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Muchas veces nos interesa determinar si dos va-
riables cuantitativas están asociadas y, si es 
posible, a partir de una de ellas predecir el va-

lor de la otra. Para ello se utilizan dos análisis estadís-
ticos diferentes denominados análisis de correlación y 
de regresión. 

Si el objetivo es establecer una asociación entre las dos 
variables, recurriremos a la correlación, que es una me-
dida de la relación lineal entre dos variables numéricas. 
En cambio, si la meta es la predicción, recurriremos a 
un modelo de regresión, en el que una de las variables 
se considera independiente o predictora y la otra varia-
ble dependiente o resultado. 

CORRELACIÓN

Si dos parámetros tienen una relación lineal, existe co-
rrelación entre ellos. Por ejemplo, la glucemia y la insu-
lina están correlacionadas entre sí, lo que significa que 
cuando cambia una, también cambia la otra. La relación 
puede ser positiva o negativa. En la correlación positi-
va, si el valor de un parámetro aumenta o disminuye, 
el valor del otro parámetro varía también en el mismo 
sentido. La correlación también puede ser negativa y, 
en este caso, si el valor de un parámetro disminuye, el 
valor del otro parámetro aumenta, y viceversa. La corre-
lación solo indica una relación, pero no implica necesa-
riamente relación causa-efecto. 

La correlación es un término general  
para la asociación entre pares de variables.  

Esta puede ser positiva, cuando las dos variables 
cambian en el mismo sentido, o negativa,  

cuando lo hacen en sentido contrario

OBJETIVOS:

■	 Comprender los conceptos de correlación y regresión, y sus diferencias

■	 Saber valorar un coeficiente de correlación

■	 Saber cuándo utilizar el coeficiente de correlación de Pearson

■	 Saber cuándo utilizar el coeficiente de correlación de Spearman

■	 Comprender los modelos básicos de regresión

“La regresión lineal es como el GPS de los datos:  
te muestra la dirección a seguir en un mundo lleno de incertidumbre estadística”

William S. Cleveland

COEFICIENTE DE CORRELACIÓN

El coeficiente de correlación mide la dirección y la in-
tensidad de la relación, es decir, lo fuerte o débil que 
es, pudiendo tener valores entre -1 y 1. Si existe una re-
lación perfecta, el coeficiente será de 1 si la correlación 
es positiva, o de -1 si es negativa. Si no existe ninguna 
relación lineal, el coeficiente será 0. De esta forma, si el 
valor del coeficiente de correlación se aproxima a 0, la 
relación es débil, mientras que será más fuerte cuanto 
más se aproxime a 1 o -1.

Existen varios coeficientes de correlación. A continua-
ción, describiremos los utilizados con más frecuencia.

El coeficiente de correlación cuantifica la fuerza  
de la asociación entre dos variables, con valores entre 

-1 y 1, siendo los valores extremos una relación lineal 
perfecta, y el signo, la dirección de la relación.  

Un valor de cero indica que no existe una relación lineal 
entre las variables

1. Coeficiente de correlación de Pearson

El coeficiente de correlación lineal producto-momen-
to, más conocido como coeficiente de correlación de 
Pearson (r), es el más utilizado y se obtiene al dividir la 
covarianza entre el producto de la varianza de las dos 
variables:

donde sxy representa la covarianza y sx y sy las varianzas 
de las variables “x” e “y”.
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Para utilizar el coeficiente de correlación de Pearson 
entre dos variables continuas deben cumplirse los si-
guientes supuestos:

a)	� La relación entre las dos variables debe ser lineal. 
Esto puede comprobarse de forma sencilla con un 
diagrama de dispersión, observando que la forma 
de la nube de puntos sigue la dirección de una recta.

b)	� Ambas variables deben seguir una distribución 
normal. Podemos comprobarlo con una prueba de 
hipótesis, como la de Shapiro-Wilk o la de Kolmo-
gorov-Smirnov, o con un método gráfico, como el 
histograma o el gráfico de cuantiles teóricos.

c)	� Debe existir homocedasticidad, es decir, que la 
varianza de la variable “y” debe ser constante a 
lo largo de los valores de la variable “x”. Podemos 
confirmar si se cumple este supuesto de forma 
sencilla comprobando que la nube de puntos se 
dispersa de forma similar a lo largo de los valores 
de la variable “x”.

Para utilizar el coeficiente de correlación  
de Pearson la relación entre las variables debe 
ser lineal, deben distribuirse de forma normal 
en la población y deben cumplir el criterio de 

homocedasticidad

Por último, debemos saber que el valor de este coefi-
ciente es sensible a la presencia de valores extremos 
en la distribución, que pueden sesgar la magnitud del 
efecto estimado. En estos casos, nos plantearemos si lo 
más idóneo es utilizar alguna alternativa al coeficiente 
de correlación de Pearson.

Veamos un ejemplo: 

Podemos calcular el coeficiente de correlación de 
Pearson utilizando un programa de acceso libre, el 
software estadístico R (https://www.r-project.org/) 
con el plugin RCommander y esta base de datos. 

En la base de datos se recogen una serie de regis-
tros con información sobre niños asmáticos. Vamos 
a determinar si existe correlación entre los valores 
de peso y talla estandarizados (Z.Peso, Z.Talla). En el 
Anexo 1 de este capítulo se muestran las instrucciones 
para realizar este ejercicio. Si lo necesita, puede revi-
sar el capítulo 6.18. correspondiente a la instalación 
de R y RCommander.

Una vez cargados los datos, representamos el dia-
grama de dispersión (Figura 1), con el que podemos 
asumir que ambas variables se relacionan de forma 
lineal.

Seguidamente, comprobamos la asunción de norma-
lidad de la variable Z.Peso, mediante una prueba de 
Shapiro-Wilk. El programa nos ofrece el resultado, con 
un estadístico W = 0,948 y un valor de significación de 
p = 0,158. No podemos rechazar la hipótesis nula, por 
lo que asumimos que la variable peso estandarizado 
sigue una distribución normal. Podemos repetir el 
proceso para la variable Z.Talla, llegando a la misma 
conclusión (W = 0,982, p = 0,882).

Por último, vamos a comprobar el supuesto de homo-
cedasticidad. Si observamos el diagrama de puntos de 
la Figura 1, podemos asumir que la nube se dispersa 
de forma similar en todo el rango de valores de la va-
riable representada en el eje x.

Una vez comprobado que se cumplen los tres requisi-
tos necesarios, calculamos el coeficiente de correla-
ción de Pearson.

El programa nos ofrece un valor de r = 0,82, con un 
valor de significación estadística p <0,05. Por lo tanto, 
podemos concluir que existe una asociación alta entre 
las dos variables.

El programa R nos ofrece también el intervalo de con-
fianza del 95% del coeficiente, que es de 0,66 a 0,91. 
El intervalo no incluye el valor nulo (0), por lo que ya 
sabemos que alcanza significación estadística sin ne-
cesidad de conocer el valor de p.

2. Coeficiente de correlación de Spearman

El coeficiente de correlación por rangos, más conocido 
como coeficiente de correlación de Spearman (ρ) es el 
equivalente no paramétrico del coeficiente de Pearson. 

Figura 1. Diagrama de dispersión  
entre las variables peso estandarizado (Z.Peso)  

y talla estandarizada (Z.Talla)
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Como ocurre con el resto de las técnicas no paramétri-
cas, no se emplean los datos directos para el cálculo del 
coeficiente, sino su transformación en rangos. El coefi-
ciente de Spearman no precisa asumir el supuesto de 
normalidad de las variables, por lo que puede utilizarse 
cuando no se cumplen los supuestos necesarios para el 
coeficiente de correlación de Pearson.

Aunque la potencia del coeficiente de Spearman es me-
nor que la del coeficiente de Pearson, tiene una serie 
de ventajas sobre este último. En primer lugar, no exi-
ge supuesto de linealidad, por lo que puede utilizarse 
en casos de relación logística y exponencial. Solo debe 
cumplirse que la relación entre las dos variables sea mo-
nótona, lo cual quiere decir que cuando una de las varia-
bles cambia, la otra lo hace con una tendencia constante.

En segundo lugar, como ya se ha dicho, al ser una prue-
ba no paramétrica, no precisa asumir el supuesto de 
normalidad de las variables. Por último, al calcularse 
con los rangos en lugar de con los datos directos, es 
mucho más robusto a la presencia de valores extremos 
que el coeficiente de Pearson.

Volviendo al ejemplo anterior: 

Partiendo de la base de datos sobre niños asmáticos, 
vamos a suponer que no se cumple alguno de los tres 
requisitos necesarios para poder emplear el coeficien-
te de Pearson. En ese caso, podríamos calcular su al-
ternativa no paramétrica, el coeficiente de correlación 
de Spearman.

En el Anexo 2 de este capítulo se muestran las instruc-
ciones para realizar este ejercicio.

El programa nos ofrece un valor del coeficiente ρ = 
0,85, con un valor de p <0,05. En el caso del coeficiente 
de Spearman, RCommander no calcula de forma direc-
ta su intervalo de confianza, para lo cual habría que 
recurrir a paquetes adicionales.

Al igual que en el ejemplo anterior, podemos concluir 
que existe una asociación alta entre las dos variables.

3. Otros coeficientes de correlación

Además, existen otros coeficientes, el más utilizado de 
los cuales es el coeficiente tau de Kendall (τ).

La tau de Kendall es otra alternativa no paramétrica, 
cuyo uso puede preferirse al de Spearman en aquellos 
casos de muestras pequeñas y en las que exista una 
alta ligadura de rangos (al ordenar los datos por rangos, 
existen múltiples coincidencias en la misma posición).

Otros coeficientes menos utilizados son el coeficiente 
de correlación parcial, que estudia la relación entre 
dos variables, pero teniendo en cuenta y eliminando la 
influencia de otras variables existentes; el coeficiente 

de correlación semiparcial, similar al anterior, pero que 
discrimina el efecto de terceras variables sobre las dos 
correlacionadas de forma independiente (no sobre las 
dos de forma simultánea, como el coeficiente parcial); y 
el coeficiente de correlación múltiple, que permite co-
nocer la correlación entre una variable y un conjunto de 
variables, todas ellas cuantitativas.

REGRESIÓN

La idea es similar a la correlación y a veces se confunde 
con ella. Es importante aclarar la diferencia entre corre-
lación y regresión. La correlación solo indica la fuerza 
de la relación entre dos variables. La regresión permite 
estimar o predecir el valor de una variable dependiente 
o explicativa en función del valor que tome la otra va-
riable, la independiente o de respuesta.

Mientras que la correlación mide únicamente la fuerza 
y dirección de la asociación entre dos variables, 

la regresión permite estimar los valores de una de 
ellas (dependiente) a partir de los valores de la otra 

(independiente)

La regresión es un instrumento potente porque puede 
demostrar la asociación entre muchas variables expli-
cativas y la variable respuesta, y puede ponderar el 
efecto independiente de cada una de ellas. También 
permite mostrar relaciones no lineales entre las varia-
bles explicativas y la de respuesta. 

En general, describimos la regresión como simple o 
univariable cuando en el modelo solo se incluye una 
variable independiente; esto contrasta con la regresión 
múltiple o multivariable, en la que intervienen dos o 
más variables independientes o predictoras.

MODELOS DE REGRESIÓN

Si tomamos una variable independiente “x” y una va-
riable dependiente “y”, todos los modelos de regresión 
simple se ajustan a la siguiente ecuación:

Función(y) = a + bx + e

El componente “Función(y)” dependerá del tipo de va-
riable dependiente del modelo, lo que nos condicio-
nará el modelo de regresión concreto que tendremos 
que utilizar. En la Figura 2 se muestra un ejemplo de 
diagrama de dispersión de dos variables con la línea de 
regresión del modelo, en este caso lineal, así como el 
significado de los diferentes coeficientes de la ecuación 
de regresión: “a” y “b” son los denominados coeficien-
tes de regresión. 
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El componente “a” representa el valor de “y” cuando 
“x” vale 0. Suele denominarse interceptor, ya que es el 
punto donde la representación gráfica de la línea de re-
gresión cruza el eje de ordenadas (eje y).

El componente “b” representa la pendiente de la línea 
y nos informa de en cuántas unidades aumenta la va-
riable “y” por cada unidad que aumenta la variable “x”.

Por último, el cuarto componente, “e”, representa la va-
riabilidad aleatoria del modelo. Esta variabilidad será 
la responsable de la diferencia que se produzca entre 
la predicción del modelo de regresión y el valor real ob-
servado en el estudio.

Según los componentes descritos en la ecuación ante-
rior, podemos definir los cuatro modelos de regresión 
simple utilizados con más frecuencia:

1. Regresión lineal simple

Es el caso más sencillo y se aplica a dos variables cuan-
titativas. En este caso, la función del modelo es la me-
dia aritmética de la variable dependiente.

2. Regresión logística

La regresión logística es muy similar a la regresión lineal; 
lo usamos cuando la variable dependiente es cualitativa 
dicotómica (por ej.: la presencia o ausencia de una enfer-
medad, que se codifica como 1 o 0) y una serie de varia-
bles explicativas (independientes) discretas o continuas.

La función del modelo será el logaritmo neperiano (na-
tural) de la odds de que la variable dependiente tenga 
el valor 1. El coeficiente “b” representa el logaritmo ne-
periano de la odds ratio de que ocurra un fenómeno 
por unidad de cambio de la variable independiente, por 
lo que podremos estimar la odds ratio calculando su 
antilogaritmo (eb).

3. Regresión de Poisson

La distribución de Poisson es la distribución de proba-
bilidad del recuento de sucesos raros que ocurren alea-
toriamente en un intervalo de tiempo o espacio a una 
tasa media constante. Constituye la base de la regre-
sión de Poisson, que se utiliza fundamentalmente para 
analizar la tasa de una enfermedad cuando los indivi-
duos tienen diferentes tiempos de seguimiento. 

La distribución de Poisson es una distribución discre-
ta, por lo que los valores de la variable dependiente 
son enteros positivos. Esto la convierte en la técnica 
ideal para situaciones de recuento, como número de 
ingresos, número de hijos, etc. La función del modelo 
de regresión de Poisson es el logaritmo neperiano de 
lambda (λ), que representa la probabilidad de que ocu-
rra un evento en un intervalo determinado, lo que suele 
corresponder a la densidad de incidencia en los estu-
dios longitudinales.

4. Regresión de riesgos proporcionales de Cox

Se utiliza en estudios de supervivencia, cuando la varia-
ble dependiente es de tipo tiempo a suceso. El modelo 
es similar al de la regresión logística, con la diferencia 
de que la función representa el logaritmo neperiano de 
la tasa de riesgos instantáneos (hazard ratio).

La interpretación de todos estos modelos se verá de 
forma más clara cuando se desarrollen en próximos 
capítulos, donde se describirán sus peculiaridades, sus 
requisitos de aplicación y su modo de llevar a cabo con 
ejemplos prácticos.

0,0

∆X

∆Y

x

y

e

a

y = a + bx + e

b =
∆X
∆Y

Figura 2. Representación de los distintos 
componentes de un modelo de regresión lineal 

simple. El punto “a” muestra el intercepto con el eje 
de ordenadas; “b” representa la pendiente de la recta 

de regresión, en cuántas unidades aumenta 
la variable y por cada unidad de aumento de la variable 

x; “e” representa el error entre el valor real 
y la predicción de la recta, llamados residuos 

y representado por las líneas de puntos
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Anexo 1
1. Lanzar RCommander

2. �Cargar esta base de datos

3. �Comprobar el supuesto de linealidad. Representar el diagrama de dispersión: 
Gráficas\Diagrama de dispersión… 
Seleccionar Z.Peso como variable “x” y Z.Talla como variable “y”  Aceptar

4. �Comprobar el supuesto de normalidad: 
Estadísticos\Resúmenes\Test de normalidad… 
Marcamos la variable Z.Peso y la prueba elegida, en este caso, Shapiro-Wilk  Aceptar 
Repetir los mismos pasos para la variable Z.Talla

5. Comprobar el supuesto de homocedasticidad. Utilizar el mismo gráfico de dispersión del paso 

6. �Calcular el coeficiente de correlación de Pearson: 
Estadísticos\Resúmenes\Test de correlación… 
Seleccionar las dos variables, el coeficiente de correlación elegido (el de Pearson) y marcar la opción para un contraste 
bilateral (salvo que se conozca el sentido de la asociación, en cuyo caso se podría seleccionar una de las dos opciones de 
contraste unilateral)  Aceptar

Anexo 2
Los pasos son similares a los del ejemplo del Anexo 1, pero en el paso 6 seleccionaríamos el coeficiente de Spearman.

PREGUNTAS DE AUTOEVALUACIÓN

1.	 ¿Cuál de los siguientes análisis permite predecir una variable a partir de otra?:
	 a) Error estándar. 
	 b) Correlación.
	 c) Regresión.
	 d) Análisis de la varianza.
2.	� Si existe una correlación muy fuerte entre dos variables, entonces el coeficiente de correlación debe ser:
	 a) Mayor que 1 si la correlación es positiva.
	 b) Cercana a 0, pero negativa, si la correlación es negativa.
	 c) Lo más cercano posible a 1 (+1 o -1).
	 d) Lo más cercano posible a 0.
3.	� ¿Cuál de los siguientes supuestos no es necesario cumplir para utilizar correctamente el coeficiente de 

correlación de Pearson?:
	 a) Homocedasticidad. 
	 b) Tamaño muestral grande.
	 c) Normalidad de ambas variables.
	 d) Relación lineal entre las dos variables.
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