency H 

m 

s P -wave moduli, which, in turn, impact 
f c either in a direct or inverse manner. 

Fig. 7 shows that the reflectivity of the primary fracture has a 
similar response to that of its associated normal compliance due 
to FPD effects with the secondary fractures. We observe that, at 
suf ficientl y low frequencies, there is a maximum increase of the 
primary fracture reflectivity with respect to its elastic references 
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Figure 6. Ratio of the primary fracture normal compliance to its undrained value ( Z N ratio ) as a function of frequency considering secondary fractures with 
different (a) bulk moduli K 

h 
m 

, (b) permeabilities κh and (c) pore fluids f h . 
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s a consequence of FPD with the secondary fractures pre v ail-
ng in the relaxed regime. Specifically, our results show that the
argest increase of the reflectivity of the primary fracture of close to
.5-orders-of-magnitude is associated with gas-saturated secondary
ractures (Fig. 7 c). Similary, the second largest reflectivity increase
f ∼44-fold is associated with the softest secondary fractures ( K 

h 
m 

 0.008 GPa in Fig. 7 a) and with any of the tested permeabilities
f the secondary fractures (Fig. 7 b). This lack of sensitivity of the
eflectivity of the primary fracture in the relaxed regime to changes
f the permeability of the secondary fractures is consistent with the
orresponding results for its compliance (Fig. 6 b). 
m  
.3 Summary of the sensitivity analyses 

n this subsection, we provide an analysis regarding the effect that
he geometrical and physical properties of the secondary fractures
ave on the normal compliance of the primary fracture at its relaxed
tate and on the corresponding characteristic transition frequency
f c . To this end, Fig. 8 presents the Z N ratio of the primary fracture
ssociated with its relaxed state (relaxed Z N ratio) versus the transi-
ion frequency f c of its normal compliance for all of the pre viousl y
ested properties of the secondary fractures. We further remark that
he relaxed Z N ratio reflects the maximum increase that the nor-
al fracture compliance can attain with respect to its unrelaxed

art/ggaf165_f6.eps
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Figure 7. Absolute value of normal-incidence P -wave reflection coefficients as a function of frequency considering different frequency-dependent P -wave 
moduli of the primary fracture. These moduli include the effect of FPD interactions with secondary fractures with different (a) bulk moduli K 

h 
m 

, (b) permeabilities 
κh and (c) pore fluids f h . For comparison, we also show the reflectivity curve of an isolated, that is, elastic, primary fracture. 
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value for a given set of secondary fracture parameters (Figs 4 
and 6 ). 

The results show that, overall, the relaxed Z N ratio is most sen- 
sitive to changes in the length L 

h of the secondary fractures, with 
an increase of ∼13-fold, from 3.3 to 43.5, for an eight-fold increase 
of the length L 

h . This is followed by the the impact of changing 
the saturating pore fluid of the secondary fractures from water to 
gas, which produces an increase of the relaxed Z N ratio of the pri- 
mary fracture of ∼3.5-folds, from 43.5 to 150.1. Next, the changes 
in the bulk moduli K 

h 
m 

and in the aperture a h of the secondary 
fractures have a similar impact on the sensitivity of the relaxed 
Z N ratio. That is, an eight-fold decrease in the bulk modulus and 
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Figur e 8. Relax ed Z N ratio of the primary fracture as a function of the characteristic transition frequency f c of its normal compliance for the different properties 
of the secondary fractures (Figs 4 and 6 ). The arrows point toward the direction in which the properties of the secondary fractures increase in magnitude. 
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 similar increase in the aperture generate close to three-fold in-
rease in the corresponding relaxed Z N ratio, from ∼16 to 43.5.
he spacing s h of the secondary fractures has a much lower im-
act than the aforementioned properties on the sensitivity of the
elaxed Z N ratio, where an eight-fold decrease of spacing produces
oughly a doubling of the the relaxed Z N ratio, from 43.5 to 71.2.
inall y, as pre viousl y stated, changes in the permeability κh of the
econdary fractures do not have any impact on the relaxed Z N 

atio. 
Changes in permeability of the secondary fractures affect the

ransition frequency f c of the normal compliance of the primary
racture. Higher permeabilities increase its transition frequency in
greement with eqs ( A4 ) and ( A5 ) of Appendix A . Our results also
how a similar direct relationship of f c with the bulk modulus K 

h 
m 

f the secondary fractures. Conversely, we observe an inverse rela-
ionship of f c with the length L 

h and spacing s h of the secondary
ractures. Indeed, it is possible to verify that f c decreases linearly
ith the inverse of the length to the power of 2.5 ( ( L 

h ) −2 . 5 ) and as
ell as with the inverse of the spacing ( ( s h ) −1 ), respecti vel y. These

esults are consistent with eq. ( A5 ) of Appendix A , which predicts
n inverse proportionality between the transition frequency and the
ize of the characteristic heterogeneity, albeit to the power of two
 ( l h ) −2 . 0 ). Ne xt, we observ e that changes in the aperture a h of the
econdary fractures do not increase f c in every case. As discussed
n Section 3.1 , the increase of the fractional volume and aperture
f the secondary fractures have opposing effects on f c (eq. A4
f Appendix A ), and their overall impact depends on their rela-
i ve magnitudes. Finall y, we observe that gas-saturated secondary
ractures induce a lower transition frequency f c compared to the
ater-saturated case. As previously discussed, this is the direct con-

equence of the lower viscosity of gas compared to that of water
eqs A4 and A5 of Appendix A ). The previous sensitivity anal-
ses together with the current results show that the characteristic
ransition frequency f c constrains the upper frequency limit up to
hich the relaxed state of the fracture normal compliance pre v ails,
ence, controlling its seismic visibility. That is, relati vel y high v al-
es of f c , higher than the upper bound of the seismic frequency
ange, render the normal fracture compliance in its relaxed state
eismically visible. In contrast, lower f c values can either limit the
eismic visibility of the relaxed normal fracture compliance or ren-
er it not visible at all. The results also show that f c is controlled
y the fractional volume of the secondary fractures and the relative
agnitudes of their geometrical and physical properties, as well as

he viscosity of the saturating fluid. 

.4 Effects of correlated properties of the secondary 
ractures 

o far, we have assessed the sensitivity of the normal compliance
nd reflectivity of the primary fracture to variations in several prop-
rties of the secondary fractures. In doing so, the property of in-
erest w as incrementall y modified, while all other properties were
ept constant. Now we shall assume that the properties of the sec-
ndary fractures are not independent from each other but directly
r indirectly correlated to their length, which is indeed consis-
ent with much of the av ailable observ ational e vidence (e.g. Hat-
on et al. 1994 ; Renshaw 1995 ; Bonnet et al. 2001 ; Morris et al.
017 ). 

Following this evidence, we use a power law relationship to esti-
ate the aperture a h using the length L 

h of the secondary fractures
e.g. Hatton et al. 1994 ): a h = c 1 ( L 

h ) d 1 , where c 1 = 10 −3 . 4 and
 1 = 1.05, respecti vel y. We also relate the permeability κh of the
econdary fractures to their hydraulic aperture H 

h through (Zim-
erman & Bodvarsson 1996 ; Jaeger et al. 2007 ): κh = ( H 

h ) 2 / 12 ,
here the hydraulic aperture is related to the arithmetic mean aper-

ure of the secondary fractures as (Renshaw 1995 ; Jaeger et al.
007 ): ( H 

h ) 3 = ( a h ) 3 (1 + r 2 ) −1 . 5 . In doing so, we assume that the
re viousl y estimated aperture a h is the arithmetic mean aperture

art/ggaf165_f8.eps


12 E. Sotelo et al . 

Table 3. Properties of the secondary fractures correlated to their length. 

Property Secondary fracture ( h ) 

Length L (m) 0.7 1.5 2.9 
Aperture a (m) 3 × 10 −4 6 × 10 −4 1 . 2 × 10 −3 

Permeability κ (D) 51.9 257.0 1026.1 
Frame bulk modulus K m 

(GPa) 0.010 0.012 0.014 
Frame shear modulus μ (GPa) 0.006 0.008 0.009 
Drained normal compliance Z N (m/Pa) 1 . 5 × 10 −11 2 . 7 × 10 −11 4 . 5 × 10 −11 

Tangential compliance Z T (m/Pa) 4 . 3 × 10 −11 7 . 8 × 10 −11 1 . 3 × 10 −10 
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of the secondary fractures and r is the ratio between the cor- 
responding standard deviation and the mean aperture, which we 
assume to be equal to 11. This value is consistent with obser- 
vations on natural fractures with pronounced asperities (Renshaw 

1995 ). 
It is also possible to relate the bulk K 

h 
m 

and shear μh moduli 
of the secondary fractures to their drained normal Z 

h 
N and tan- 

gential Z 

h 
T compliances (Nakagawa & Schoenberg 2007 ; Rubino 

et al. 2014 ): μh = a h /Z 

h 
T and K 

h 
m 

= a h /Z 

h 
N − 4 a h / (3 Z 

h 
T ) , where

the normal compliance of the secondary fractures can be further 
related to their length by a power law relationship Z 

h 
N = c 2 ( L 

h ) d 2 , 
with c 2 = 10 −10 . 7 and d 2 = 0.77, respecti vel y. This curve follows 
the trend of the data presented in Barbosa et al. ( 2019 ). Besides, 
reported ranges of the ratio Z N /Z T for dry fractures are for in- 
stance from 0.2 to 0.55 (Lubbe & Worthington 2006 ) and from 

0.2 to 0.77 (Pyrak-Nolte et al. 1990 ; Verdon & W üstefeld 2013 ). 
For this example we consider a Z 

h 
N /Z 

h 
T ratio of 0.35 for the sec- 

ondary fractures. Notice that the relationships for estimating the 
aperture and permeability of the secondary fractures show a mono- 
tonically increasing trend with respect to their length and aperture, 
respecti vel y. 

Table 3 summarizes the geometrical and physical properties for 
three different secondary fracture lengths considered in this anal- 
ysis: 0.7, 1.5 and 2.9 m. All other properties are assumed to be 
the same for all cases and correspond to those listed in Table 1 
except for the spacing of the secondary fractures, for which we 
consider a value of 1.6 m. As expected, the estimated apertures 
and permeabilities of the secondary fractures increase with their 
length. For the values considered, the bulk and shear moduli of the 
secondary fractures also increase with their length. For reference, 
Table 3 also presents the estimated normal and tangential com- 
pliances of the secondary fractures, which show an increasingly 
compliant behaviour with increasing length. Besides, we assume 
that both the primary and secondary fractures are water-saturated 
(Table 2 ). 

Fig. 9 shows the impact that the three different sets of properties 
of the secondary fractures (Table 3 ) have on the normal compliance 
of the primary fracture (Fig. 9 a) and on the corresponding PP re- 
flectivity at normal incidence (Fig. 9 b) as a function of frequency. 
Regarding the effects on the normal compliance of the primary frac- 
ture, Fig. 9 (a) shows that the relaxed Z N ratio takes pro gressi vel y 
larger values of 7.2, 19.7 and 51.6 as the length L 

h of the sec- 
ondary fractures increases. This behaviour suggests that the length 
of the secondary fractures controls the FPD interactions with the 
primary fracture despite of their slightly higher bulk modulus. This 
indicates that longer secondary fractures, which are also associ- 
ated with larger apertures, provide a greater pore volume and thus 
permit the drainage of more fluid from the primary fracture during 
FPD. Fig. 9 (a) also shows that the characteristic transition frequency 
f c has the same value of 11.2 Hz for the three considered cases. 
This result implies that the tendency of the pro gressi vel y longer 
fractures to decrease f c (Fig. 4 a) is counterbalanced by the opposite 
effect that the increasing permeabilities have on f c . We also remark 
that the relaxed Z N ratio of 51.6 induced by the longest secondary 
fractures (2.9 m) is higher than the one obtained in the sensitivity 
analyses for a secondary fracture length of 3.04 m, for which, the 
associated relaxed Z N ratio is 43.5. This higher relaxed Z N ratio is 
a consequence of the narrower spacing of the secondary fractures, 
1.6 m instead of 3.2 m, which also has an influence on the charac- 
teristic transition frequency f c by increasing its magnitude (Figs 4 c 
and 8 ). 

Fig. 9 (b) shows that the absolute value of the PP reflectivity at 
normal incidence of the primary fracture increases with increasing 
length L 

h of the secondary fractures compared to its elastic refer- 
ence for frequencies corresponding to FPD regimes other than the 
unrelaxed one. This reflectivity behaviour is produced by the soft- 
ening of the normal compliance of the primary fracture that occurs 
as the secondary fractures lengthen (Fig. 9 a). Correspondingly, the 
maximum increase of the reflectivity of the primaray fracture of 
∼50-fold is associated with the longest secondary fracture (2.9 m) 
for frequencies in the relaxed FPD regime. 

4  D I S C U S S I O N  

4.1 Evidence of FPD effects in fracture zones embedded in 

lar g el y impermeab le environments 

The main finding of our work is that FPD between large primary 
and interconnected smaller secondary fractures embedded in largely 
impermeable environments enhances the seismic visibility of the 
former. The reason for this is that FPD effects produce an increase 
of the compliance of the primary fractures, which, in turn, leads 
to an increase of their mechanical contrast with respect to the em- 
bedding background. In general, reflectivity-based assessments in 
hard rock environments are quite challenging due to the often low 

signal-to-noise ratio of such data in conjunction with the typically 
low impedance contrasts (e.g. Adam et al. 2000 ; Ahmed et al. 2015 ; 
Cheraghi et al. 2021 ). Ho wever , some of these studies show unusu- 
ally strong reflectors associated with faults and dense fracture zones 
(e.g. Harjes et al. 1997 ; Bergman et al. 2002 ; Casini et al. 2010 ), 
w hich arguab l y can be best explained b y notable FPD ef fects be- 
tween connected fractures. For instance, Harjes et al. ( 1997 ) and 
Bergman et al. ( 2002 ) associated imaged reflectors in crystalline 
rock with a fluid-saturated fracture zone after assessing complemen- 
tar y infor mation from borehole seismic and petrophysical measure- 
ments. Further interwell hydraulic communication tests confirmed 
that fractures in these zones were highly interconnected. A similar 
anal ysis w as performed b y Casini et al. ( 2010 ) who also associated 
strong reflectors in crystalline rock with interconnected fractures af- 
ter performing production tests in several boreholes intersecting the 
imaged targets. Likewise, the interpretation performed by Szalaiov á 
et al. ( 2015 ) of strong seismic reflections in the upper crystalline 
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Figure 9. (a) Ratio of the primary fracture normal compliance to its undrained value ( Z N ratio) as a function of frequency considering secondary fractures 
presenting different properties correlated to their lengths L 

h (Table 3 ). (b) Absolute value of the normal-incidence P -wave reflection coefficient as a function of 
frequency considering different frequency-dependent P -wave moduli of the primary fracture. These moduli include the FPD effects with secondary fractures 
having the same properties as in panel (a). 
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rust revealed their relation to both large- and small-scale fractures.
n associated percolation analysis using seismic-derived fracture
ensity pointed to the likely connectivity of these fractures. The re-
ults point to the existence of fracture zones with a high probability
f interconnected pathways for fluid flow. Schreiter et al. ( 2015 )
stimated the reflection coefficients of imaged reflectors associated
ith fault zones. One of the highest reflectivities, as quantified by

n average reflection coefficient of ∼−0.2 was interpreted as be-
ng due to the interaction of the seismic waves with a low-velocity
egion associated with a particular fault zone. In an independent
nalysis, L üschen et al. ( 2015 ) suggested that the enhanced seis-
ic attenuation found in some regions along this fault zone was an

ndication of a region of highly fractured and porous rock, which,
n turn, w ould allo w for enhanced energy dissipation due to FPD.
hese works provide evidence that secondary fractures associated
ith primary faults zones enhance their seismic visibility. Quite
mportantl y, the av ailable e vidence also demonstrates that these
ault-fracture systems tend to be characterized by a high degree of
ydraulic interconnectivity. 

.2 Directions of future research 

hile there is strong evidence that FPD between large primary
nd smaller secondary fractures can contribute to the overall seis-
ic visibility of the former, the quantitati ve anal ysis and inter-

retation of the underl ying FPD ef fects remain to be resolved.
n this regard, an interesting and important outcome of our work
s that this problem could be addressed through finding an effec-
iv e frequenc y-dependent P -wav e modulus for the primary fracture,
hich incorporates the FPD effects of the secondary fractures. A

art/ggaf165_f9.eps
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potential application would then be to estimate this modulus from 

reflected signals partitioned at sev eral frequenc y bands to establish 
whether or not the modulus has a frequency-dependent character, 
which could be indicative of the presence of connected secondary 
fractures. 

In this work, we have considered idealized models to represent 
a large primary fracture connected to smaller secondary fractures. 
Although, in actual geological settings, fracture zones surrounding 
primary faults generally present more complex patterns, the major 
advantage of this simplified modelling approach is that it allows for 
a rigorous analysis and an intuitive understanding of the governing 
physical processes associated with FPD effects that these smaller 
secondary fractures have on the seismic reflectivity of the larger 
primary fracture. Indeed, it is the inherent minimalistic nature and 
the associated simplicity of our model that allows for establishing 
first-order relationships of cause and effect, as it retains the es- 
sential physics of the pre v ailing poroealastic interactions. In this 
context, it is important to note that in order to ef fecti vel y investigate 
the potential impact of FPD effects, the proposed models consider 
arrangements of primary and secondary fractures that maximize 
FPD effects: secondar y fractures or thogonally intersecting the pri- 
mary fracture and a P -wave impinging normally onto the latter. 
This readily allows us to evaluate the associated wave propagation 
characteristics and, thus, to relate the properties of the secondary 
fractures and the associated FPD effects to the seismic reflectivity 
and compliance of the primary fracture. Unravelling these funda- 
mental relationships would not have been possible with more com- 
ple x models. Howev er, now that the underlying physics has been 
elucidated, future works should focus on more realistic scenarios 
and applications. 

In our models we have considered equally spaced secondary 
fractures. Nonetheless, we would like to discuss the possible FPD 

effects of randomly spaced secondary fractures on the seismic prop- 
erties of primary fractures. We present this scenario as an example 
of the kind of increasing complexity that our modelling approach 
could e v aluate under certain sampling considerations. Specifically, 
we assume a random spacing of secondary fractures such that: First, 
the spacing is in the mesoscale. Second, there exists a typical sam- 
ple, which contains an average number of secondary fractures per 
sample size that adequately represents the fracture density of the 
entire system. Third, the size of the typical sample is smaller than 
or equal to the pre v ailing Fresnel zone. These considerations permit 
to obtain a typical sample for the homogenization procedure, and 
to ensure that it is affected by an impinging wave in its totality. 
For comparison, we consider an equal sample size that contains the 
same number of equally spaced secondary fractures as the average 
of the randomly spaced case. Note that the average spacing of the 
randomly spaced secondary fractures is expected to be compara- 
ble to that of the equally spaced case since in both cases a similar 
number of fractures per sample size is considered. In the follow- 
ing, we comment on the possible impact that the randomly spaced 
secondary fractures could have on the properties (compliance and 
reflectivity) of the associated primary fracture due to FPD. For the 
low-frequenc y re gime, we suggest that the effect on the compli- 
ance and reflectivity of the primary fracture is similar to the one 
produced by the equally spaced counterpart. This is because the 
number of secondary fractures in both cases are similar, which pro- 
vides comparable pore volume availability for FPD. On the other 
hand, it is expected that some differences arise in the transitional 
regime because this regime is very sensitive to the particular dis- 
position of heterogeneities, in this case the individual spacing of 
secondary fractures in the randomly spaced scenario. Finally, the 
effect on the high-frequenc y re gime would be as expected based on 
our current work because, in this regime, the primary fracture can 
be regarded as hydraulically isolated, which, in turn, causes it to 
behave elastically. 

In our study, we have only considered the case of a largely imper- 
meable background. This type of background constrains the FPD 

effects to prevail e xclusiv ely between the primary and secondary 
fractures. Ho wever , if we were to consider a background deemed 
permeable for the frequencies of interest, then FPD effects associ- 
ated with this background would also arise. In the following, we 
discuss the impact that these additional FPD effects would have on 
the primary fracture properties, as well as the associated challenges 
to account for these effects in a quantitative analysis. To this end, we 
refer to the work of Rubino et al. ( 2014 ) who compare FPD effects 
in media with intersecting and non-intersecting fractures embedded 
in per meable backg rounds. Although they perfor m their analysis in 
the mesoscale, and, thus, consider an ef fecti ve response of the frac- 
tured media, we believe that their results provide valuable insights to 
address this question. Rubino et al. ( 2014 ) demonstrate that consid- 
ering intersecting fractures embedded in a permeable background 
in volves tw o different types of FPD interactions: fracture-to-fracture 
and fracture-to-background. They also show that this, in turn, af- 
fects the frequency-dependent behaviour of the ef fecti ve P -w ave 
velocity with respect to the case of non-intersecting fractures. Like- 
wise, we should also expect these two types of FPD interactions in 
our models in the presence of a per meable backg round: primar y-to- 
secondary fractures and fractures-to-background. In this case, the 
term fractures refers to both primary and secondary. We therefore 
argue that the work of Rubino et al. ( 2014 ) suggests that adding 
a per meable backg round will modify the frequency-dependent be- 
haviour of the the primary fracture properties to reflect both of these 
FPD interactions. Ho wever , a corresponding quantitative analysis 
with a homogenization method is still an unresolved problem since 
the challenge is to find boundary conditions that allow us to repre- 
sent the effects of an infinite background in the considered sample. 
An alternative would be to perform numerical simulations of poroe- 
lasitc wave propagation. 

Another important subject for future research is to test experimen- 
tally the numerical results presented in this study with respect to the 
normal compliance and reflectivity of primary large fractures due 
to the poroelastic effects induced by connected secondary fractures. 
As stated in the introduction, related experimental works, which 
explore poroelastic effects between fractures and their embedding 
porous background, show that the normal compliance of fractures 
has a frequency-dependent-behaviour due to the aforementioned 
poroelastic interactions and that models considering these effects 
explain better the available experimental data than solutions that 
disregard the poroelastic interactions. 

5  C O N C LU S I O N S  

We have investigated FPD effects between a water-saturated large 
primary fracture and perpendicular intersecting smaller mesoscale 
secondary fractures induced by a P -wave impinging normally onto 
the primary fracture. We have performed a sensitivity analysis of 
the compliance and of the normal-incidence PP reflectivity of the 
primary fracture with regard to variations of different geometrical 
and physical properties of the secondary fractures. 

Our results show that FPD interactions between the primary and 
secondary fractures in the relaxed and transitional regimes produce 
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n increase of the normal compliance and normal-incidence PP re-
ectivity of the primary fracture with respect to the case that disre-
ards the secondary fractures, in which the primary fracture behaves
s an elastic medium. Ho wever , secondary fractures with different
ets of physical and geometrical properties affect the magnitude of
he relaxed normal compliance of the primary fracture in varying
ays. For instance, gas-saturated secondary fractures induce the
ighest increase, ∼150-folds, of the relaxed normal compliance.
his, in turn, produces a maximum increase of the reflectivity of

he primary fracture of ∼1.5-orders-of-magnitude. On the other
and, results of the sensiti vity anal yses show that it is the variations
f the length of the secondary fractures that have the largest im-
act on changes of the relaxed normal compliance of the primary
racture. 

Our results also show that the characteristic transition frequency
f c associated with the normal compliance of the primary fracture
ontrols the seismic visibility of the reflectivity of the primary frac-
ure since it determines the frequency shift from the relaxed toward
he unrelaxed FPD regime. The value of f c is, in turn, influenced
ither in a direct or inverse manner by the fractional volume of the
econdary fractures, their geometrical and physical properties as
ell as the viscosity of their saturating fluid. Overall, the results of
ur study suggest that mesoscopic secondary fractures connected
o a large primary fracture can induce FPD effects that substantially
nhance the seismic visibility of the primary fracture. 

In this study, we have considered an idealized but instructive
anonical model of secondary fractures, which has allowed us to
nvestigate the impact that the associated FPD has on the normal
ompliance and the PP reflectivity of a primary fracture connected
o secondary ones. To deepen our understanding of the influence
f mesoscopic secondary fractures on the seismic behaviour of
acroscale primary fractures due to FPD effects, it will be essential

o explore more realistic scenarios of secondary fractures networks.
nother important extension of the current work will be the e v al-
ation of the reflectivity of such fracture systems for non-normal
ngles of incidence. 
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Dutta , N.C. & Od é, H., 1979. Attenuation and dispersion of compres- 
sional waves in fluid-filled porous rocks with partial gas saturation (White 
model)—Part I: Biot theory, Geophysics, 44 (11), 1777–1788. 

Fang , X. , Fehler, M., Chen, T., Burns, D. & Zhu, Z., 2013. Sensitivity analysis 
of fracture scattering, Geophysics, 78 (1), T1–T10. 

F aulkner , D . , Jackson, C., Lunn, R., Schlische, R., Shipton, Z., Wibberley, 
C. & Withjack, M., 2010. A re vie w of recent developments concerning 
the structure, mechanics and fluid flow properties of fault zones, J. Struct. 
Geol., 32 (11), 1557–1575. 

Favino , M. , 2024. [Software]. favinom/par rotc:par rotc202404, Zenodo. 
Favino , M. , Hunziker, J., Caspari, E., Quintal, B., Holliger, K. & Krause, 

R., 2020. Full y-automated adapti ve mesh refinement for media embed- 
ding complex heterogeneities: application to poroelastic fluid pressure 
diffusion, Comput. Geosci., 24 (3), 1101–1120. 

Glaas , C. , Vidal, J. & Genter, A., 2021. Structural characterization of natu- 
rally fractured geother mal reser voirs in the central Upper Rhine Graben, 
J. Struct. Geol., 148, 104 370, doi:10.1016/j.jsg.2021.104370. 
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Rubino , J.G. , Caspari, E., M üller, T.M., Milani, M., Barbosa, N.D. & Hol- 
liger, K., 2016. Numerical upscaling in 2-D heterogeneous poroelastic 
rocks: anisotropic attenuation and dispersion of seismic waves, J. Geo- 
phys. Res. Solid Earth, 121 (9), 6698–6721. 

Sausse , J. & Genter, A., 2005. Types of permeable fractures in granite, Geol. 
Soc. Spec. Publ., 240, 1–14. 

Savage , H.M. & Brodsky, E.E., 2011. Collateral damage: evolu- 
tion with displacement of fracture distribution and secondary fault 
strands in fault damage zones, J. Geophys. Res. Solid Earth, 116 (3), 

http://dx.doi.org/10.1190/geo2016-0123.1
http://dx.doi.org/10.1029/2001WR900010
http://dx.doi.org/10.1190/1.1440938
http://dx.doi.org/10.1190/geo2011-0521.1
http://dx.doi.org/10.1016/j.jsg.2010.06.009
http://dx.doi.org/10.1007/s10596-019-09928-2
http://dx.doi.org/10.1016/j.jsg.2021.104370
http://dx.doi.org/10.1029/96JB01755
http://dx.doi.org/10.1016/S0191-8141(00)00100-0
http://dx.doi.org/10.1111/1365-2478.12474
http://dx.doi.org/10.1029/96JB03801
http://dx.doi.org/10.1111/j.1365-2478.2011.01000.x
http://dx.doi.org/10.1002/2017JB014566
http://dx.doi.org/10.1002/2016WR018806
http://dx.doi.org/10.1016/j.jsg.2003.08.002
http://dx.doi.org/10.1088/1742-2132/2/1/006
http://dx.doi.org/10.1111/j.1365-2478.2006.00530.x
http://dx.doi.org/10.1111/1365-2478.12249
http://dx.doi.org/10.1093/gji/ggu037
http://dx.doi.org/10.1093/gji/ggw138
http://dx.doi.org/10.1016/j.jsg.2009.05.002
http://dx.doi.org/10.1016/j.epsl.2012.05.014
http://dx.doi.org/10.1111/1365-2478.12441
http://dx.doi.org/10.1190/1.3463417
http://dx.doi.org/10.1121/1.2747206
http://dx.doi.org/10.1121/1.407101
http://dx.doi.org/10.1029/2003JB002639
http://dx.doi.org/10.1029/JB095iB06p08617
http://dx.doi.org/10.1029/2010JB007475
http://dx.doi.org/10.1190/geo2013-0409.1
http://dx.doi.org/10.1029/95JB02159
http://dx.doi.org/10.1190/1.3008544
http://dx.doi.org/10.1002/grl.50127
http://dx.doi.org/10.1002/2013JB010567
http://dx.doi.org/10.1190/geo2014-0409.1
http://dx.doi.org/10.1002/2016JB013165
http://dx.doi.org/10.1144/GSL.SP.2005.240.01.01
http://dx.doi.org/10.1002/2014JB011652


Impact of connected secondary fractures 17 

S  

S  

 

S  

 

 

S  

 

S  

 

 

S  

 

 

S  

 

S  

 

 

T  

V  

 

V  

 

W  

 

W  

 

W  

 

 

W  

Z  

 

 

Z  

A
I
R

M  

a  

m  

t  

b  

t  

m  

p  

f  

i  

i  

t  

f  

B  

B

w  

c  

T  

c

 

b  

A  

e  

&  

d  

f

w  

d
 

f  

o  

m

w  

d  

t  

m  

w  

e  

p  

o  

E  

e  

s  

m  

f  

f  

a  

s  

f  

s  

l  

t  

m  

f  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/242/1/ggaf165/8137877 by guest on 12 June 2025
choenberg , M. , 1980. Elastic wa ve beha viour across linear slip interfaces,
J. acoust. Soc. Am., 68 (5), 1516–1521. 
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P P E N D I X  A :  M E S O S C A L E  F P D  A N D  

T S  A S S O C I AT E D  P R E S S U R E  

E L A X AT I O N  M E C H A N I S M  

esoscale FPD pre v ails between hetero geneities presenting char-
cteristic length scales l h much larger than the pore scale l p but
uch smaller than the wavelength λw . For the considered frac-

ure system (Fig. 1 ), the mesoscale heterogeneities are governed
y the characteristic sizes of the secondary fractures, for instance,
heir length or aperture (Rubino et al. 2014 ). FPD describes a flow

echanism where viscous drag between the rock frame and the
ore fluid dominates. This mechanism pre v ails at suf ficientl y low
requencies. As frequencies increase, the drag becomes increasingly
nfluenced by inertia, limiting the applicability of FPD for describ-
ng wave-induced fluid flow. The transition frequency between these
wo regimes is known as Biot’s characteristic frequency f B . There-
ore, FPD is valid only for frequencies f that are much lower than
iot’s characteristic frequency f B , which can be defined as (e.g.
iot 1956 ; Dutta & Od é 1979 ) 

f B = 

1 

2 π

ηφ

ρf κS 
, (A1) 

here φ is the porosity, κ the static per meability, η the fluid vis-
osity, ρf the fluid density and S the tortuosity of the pore space.
he aformentioned considerations regarding frequencies and scales
onstraining mesoscale FPD can be summarized as 

f � f B , 

l p � l h � λw . 
(A2) 

Studies have shown that a diffusion equation governing FPD can
e obtained from Biot’s 1962 quasi-static poroelasticity equations.
lternati vel y, it can be derived from the corresponding dynamic

quations by neglecting inertial terms (Dutta & Od é 1979 ; Chandler
 Johnson 1981 ). This diffusion equation is linked to the slow,

if fusi ve P -w ave (Dutta & Od é 1979 ) and it is associated to a
requency-dependent diffusion length L d given by (Norris 1993 ) 

L d = 

√ 

D 

ω 

, (A3) 

here ω is the angular frequency, with ω = 2 π f , and D is the
if fusion coef ficient. 

Guo et al. ( 2017 ) suggest the following expression for the dif-
usion coefficient D for a fractured medium consisting of mutually
rthogonal fracture sets embedded in a background deemed imper-
eable for the frequencies of interest 

D = 

M 

m H 

m 

d 

H 

m 

s 

(
β κ fr 

η

)
, (A4) 

here M 

m is the Biot’s storage fluid modulus, H 

m 

d and H 

m 

s are the
rained and the low-frequency P -w ave moduli, respecti vel y. Here,
he superscript m refers to the ef fecti ve properties of the fractured

edium and the term low-frequency refers to the frequency range in
hich the relaxed pressure regime pre v ails. This implies that there is

nough time for the pressure to equilibrate as fluid flows between the
rimary and secondary fractures. Next, β is the fractional volume
ccupied by the fractures and κ fr is the permeability of the fractures.
q. ( A4 ) assumes that the fractured medium is represented by an
f fecti ve one and that the size of the fractures are in the mesoscopic
cale range. Ho wever , these assumptions do no longer apply to the
odel under study, which considers an infinite horizontal primary

racture intersected by mesoscale secondary ones embedded in a
ull-space background (Fig. 1 ). Nevertheless, eq. ( A4 ) can be used
s a reference since the FPD process is very similar in both fracture
ystems. For the medium with intersecting orthogonal mesoscale
ractures, a P -wave impinging normally onto one of the fracture
ets creates a fluid pressure increase inside their pores that equi-
ibrates as the fluid flows into the intersecting fractures. We argue
hat this FPD process is comparable to the one pre v ailing in our

odel, in that a P -wave impinging normally onto the large primary
racture increases, in a similar way, the pressure inside this frac-
ure, which, in turn, also induces fluid flow onto the ortho gonall y
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intersecting secondary ones as pressure equilibrates. If we addition- 
ally assume that the properties of the background and the primary 
fracture remain invariant, then, according to eq. ( A4 ), variations in 
the dif fusion coef ficient D depend solel y on the properties of the 
secondary fractures. 

FPD exhibits two distinct regimes, the relaxed and the unre- 
laxed states, which are governed by the frequency-dependent dif- 
fusion length L d and the characteristic size of the heterogeneities 
l h . The relaxed regime dominates at suf ficientl y low frequencies 
where L d is much larger than l h . In this regime, there is ample time 
for pressure between the primary and secondary fractures to equal- 
ize. The unrelaxed regime pre v ails at suf ficientl y high frequencies 
where L d is significantly smaller than l h . Consequently, there is 
not enough time for pressure to equilibrate, and, as a result, the 
fractures become hydraulically isolated. A transition zone exists 
between these regimes at intermediate frequencies, for which L d 

approaches l h . This zone is characterized by a critical transition 
frequency, denoted by f c = ω c / 2 π , which is determined by the dif- 
fusion coefficient D and the size of the heterogeneities l h (Guo et al. 
2017 ) 

ω c = 

2 D 

( l h ) 2 
. (A5) 

A P P E N D I X  B :  
P O RO E L A S T I C - T O - V I S C O E L A S T I C  

H O M O G E N I Z AT I O N  P RO C E D U R E  

B1 Mathematical model 

In the following, we detail the homogenization procedure of the 
considered fracture system (Fig. 1 ), which consists of an infinite 
horizontal primary fracture intersected by secondary vertical ones 
embedded in a background deemed impermeable for the frequencies 
of interest. 

First, we present the governing equations used in the homoge- 
nization procedure. These are Biot’s quasi-static equations (Biot 
1962 ), which we solve over the sample � (Fig. 2 ) for the ver- 
tical compressional oscillatory relaxation test. We express these 
equations in the solid displacement–pressure ( u − p) formulation 
in the frequency domain (e.g. Quintal et al. 2011 ; Favino et al. 
2020 ), with u = u ( x , ω) and p = p( x , ω) , where x ∈ � is the 
position and ω ∈ F is the angular frequency, with F = (0 , W ] . 
This yields 

− ∇ · σ = 0 in � × F, 

− i α∇. u − i 
p 

M 

+ 

1 

ω 

∇ ·
(

κ

η
∇ p 

)
= 0 in � × F, 

(B1) 

where σ is the total stress and i is the imaginary unit, α is the Biot–
Willis ef fecti ve stress coef ficient, M is Biot’s fluid storage modu- 
lus, κ is the permeability and the term ( κ

η
∇ p) denotes the Darcy 

flux. 
The constitutive equation relating the total stress σ to u and p is 

σ = 2 μ ε + 

( λd tr ( ε ) − α p ) I , with 

ε = 

1 

2 

(∇ u + ( ∇ u ) T 
)
, 

(B2) 

where ε is the strain tensor, I the identity tensor, μ is the shear 
modulus and λd is the drained Lam é modulus. 
The required rock physical properties are calculated as 

λd = K m 

− 2 

3 
μ, 

α = 1 − K m 

K s 
, 

M = 

(
α − φ

K s 
+ 

φ

K f 

)−1 

, 

(B3) 

where K m 

, K s and K f are the bulk moduli of the drained solid frame, 
the solid grains and the pore fluid, respecti vel y. 

Next, we describe the vertical compressional oscillatory test ap- 
plied as a BC in order to solve the governing equations. To this end, 
we consider a Cartesian coordinate system in 2-D space R 

2 . The 
associated basis vectors ˆ x 1 and ˆ x 3 are aligned with the horizontal 
and vertical Cartesian axes, respecti vel y. We also let the sample �
be a quadrilateral. The boundary of this domain, denoted by �, is 
comprised by four segments: � 

+ 
1 , � 

−
1 , � 

+ 
3 and � 

−
3 . Segments � 

+ 
1 and 

� 

−
1 are opposite sides with outer normal vectors ˆ x 1 and − ˆ x 1 , respec- 

ti vel y. Like wise, segments � 

+ 
3 and � 

−
3 are opposite sides with outer 

normal vectors ˆ x 3 and − ˆ x 3 , respecti vel y (Fig. 2 ). For notational 
simplicity, we define ˆ n as the outward normal vector of �. 

In the following, we define the BC for displacements u , pressure 
p, tractions σ · ˆ n and the component normal to the boundary of 
the Darcy flux ( κ

η
∇ p · ˆ n ). We impose periodicity for the respective 

variables on opposing boundaries of the sample as follows 
The BC for displacements are 

u · ˆ x 3 | � −3 − u · ˆ x 3 | � + 3 
= −�u, 

u · ˆ x 1 | � −3 − u · ˆ x 1 | � + 3 
= 0 , 

u | � + 1 
− u | � −1 = 0 , 

(B4) 

where �u is a real displacement difference in the frequency domain. 
The first line of eq. ( B4 ) sets the BC corresponding to the vertical 
compressional oscillatory test. 

The respective BC for pressure, tractions and the Darcy flux are 

p | � + k 
− p | � −k = 0 , 

( σ · ˆ n 

) | � + k 
− ( σ · ˆ n 

) | � −k = 0 , (
κ

η
∇ p · ˆ n 

)
| � + k 

−
(

κ

η
∇ p · ˆ n 

)
| � −k = 0 , 

(B5) 

where the subscript k in � 

−
k and � 

+ 
k takes the value of 1 or 3 to 

denote opposite boundaries. 
Finally, we present the derivation of the P -wave modulus and nor- 

mal compliance of the primary fracture. We first obtain the average 
of the stress component 〈 σ33 〉 �p1 and that of the strain component 
〈 ε 33 〉 �p1 over the subdomain �p1 , which is the one correspond- 
ing to the primary fracture (Fig. 2 ). The calculation of the average 
quantities 〈 � 〉 �p1 are performed as follows 

〈 � 〉 �p1 = 

1 

| �p1 | 
∫ 

�p1 

� d�p1 , with | �p1 | = 

∫ 
�p1 

d�p1 . (B6) 

Then, we compute the complex-valued and frequency-dependent 
P -wave modulus H ( ω) of the primary fracture as 

H ( ω) = 

〈 σ33 〉 �p1 

〈 ε 33 〉 �p1 

. (B7) 

Next, we obtain the complex-valued and frequency-dependent 
normal compliance Z N ( ω) of the primary fracture as 

Z N ( ω ) = 

a f 

H ( ω ) 
, (B8) 
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here a f is the aperture of the primary fracture. 
We remark that the transition frequency f c can be e v aluated

s the frequency associated with the maximum magnitude of the
maginar y par t of the normal compliance ( | Im ( Z N ( ω)) | ) (Rubino
t al. 2015 ). 

2 Finite element solution 

n the following, we present the finite element solution of Biot’s
 1956 , 1962 ) governing eq. ( B1 ). The procedure is the one proposed
y Favino et al. ( 2020 ), who developed a computationally cost-
f fecti ve adapti ve meshing approach to discretize domains with
omplex heterogeneities. This technique creates non-conforming
eshes and local refinements through automatic adaptions of an

nitial uniform mesh. 
First, we present the weak formulation of Biot’s ( 1956 , 1962 )

q. ( B1 ). We refer the reader to Favino et al. ( 2020 ) for the de-
ails of the mathematical treatment. We consider a complex-valued
ector function v , with complex conjugate v ∗, which multiplies
he first line of eq. ( B1 ). We also consider a scalar function q
n the complex domain, with complex conjugate q ∗, which multi-
lies the second line of eq. ( B1 ). The corresponding inner products
re ∫ 
�

( ∇ · σ ) · v ∗ d� = 0 , 

− i 

∫ 
�

( α∇. u ) q ∗ d� − i 

∫ 
�

1 

M 

p q ∗ d� + 

1 

ω 

∫ 
�

∇ ·
(

κ

η
∇ p 

)
q ∗ d� = 0 . 

(B9) 

We then apply the divergence theorem to eq. ( B9 ). We also use the
onstitutive eq. ( B2 ) and the BC of eqs ( B4 ) and ( B5 ). Ho wever , we
o not yet include the BC pertaining to the oscillatory test. Finally,
e express the weak formulation of Biot’s equation as: find u and

p such that 

a〈 u , v 〉 − b〈 v ∗, p ∗〉 = 0 , 

− i b〈 u , q〉 − d〈 p, q〉 = 0 , 
(B10) 

here 

a〈 u , v 〉 = 

∫ 
�

(2 μ ε ( u ) : ε ( v ∗) + λd ∇ · u ∇ · v ∗) d�, 

b〈 u , q〉 = 

∫ 
�

α∇ · u q ∗ d�, 

d〈 p, q〉 = i 

∫ 
�

1 

M 

p q ∗ d� + 

∫ 
�

κ

η
∇ p · ∇q ∗ d�. 

(B11) 

To include oscillatory tests, we express the displacement as u =
u o + �u . Using this expression, eq. ( B10 ) becomes 

a〈 u o , v 〉 − b〈 v ∗, p ∗〉 = −a〈 �u , v 〉 , 
− i b〈 u o , q〉 − d〈 p, q〉 = i b〈 �u , q〉 , (B12) 

To find the finite element approximation of eq. ( B12 ), we use
 mesh τ , which discretizes the domain �. We also consider the
pproximated solutions u 

h = u 

h 
o + �u and p h , and we let the test

unctions v and q be the interpolating basis functions � and φ,
especti vel y, defined in the mesh τ . We then express the solutions

u 

h 
o and p h as a linear combination of the basis functions � and
, respecti vel y. Finall y, eq. ( B12 ) reduces to the following linear
ystem 

A −B 

T 

−i B −D 

∣∣∣∣
∣∣∣∣ U 

P 

∣∣∣∣ = 

∣∣∣∣ f 
g 

∣∣∣∣, (B13) 

here the U and P are the vectors associated with the unknown
oefficients of the discrete solutions of displacement u 

h 
o and pres-

ure p h defined at every node of the mesh. A , B and D are the
atrices associated with the bilinear forms a, b and d , respecti vel y,
here A i j = a〈 � j , φi 〉 , B k j = b〈 � j , φk 〉 and D kl = a〈 φl , φk 〉 . The

omponents of the right-hand side vectors f and g are defined as
f j = −a〈 �u, � j 〉 and g k = i b〈 �u, φk 〉 , respecti vel y. 

P P E N D I X  C :  P P  R E F L E C T I O N  

O E F F I C I E N T  O F  A  V I S C O E L A S T I C  

R A C T U R E  E M B E D D E D  I N  E L A S T I C  

A L F - S PA C E S  

e consider a model as shown in Fig. 3 , which consists of an infi-
ite horizontal fracture represented by a thin viscoelastic layer �v 

mbedded in the elastic half-spaces � 1 and � 2 . We further assume
hat both elastic half-spaces have the same rock physical proper-
ies. We are interested in finding the PP reflection coefficient of a
ormally incident wave striking at the interface of the viscoelastic
racture with the upper half-space � 1 . We describe in the follow-
ng the procedure to find the aformentioned PP reflectivity, which
ntails defining the governing equations, proposing the plane-wave
olutions and setting the appropriate continuity equations to find the
ave amplitudes. 
We formulate the elastic and viscoelastic wave equations in

he space-frequency domain. For the elastic case, we define
he displacement vector u 

e = u 

e ( x , ω) for any position x ∈ n ,
ith n = { � 1 , � 2 } and angular frequency ω ∈ F , with F =

0 , W ] . We also introduce the stress tensor field σ e acting upon
he medium. We then express the corresponding equation of

otion as 

− ρb ω 

2 u 

e = ∇. σ e in n × F. (C1) 

he associated constitutive equation is given by 

e = μ
(∇ u 

e + ( ∇ u 

e ) T 
) + λ ∇. u 

e I , (C2) 

here λ is the undrained Lam é modulus and is defined as λ =
d + Mα2 . 
For the viscoelastic case, we define the corresponding displace-

ent vector u 

v = u 

v ( x , ω) for any position x ∈ �v and angular fre-
uency ω ∈ F , with F = (0 , W ] . Additionally, we define σ v as the
tress tensor acting upon the medium. The expressions for the corre-
ponding equation of motion and constitutive equation remain iden-
ical to eqs ( C1 ) and ( C2 ), respecti vel y. Howe ver, for the viscoelastic
ersion the undrained Lam é modulus is frequency-dependent. This
s λ = λ( ω) = H ( ω) − 2 μ. 

As pre viousl y stated, we consider an incoming P wave that im-
inges normally onto the interface � 1 between the upper half-space
nd the fracture (Fig. 3 ). Since the half-spaces and the fracture are
epresented by elastic and viscoelastic media, respectively, only P
aves propagate vertically in these media. Then, to find the total
isplacement in each medium, we sum the corresponding contribu-
ions of upgoing and downgoing P waves. We propose plane-wave
olutions for the displacements in the elastic half-spaces and in the
iscoelastic thin layer, respecti vel y. 

For the elastic half-spaces n = { � 2 , � 2 } , we calculate the total
isplacements u 

e 
N as 

u 

e 
N = u 

e 
n D P 

+ u 

e 
n U P 

when n = � 1 , or 

u 

e 
N = u 

e 
n D P 

when n = � 2 , 
(C3) 

here D P and U P refer to the downgoing and upgoing P waves,
especti vel y. In the first line of eq. ( C3 ), the first and second terms
n the right-hand side represent the contributions of the incident and
eflected waves in the upper half-space � 1 , respectively. Likewise,
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in the second line of the same equation, the right-hand side term 

denotes the contribution of the transmitted wave in the lower half- 
space � 2 . 

Then, we express the corresponding displacements u 

e 
n j with n = 

� 1 and � 2 , and j = D P or U P , as 

u 

e 
n j = E n j exp [ ± i k e n x 3 ] , (C4) 

where E n j is the amplitude of the corresponding displacement and 
x 3 is the position. Ne gativ e and positive signs in the exponential 
correspond to downgoing and upgoing w aves, respecti vel y, k e n is 
the elastic scalar wavenumber for the P wave in medium n , calcu- 
lated as k e n = ω/V 

n 
P , where V 

n 
P is the P -wave velocity of medium 

n , with V 

n 
P = 

√ 

( λn + 2 μn ) /ρn 
b , where ρn 

b = φn ρn 
f + (1 − φn ) ρn 

s is 
the bulk density of medium n . 

For the viscoelastic medium �v , we calculate the total displace- 
ment u 

v as 

u 

v = u 

v 
D P 

+ u 

v 
U P 

. (C5) 

Then, we express the solution of the displacement u 

v 
j , with j = 

D P , U P as 
C © The Author(s) 2025. Published by Oxford University P
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u 

v 
j = V j exp [ ± i k v x 3 ] , (C6) 

where V j is the displacement amplitude, k v is the viscoelastic 
scalar wavenumber for the P wave calculated as k v = ω/V P ( ω) , 
where V P ( ω) is the complex-valued and frequency-dependent P - 
wav e v elocity that is computed as V P ( ω) = 

√ 

H ( ω) /ρv 
b , where 

ρv 
b = φv ρv 

f + (1 − φv ) ρv 
s is the bulk density of viscoelastic medium 

�v . 
If we assume that the amplitude of the incident P wave is one, 

then the reflection coefficient R P P at the upper half-space is equal to 
E � 1 U P (eq. C4 ). To solve for the unknown amplitudes, we assemble 
a system of equations by imposing continuity of both displacements 
and tractions across the interfaces � q , with q = 1 , 2 , which separate 
the elastic and viscoelastic media, respecti vel y (Fig. 3 ). (

u 

e 
N − u 

v 
)∣∣

� q 
= 0 , (

t e N − t v 
)∣∣

� q 
= 0 . 

(C7) 

Here, n = � q , t e N = ( σN 
e · ˆ x 3 ) · ˆ x 3 and t v = ( σ v · ˆ x 3 ) · ˆ x 3 are the 

normal traction components on the elastic and viscoelastic sides of 
the interface, respecti vel y. 
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