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Fire management requires an understanding of the spatial characteristics of fire ignition patterns and
how anthropogenic and natural factors influence ignition patterns across space. In this study we take
advantage of a recent fire ignition database (855 points) to conduct a comprehensive analysis of the
spatial pattern of fire ignitions in the western area of Neuquén province (57,649 km?), Argentina, for the
1992—2008 period. The objectives of our study were to better understand the spatial pattern and the
environmental drivers of the fire ignitions, with the ultimate aim of supporting fire management. We
conducted our analyses on three different levels: statistical “habitat” modelling of fire ignition (natural,
anthropogenic, and all causes) based on an information theoretic approach to test several competing
hypotheses on environmental drivers (i.e. topographic, climatic, anthropogenic, land cover, and their
combinations); spatial point pattern analysis to quantify additional spatial autocorrelation in the ignition
patterns; and quantification of potential spatial associations between fires of different causes relative to
towns using a novel implementation of the independence null model. Anthropogenic fire ignitions were
best predicted by the most complex habitat model including all groups of variables, whereas natural
ignitions were best predicted by topographic, climatic and land-cover variables. The spatial pattern of all
ignitions showed considerable clustering at intermediate distances (<40 km) not captured by the
probability of fire ignitions predicted by the habitat model. There was a strong (linear) and highly sig-
nificant increase in the density of fire ignitions with decreasing distance to towns (<5 km), but fire
ignitions of natural and anthropogenic causes were statistically independent. A two-dimensional habitat
model that quantifies differences between ignition probabilities of natural and anthropogenic causes
allows fire managers to delineate target areas for consideration of major preventive treatments, strategic
placement of fuel treatments, and forecasting of fire ignition. The techniques presented here can be
widely applied to situations where a spatial point pattern is jointly influenced by extrinsic environmental
factors and intrinsic point interactions.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

exert feedbacks on fire occurrence patterns (Whelan, 1995; Bond
and van Wilgen, 1996; Mermoz et al., 2005). For this reason,

Fire management requires an understanding of the spatial
characteristics of fire ignition patterns and a quantification of the
relative importance of anthropogenic and natural factors on igni-
tion probabilities across space and time (Finney, 2005; Thompson
et al, 2012). This is an important task because fire is a major
driver of the structure and composition of vegetation communities
in many ecosystems, and vegetation (fuels) has a strong potential to
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wildfires have been intensively studied around the globe, but also
because of their general importance for the global carbon cycle
(Bowman et al., 2009; USGCRP, 2011). In the last five years, many
studies have been published in this research field, ranging from
those with a global perspective (e.g. Krawchuk et al., 2009) to those
focussed on different continents or specific areas such as Africa
(Dlamini, 2010), Asia (Liu et al., 2011), Europe (mainly the Medi-
terranean region) (Romero-Calcerrada et al., 2008; Catry et al.,
2009; Martinez et al., 2009; Bar Massada et al.,, 2012; Oliveira
et al., 2012; Serra et al., 2013), North America (Syphard et al.,
2008; Parisien and Moritz, 2009; Gralewicz et al., 2012) and Oce-
ania (O’Donnell, 2011).
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The most common approach for understanding the spatial
pattern of wildfire ignitions and their environmental drivers is
statistical modelling based on observed ignition locations
(Sturtevant and Cleland, 2007; Bar Massada et al., 2011) which is
closely related to species-distribution modelling (Franklin, 2010).
Observed wildfire ignition locations (analogous to locations of
species occurrence) are analysed in relation to environmental var-
iables that are hypothesised to influence the spatial distribution of
ignitions (or species occurrences) (Bar Massada et al, 2012).
Application of this approach showed that the occurrence of fire
ignitions is inherently stochastic, but that abiotic and biotic factors
affect the location of fire ignitions and the size of the fires (i.e.
environmental dependency). For example, fuel characteristics and
topography are major factors that determine the spatial pattern of
wildfires (Guyette et al., 2002; Mermoz et al., 2005) and human
activities play an important role in fire dynamics, not only in
starting fires, but also by modifying fuel characteristics (Pyne, 1996;
Bar Massada et al., 2012). However, additional smaller-scale auto-
correlation may arise in the spatial ignition pattern if fire modifies
small-scale vegetation composition in such a way that a once
burned site may become more fire prone in subsequent years
(Mutch, 1970; Kitzberger et al., 2012) or trees that have burned
before are subject to a higher likelihood of burning than trees that
have not burned before (Romme, 1980). Such a spatial autocorre-
lation structure in the ignition pattern that occurs additionally to
the broader-scale environmental dependency can be analysed with
recent methods of spatial point pattern analysis (Illian et al., 2008).

Fire is of special importance in northern Patagonia (Tortorelli,
1947; Kitzberger et al., 1997; Veblen et al., 1999; Mundo et al,,
2012). While the temporal pattern of fire occurrence has been
well investigated in northern Patagonia (Kitzberger et al., 1997;
Veblen et al., 1999; Mundo et al., 2012), much less is known about
its spatial patterns. For example, how are fire ignitions distributed
across larger spatial scales and what are their natural and anthro-
pogenic drivers? A recently compiled fire ignition database on the
southern Andes of Argentina developed by the Argentinian Na-
tional Plan of Fire Management (Plan Nacional de Manejo del
Fuego, unpublished data) provides information on dates, causes,
extent and geographical coordinates of fire ignitions together with
detailed maps of environmental variables and land use provides a
means for a detailed study of spatial patterns of fire ignitions.

In this study we took advantage of this fire ignition database and
conducted a comprehensive analysis of the spatial pattern of fire
ignitions in the western area of Neuquén province for the 1992—
2008 period. The general aim of our study was to better understand
the spatial patterns and the environmental drivers of these fire
ignitions with the ultimate objective of supporting fire manage-
ment. We conducted our analyses on three different levels.

For the first analysis we used an information theoretic approach
for model selection (Burnham and Anderson, 2002) to test several a
priori hypotheses on the environmental factors that determine fire
ignition probabilities based on topographic, climatic, land cover
and anthropogenic variables (e.g. Kanagaraj et al., 2011; De Angelo
et al.,, 2013). We conducted separate analyses for all fire ignitions,
and for ignitions attributed to anthropogenic and natural causes.
We hypothesised that fire ignitions of natural causes (in the
following “natural fire ignitions”) are best predicted by a model
based on natural factors (i.e. topographic and climatic variables)
whereas fire ignitions of anthropogenic causes (in the following
“anthropogenic fire ignitions”) are best predicted by a model that
combines natural and anthropogenic factors.

In a second analysis we used techniques of spatial point pattern
analysis to quantify the smaller-scale correlation structure
(<50 km) of the spatial pattern of the different types of fire igni-
tions. The statistical models selected for the first analysis were used

to describe the underlying extrinsic heterogeneity of the corre-
sponding fire ignition patterns. We hypothesised that extrinsic
environmental factors alone are not sufficient to explain the spatial
pattern of fire ignitions.

In a third analysis we quantify potential spatial associations
between fires of different causes and of natural and anthropogenic
causes relative to towns. We hypothesised that (i) there is a positive
small-scale relationship (<10 km) between the location of towns
and the spatial pattern of anthropogenic fire ignitions due to
“diffusion” of human activities from towns, (ii) natural fire ignitions
are independent of the pattern of towns, and (iii) natural fire ig-
nitions are independent of the patterns of anthropogenic fire
ignition. To test these hypotheses we present a novel imple-
mentation of the independence null model that conditions on both,
the observed environmental dependency and the observed auto-
correlation structure of the ignition patterns.

2. Methods
2.1. Fire ignition database

The unpublished database from the Plan Nacional de Manejo del
Fuego (Argentinian National Plan of Fire Management) for Neuquén
province (northern Patagonia, Argentina) was used in this study. It
covers the period January 1992—January 2008 and comprises 2326
fire reports. This database was built with fire reports provided by
the Direccién Provincial de Bosques (Neuquén Provincial Forest
Service), volunteer fire-fighters, Administracion de Parques Nacio-
nales (National Parks Administration), Gendarmeria Nacional
Argentina (Argentine National Gendarmerie), Aero Clubs and the
Argentinian National Plan of Fire Management. It contains the
following information for each record: starting and ending time,
location, coordinates, property (public or private), type of land
cover affected, area burned and causes. Due to the absence of co-
ordinates in many of these records, the original database was
reduced to 855 fire reports for which coordinates were reported.
The final data base comprised 153 fires caused by climatic events,
52 intentional fires, 557 caused by accident or negligence, and 93 of
unknown origin.

2.2. Study area

The corners of the study area were defined by the northern-
most—westernmost and southernmost—easternmost ignition
points of the 855 fires reported in the Neuquén Province for the
period 1992—2008. This led to a 57,649 km? study area ranging
36.8—40.9°S latitude and 69.7—71.7°W longitude and bordering
Chile to the west, Mendoza Province to the north, and Rio Negro
Province to the south (Fig. 1). Mean annual precipitation ranges
from 150 mm at lower elevations at the northwestern end of the
study area to 1530 mm at the southwestern end of the study area.
Mean annual temperature ranges from 4.5 °C in the southwest to
14 °C in the north. Elevation across the study area ranges from
approximately 426—3966 m a.s.l. with Tromen Volcano as the
highest peak. Vegetation in the study area reflects the west-to-east
precipitation gradient, ranging from forests of Nothofagus pumilio,
Nothofagus antarctica, and Austrocedrus chilensis in the west on the
slopes of the Andes mountain range to the Patagonian steppe of
shrubs and grasses, reaching the Monte Desert (dominated by
Larrea divaricata and Atriplex lampa) to the east. This vegetation
gradient results in substantial differences in fuel types in each land-
cover class. Thirty-eight towns are located within the study area
(Fig. 1), with populations ranging from 103 (Villa del Curi Leuvi) to
31,534 inhabitants (Zapala).
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Fig. 1. Map of the study area. The graph on the left indicates the rectangular area over a map of Neuquén province. On the right, the extracted 57,649 km? study area used in this
study. Fire ignitions are indicated in red, cities in white dotted circles and routes in black lines. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

2.3. Variable preparation

All environmental variables were expressed in raster format
using a grid resolution of 90 m (see Fig. S1 And Table S1 In
Supporting information). Environmental variables encompassed
four groups: topographic variables (elevation, northing, easting,
slope, distance to streams), climatic variables (mean annual tem-
perature, annual precipitation), anthropogenic variables (distance
to roads and towns, diffusion of human activity from towns), and 13
categorical land-cover classes (Tables S1 and S2). Diffusion of hu-
man activity away from towns was quantified as the number of
towns and population density within different distances R (see
Appendix S1 for detailed description of methods). We tested
several neighbourhood distances between 5 and 50 km (i.e. R = 5,
10, 20, 30, 40 and 50 km) to detect a critical scale of neighbourhood
diffusion.

Because fire ignitions are spatially autocorrelated (Fig. 1), we
also incorporated a spatial autoregressive term in the model of fire
occurrence probability (Chou et al., 1993; Appendix S1). We tested
autoregressive variables based on several neighbourhoods (i.e.

R =0.5,1, 1.5, 2 and 2.5 km) to determine the spatial scale that
received most support from our data.

2.4. Statistical analyses to determine the probability of a fire
ignition (analysis 1)

2.4.1. GLM and generation of pseudo-absences

We used statistical habitat models based on Generalised Linear
Models (GLM) to predict the probability of a fire ignition from a set
of landscape-scale explanatory variables and presence versus
pseudo-absence data (Manly et al., 1993). Coordinates for pseudo-
absences were randomly but regularly distributed within the
study area (having a minimal distance of 8 km) because an ignition
could occur, in principle, at any location. However, to avoid pseudo-
absence points being located close to observed fire ignition points,
we did not allow pseudo-absence points within buffer zones of
500 m around fire ignition points. As recommended by Liu et al.
(2005), we selected the number of pseudo-absences similar to
the number of presences to obtain a dataset with a prevalence of
50%.
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To account for our data structure we used logistic regression
(McCullagh and Nelder, 1989) to predict the probability p(x) of fire
ignition at a given location x within the study area based on a set of
independent variables v;(x). Once the model is fitted, probability
values can be calculated for each location x within the study area.
All GLMs were fitted within the program R 2.8.1 (R Development
Core Team, 2008).

2.4.2. Model selection

We derived a set of six alternative a priori hypotheses on the
different types of factors that may influence the occurrence of
a fire: topography, climate, anthropogenic, natural (i.e. topogr-
aphy + climate), natural + land cover, and all factors together
(Table 1). We evaluated these six hypotheses separately for all fire
ignitions, and fire ignitions due to natural and anthropogenic
causes, yielding a total of 18 models. Before running the GLMs, we
performed a variable reduction within each hypothesis to avoid
inclusion of highly correlated variables and variables that did not
show differences between presence and pseudo-absences
(Appendix S1). We selected the most parsimonious model from
competing models based on the lowest Akaike Information Crite-
rion (AIC). To assess the prediction accuracy of the models we
performed a receiver operating characteristic (ROC) analysis
(Fielding and Bell, 1997) and used the overall area under the curve
(AUC) as index of model prediction. For the ROC analysis we used
correctly classified presences (i.e. observed fire ignitions) and
correctly classified pseudo-absences.

We finally applied the selected model of each group (i.e. all ig-
nitions, natural and anthropogenic causes) to the entire study area
(without the autoregressive term) using the predicted coefficients
and the GIS map layers of the explanatory variables to convert our
model into a predictive map surface. This map, which gives the
probability that an ignition would occur at location x, was then
used in the point pattern analysis as intensity function A(x) to
describe the heterogeneity of the pattern.

2.4.3. Two-dimensional model

We expect that natural and anthropogenic caused ignitions are
driven by different factors. Revealing the areas where the risk for
the occurrence of the two types of ignitions is different or similar is
of high importance for management because they require different
management actions. To reveal such areas we used the Naves
scheme (Naves et al., 2003) that classifies the ignition probability at
location x in a two-dimensional way based on two axis, one based
on the model for fire ignitions of natural causes [=ppat(X)] and the
other being that of anthropogenic causes [panth(X)]. To obtain a
simple classification, we divided each axis into low risk (p < 0.1),
moderate risk (0.1 < p < 0.5) and high risk (p > 0.5). This resulted in
four classes that require especial attention (see inset Fig. 2d): areas
of overall high fire risk (i.e. ppat > 0.5 and panptn > 0.5), areas of
moderate fire risk (i.e. 0.1 < ppar < 0.5 and 0.1 < panth < 0.5), areas of
high natural but moderate anthropological risk (i.e. ppat > 0.5 and

Panth < 0.5), and areas of moderate natural but high anthropological
risk (i.e. panth > 0.5 and ppae < 0.5).

2.5. Spatial point pattern analysis (analyses 2 and 3)

The spatial pattern of fire ignitions (Fig. 1) is apparently a het-
erogeneous point pattern where the probability A(x) that a fire
ignition occurs at location x depends on the environmental con-
ditions at the location x. However, the spatial pattern of fire igni-
tions shows also a considerable aggregation which is probably not
captured by broader-scale environmental variables (Fig. S1), but
caused by intrinsic mechanisms either in fire susceptibility or in
some form of autocorrelation in human behaviour (not captured by
our environmental variables). The first objective of the point
pattern analysis is therefore to quantify this observation and to test
if intrinsic mechanisms are required to explain the observed pat-
terns of fire ignitions (analysis 2). The second objective of point
pattern analysis is to test several specific hypotheses on the spatial
dependency among the pattern of different fire causes and of fire
ignitions to towns (analyses 3).

2.5.1. Summary statistics

To quantify the spatial association between two patterns such as
towns (focal pattern i) and fire ignitions (second pattern j) we used
the bivariate neighbourhood density function O(r) which is the
mean density of fire ignitions within rings with width dr and radius
r centred at towns (Wiegand and Moloney, 2004). Using rings has
the advantage that one can isolate specific distance classes,
whereas the commonly used cumulative K-function confounds ef-
fects at larger distances with effects at shorter distances. Addi-
tionally, the O-ring statistic has the direct interpretation of a
neighbourhood density, which is more intuitive than an accumu-
lative measure (Wiegand and Moloney, 2004). Important additional
information is provided by the distribution function Dj(r) of the
distances r from fire ignitions to the nearest town (Illian et al,,
2008). Nearest neighbour statistics are “short-sighted” and sense
only the immediate neighbourhood of the points, which makes
them especially sensitive to local cluster structures. The corre-
sponding univariate (or partial) summary statistics Oji(r) and Dj(r)
for the pattern of ignitions (j) follow intuitively by estimating the
density of ignitions at distance r (or the distance r to the nearest
ignition) for all ignitions (Illian et al., 2008). All point pattern an-
alyses were conducted with the software Programita (Wiegand and
Moloney, 2004). Because the study area showed an irregular shape
(Fig. 1) we used a polygon encompassing the study area to exclude
the area outside the study area. For the estimation of the summary
statistics and the intensity function we used a spatial resolution of
1 km and a ring width of 3 km.

2.5.2. Null models for univariate point pattern analysis (analysis 2)
Our null hypothesis is that the univariate patterns of fire igni-
tions (all, natural and anthropogenic causes) were only driven by

Table 1
The six hypotheses to predict the probability of fire occurrence and corresponding environmental variables.
ID Hypothesis Variables
1 Topographic Elevation, northing, easting, slope, distance to streams, and autoregressive variable
2 Climatic Precipitation, temperature and autoregressive variable
3 Anthropogenic Distance to roads, distance to towns, number of town in different range of distances (2, 5 and 10 km), number of habitants in

different range of distances (5, 10, 20, 30, 40 and 50 km) and autoregressive variable

4 “Natural” (1 + 2)
5 “Natural” + Land cover
6 Full

Elevation, northing, easting, slope, distance to streams, precipitation, temperature and autoregressive variable
Elevation, northing, easting, slope, distance to streams, precipitation, temperature, land cover and autoregressive variable
Elevation, northing, easting, slope, distance to streams, precipitation, temperature, land cover, distance to roads, distance to

towns, number of town in different range of distances (2, 5 and 10 km), number of habitants in different range of distances
(5, 10, 20, 30, 40 and 50 km) and autoregressive variable
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Fig. 2. Probability of occurrence of fire ignitions as estimated by the most parsimonious logistic regression models in the 1 km resolution used for the point pattern analyses. a)
Model for natural-caused fire ignitions only based on all groups of variables except anthropogenic variables, b) model for human-caused fire ignitions only based on the full model,
¢) model for all fire ignitions based on the full model. For best models see Table A3. d) Two-dimensional model that visualises the differences between the risk of fire ignitions due to
natural vs. anthropogenic causes. The probability cut-offs: low risk: 0.1, intermediate human risk: 0.47, intermediate natural risk: 0.5. In all panels, a black dot indicates a town with

a population of 1000 or more.

environmental heterogeneity quantified by the corresponding in-
tensity function A(X) calculated in analysis 1. To test this hypothesis
we used a heterogeneous Poisson process (Wiegand and Moloney,
2004) as null model in which the observed fire ignitions were
randomised independently from each other but the probability that
location x received a ignition was proportionally to A(x) (e.g. Yang
et al., 2007; Fig. S2A and C).

2.5.3. Null models for bivariate point pattern analysis (analysis 3)

To respond to our three hypotheses regarding the spatial asso-
ciations between the fires of different origin and their relationship
to towns we need to test for independence of two patterns. A test of
independence must be conditionally on the spatial structure of the
two univariate component patterns, but any relationship between
the component patterns need to be removed (Dixon, 2002;
Jacquemyn et al., 2012). However, this is a difficult task due to the
potential dependence of the distribution of fire ignitions on envi-
ronmental conditions. To reveal the “pure” second-order (interac-
tion) effect we therefore used a novel implementation of the
independence null model that conditions on both, the observed
small-scale autocorrelation structure of the fire ignitions and the
environmental dependency represented by the intensity function
A(x). To this end we used pattern reconstruction (Tscheschel and
Stoyan, 2006; Wiegand et al., 2013) that allow generation of pat-
terns that follow a given intensity function A(x) and show in good
approximation the same small-scale autocorrelation structure as
the observed pattern (Appendix S1).

In hypothesis i (location of town vs. anthropogenic fire ignitions)
and hypothesis ii (location of town vs. natural fire ignitions) we
kept the pattern of towns fixed (because it was not influenced by
fires that occurred between 1992 and 2008) and randomised the
pattern of anthropogenic or natural fire ignitions, respectively,
based on pattern reconstruction using the corresponding fire in-
tensity function as explained above. In hypothesis iii (anthropo-
genic vs. natural fire ignitions) we conducted two analyses allowing

each pattern being the focal pattern (i.e. anthropogenic vs. natural
fire ignitions and natural vs. anthropogenic fire ignitions).

2.54. Significance tests

To assess the fit of the independence null model, we generated
199 simulated data sets and used the 5th lowest and highest values
of our summary statistics [i.e. Oy(r) or Dy(r)] at distance r as
simulation envelopes to depict the range of possible values under
the point process model. The simulation envelopes provide
approximate 5% intervals but are prone to type I error (Diggle,
2003; Loosmore and Ford, 2006; Illian et al., 2008). To assess the
overall fit of the independence null model we therefore used a
goodness-of-fit (GoF) test proposed by Loosmore and Ford (2006).
This test reduces the distance-dependent information of the sum-
mary statistics for the observed data (k = 0) and the simulated data
(k =1, ...,199) into one single test statistics uy and calculates the
rank of the observed uy (k = 0) within all uy. If the rank of ug is larger
than 190 the data show a departure from the null model with a 5%
error rate.

3. Results
3.1. Analysis of fire ignition database

Sixty-five percent of the 855 fire ignitions were caused by ac-
cident or negligence, 18% by climatic events (i.e. lightning), 7% by
arsonists and in 10% of cases the cause was unknown. The 855 ig-
nitions burned a total area of 366,440 ha and 78% of the ignitions
burned areas of less than 30 ha. Climatic events accounted for 53%
of the total area burned (193,126 ha), and negligence for 44%
(160,635 ha). Thus, although the number of ignitions differed, fires
from natural and anthropogenic causes burned approximately the
same area.

The ignitions were not randomly distributed over the different
land cover types after correcting for the area of each land cover type
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(Chi-Square = 3601.738; df = 12 and p < 0.01). The Patagonian
steppe, wetlands, tree plantations and urban areas showed more
ignitions than expected by chance whereas Monte Desert,
N. pumilio forests, rocky areas, and High-Andean vegetation
showed less ignitions than expected.

3.2. Mapping fire ignition probability (analysis 1)

The six competing models (Table 1) received different levels of
support from the data (Table 2). Natural fire ignitions yielded
generally poorer models than anthropogenic fire ignitions, which
may be a consequence of the smaller sample size (153 vs. 619).
Natural ignitions were best predicted by all natural factors (i.e.
topographic, climatic and land cover variables), whereas anthro-
pogenic and topographic factors yielded the poorest models
(Table 2A). However, the full model that included all factors failed
only marginally (AAIC = 2.5; Table 2A). Annual precipitation and
the spatial autoregressive term were the only significant variables
in the natural ignition model (Table S3).

Anthropogenic fire ignitions were best predicted by the full
model whereas model 3, based only on anthropogenic factors,
yielded the poorest model (Table 2B), but still explained 74% of the
data correctly (vs. 78% with the full model). Annual precipitation,
distance to roads and streams, elevation, northing, population
density within 20 km, land cover 7 (i.e. Patagonian steppe) and the
spatial autoregressive term (with R = 1.5 km) were significant in
the full model for anthropogenic fire ignitions. The only significant
variable with negative effect was elevation. In absolute terms, land
cover 7 (i.e. Patagonian steppe) was the strongest predictive vari-
able (Table S3).

The full model 6 also received most support for all fire ignitions
(Table 2C). It was very similar to the full model of anthropogenic fire
ignitions in both significant variables and coefficients, but it con-
tained four more significant variables. The probability of a fire
ignition was higher if northing was lower and influenced by land
covers 2, 7, 8 and 11 (i.e. Araucaria forests, Patagonian steppe,
wetlands and forest plantations). In absolute terms, land cover 11
(i.e. forest plantations) was the strongest predictive variable and it
affected the ignition probability positively.

The maps of the three final models show how the predicted
ignition probabilities vary across the study area (Fig. 2). Sixteen
percent of the study area shows high natural and human fire risk
(red in Fig. 2d) located in a clumped way along a N—S belt across
Neuquén Province, 10% of the region shows high natural ignition
risk but moderate risk of anthropogenic fire ignitions (light blue),
and 4% of the area shows high risk of anthropogenic fire ignitions
but moderate risk of natural ignitions (magenta, Fig. 2d). The model
of natural ignitions indicates a distinct N—S band of high risk for fire
ignitions at longitudes between c. 70°30'W and 71°30’'W (Fig. 2a).
Andean regions in northern Neuquén (N of Aluminé) show a high
risk, whereas the Lake District towards the south shows a lower risk
of natural ignitions. Here, the highest risk band is restricted to in-
termediate levels of precipitation along the west—east transition
(Fig. 2a). Anthropogenic ignitions show a high risk in a N—S band
located along the ecotonal area with several foci concentrated
around highly populated areas (dots in Fig. 2b). Nevertheless, both
high human- and natural-ignition risk show a large area of juxta-
position, surrounded by areas of high natural fire risk.

3.3. Spatial pattern of all, human-caused and natural ignitions
(analysis 2)

The spatial pattern of all ignitions (n = 855) showed consider-
able clustering at distances below 50 km (Fig. 1) not captured by the
probability of fire ignitions derived in analysis 1 (Fig. 3A). The
heterogeneous Poisson null model accounted for only a small in-
crease in the neighbourhood density relative to the overall intensity
A (cf. grey line with solid black horizontal line in Fig. 3A). There was
a substantial additional clustering at distances below 10 km (with
neighbourhood densities more than 3 times higher than expected
by the null model) and a second critical scale of clustering of 35 km
is visible where local density is more than 1.5 times higher than
expected by the null model (Fig. 3A). The nearest neighbour dis-
tribution function (inset Fig. 3A) shows that 35% of all ignitions
have at least one neighbour within 1 km, and 60% within 2 km and
only at distances greater than 8 km is the heterogeneous Poisson
null model met. The results for fire ignitions of anthropogenic
causes mainly reflect that of all ignitions (Fig. 3B). The results for

Table 2

Results of the statistical models predicating the probability that a fire ignition occurs at a given location in study area.
Model 1.Topographic 2.Climatic 3.Anthropogenic 4 Natural 5.Natural + landcover 6.Full
A) Natural fire ignitions
AIC 377.2 366.8 378.8 366.8 346.2 348.7
Delta AIC 31 20.6 32.6 20.6 0 2.5
AUC 0.676 0.723 0.701 0.716 0.792 0.796
Cut-off 0.461 0.439 0.442 0.454 0.500 0.504
Sensitivity 0.575 0.601 0.719 0.595 0.686 0.68
Specificity 0.647 0.608 0.536 0.601 0.693 0.686
Full® 0.611 0.605 0.627 0.598 0.690 0.683
B) Anthropogenic fire ignitions
AIC 1329.2 1327 1356.6 1262.8 1210 1205.1
Delta AIC 124.1 121.9 151.5 57.7 49 0
AUC 0.796 0.806 0.806 0.832 0.855 0.859
Cut-off 0.414 0.403 0.388 043 0.471 0.472
Sensitivity 0.698 0.696 0.735 0.753 0.772 0.774
Specificity 0.699 0.698 0.738 0.755 0.773 0.776
Full® 0.699 0.697 0.736 0.754 0.773 0.775
C) Complete fire record
AIC 18329 1824.2 1849.3 1741.7 1653.7 1638.7
Delta AIC 194.2 185.5 210.6 103 15 0
AUC 0.788 0.793 0.795 0.825 0.851 0.855
Cut-off 0.407 0.400 0.399 0.425 0.460 0.461
Sensitivity 0.699 0.678 0.718 0.743 0.766 0.771
Specificity 0.700 0.682 0.719 0.742 0.767 0.770
Full® 0.700 0.68 0.719 0.743 0.766 0.771

@ % cases correctly predicted.
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Fig. 3. Results of the univariate analysis for the different fire ignition patterns using the heterogeneous Poisson process based on the corresponding models of fire ignition
probability. Note the logarithmic scales in A) and B). Closed circles: observed summary statistic, bold grey line: expectation of the heterogeneous Poisson null model, black lines:
simulation envelopes being the 5th lowest and highest values taken from the 199 simulations of the null model, solid horizontal line: overall intensity of fire ignitions.

the fire ignitions of natural causes were similar to those for
anthropogenic causes, but the local clustering was substantially
lower.

3.4. Bivariate point pattern analysis (analysis 3)

3.4.1. Location of town vs. anthropogenic fire ignitions

Fire ignitions showed a highly significant small scale (<5 km)
attraction to towns, the density of fire ignitions increased linearly
with increasing proximity to towns (Fig. 4B). At distance of 1 km,
the density of ignitions was five times higher than expected by
chance. The nearest neighbour distribution function showed a
somewhat weaker departure from the null model but was still
significant (i.e. p = 0.045 for the 1-50 km interval); 37% of all towns
had fire ignitions within 1 km compared to a 18% expected by the

null model (inset Fig. 4A). Thus, the attraction was mostly an effect
of elevated density around approximately 20% of the towns (=5—6
towns). The results for the data set of all fires were similar (Fig. 4A).

3.4.2. Location of town vs. natural fire ignitions

As expected, the density of fire ignitions due to natural causes
were independent from that of towns (Fig. 4C; p = 0.32 for the 0—
50 km interval). However, the distances from towns to the nearest
fire of natural causes were somewhat larger than expected (inset
Fig. 4C; p = 0.03 for the 0—50 interval).

3.4.3. Anthropogenic vs. natural fire ignitions

The shape of the expectation of the null model (grey line in
Fig. 4D) relative to the overall density of fire ignitions of anthro-
pogenic causes (black horizontal line in Fig. 4D) indicates that the
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Fig. 4. Results of the bivariate analysis of testing for independence of fire ignitions from towns (A—C) and independence of fire ignitions of anthropogenic and natural causes (D).
The null model fixed the first pattern and randomised the second pattern conditioning on the observed intensity function and univariate spatial structure (using pattern recon-
struction). Closed circles: observed summary statistic, bold grey line: expectation of the heterogeneous Poisson null model, black lines: simulation envelopes being the 5th lowest
and highest values taken from the 199 simulations of the null model, solid horizontal line: overall intensity of the second pattern.

null model incorporated a substantial “habitat-driven” attraction of
both types of ignitions. The neighbourhood density of fire ignitions
of anthropogenic causes around that of natural causes was
approximately three times higher than expected by completely
independent patterns (i.e. no shared habitat preference). This was
expected because the best model for fire ignitions of anthropogenic
causes included the natural factors.

When factoring out the first-order “habitat effect” with the in-
dependence null models based on pattern reconstruction and the
fire intensity estimate A(X), the neighbourhood density function
revealed that fires of natural and anthropogenic causes were in-
dependent for both situations, the natural (pattern 1) — anthro-
pogenic (pattern 2) pair (Fig. 4D; p = 0.35; p = 0.16) and for the
reversed situation (p = 0.165). The nearest neighbour distribution
function supported independence for the anthropogenic (pattern
1) — natural (pattern 2) pair (p = 0.72), but yielded for the reversed
situation a slight attraction of fire ignitions of anthropogenic causes
around those of natural causes (inset Fig. 4D; p = 0.035).

4. Discussion

In this study we conducted a detailed analysis of the environ-
mental dependency and spatial patterns of fire ignitions of
anthropogenic and natural causes in the western part of Neuquén
province, Argentina. Analysis of the environmental drivers clearly
showed that natural factors were the most important determinants
of fire ignitions which were entered into the best models for both
fire ignitions due to natural causes (i.e. lightning) and due to
anthropogenic causes. However, the best model for anthropogenic
fire ignitions included additional variables related to human ac-
tivity. Consequently, a large superposition of risks exists with more

than half of the high risk areas showing high risk in both the natural
and the anthropogenic model and approximately 40% only in the
natural model. However, when factoring out the environmental
dependency, fires of natural and anthropogenic causes occurred
independently. Interestingly, the pattern of fire ignitions, and
especially that of anthropogenic fire ignitions, showed considerable
aggregation not accommodated by environmental factors. This may
be attributed to spatial autocorrelation in human behaviour or
landscape modifications of burned areas that favour re-appearance
of fires. We also found a strong smaller-scale (<5 km) attraction of
fire ignitions of anthropogenic causes to towns, but not for those of
natural causes.

4.1. Factors favouring fire occurrence

Although our full model indicated that fire ignitions were
mainly related to the distribution of human activities, fire ignition
probability was also influenced by biophysical variables. This was
expected because fire spread is ultimately a function of vegetation
characteristics, climate, and terrain (Pyne, 1996). This fact re-
inforces the idea of interaction between these variables (wildland
fuel, topography and weather) for starting a fire (Agee, 1993).

In all three selected models, the spatial autocorrelation term and
annual precipitation had a significant and positive influence on the
occurrence of a fire ignition. In absolute terms, the autoregressive
term had a higher influence on fire ignition than annual precipi-
tation. This indicates that neighbourhood effects play a key role in
the distribution of fire ignitions. This finding was also observed in
previous studies (Chou et al.,, 1993) and has important implications
for wildfire management (see below). On the other hand, the
positive effect of precipitation might be related to fuel build-up.
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Wetter sites show higher biomass productivity than dryer sites. As
a consequence, fires will tend to occur on wetter sites that accu-
mulate more fuels for burning. In our study, such optimal areas
were revealed in the eastern portion of steppe and woodlands.
Towards the east, the Monte Desert has a low number of ignitions
due to its lower productivity, whereas the forests, towards the west,
have a lower quantity of fine fuels and, in consequence, less fire
ignition opportunities.

The significance of land-cover variables in the full model reflects
the variables that showed more ignitions than expected by chance:
Patagonian steppe (LC 4), wetlands (LC 8), forest plantations (LC 11),
Araucaria araucana forests (LC 2) and urban areas (Table S3). Fine
fuels are readily produced and can (in the absence of overgrazing)
accumulate in the Patagonian steppe and wetlands. In the wet-
lands, the dry summer season can produce highly flammable fuels.
Forest plantations (mainly Pinus ponderosa and Pinus contorta),
besides being considered inherently very flammable, have received
little silvicultural treatments in recent decades and have therefore
accumulated a substantial amount of flammable fuel leading to
increased ignition probabilities. A. araucana forests showed a sig-
nificant effect in the model of all fire ignitions. This result coincides
with previous studies that suggested important interactions be-
tween human activities and climate forcing of fire occurrence
(Gonzalez and Veblen, 2006; Mundo et al., 2012). The positive ef-
fect of population density within 20 km on ignition probability
found in our study is in agreement with the analysis of foci con-
centration around urban areas that revealed a significant inverse
relationship between fire ignitions and socioeconomic indicators
(i.e. more fires occurred where there is more poverty) (De Torres
Curth et al., 2012).

Surprisingly, the effect of topography on fire occurrence was
contrary to our expectations. North-facing slopes, which show high
radiation in the southern hemisphere, reduced the probability of
fire occurrence. This suggests an overriding influence of fuel
accumulation (higher in the wetter south-facing slopes) over fuel
desiccation (higher in drier north-facing slopes) in controlling fire
ignition probabilities.

4.2. Implications for management

The spatial point analyses and the fire ignition probability
maps developed in this study can be used to inform wildfire
management strategies in the western area of Neuquén province.
The two-dimensional model allows fire managers to delineate
target areas for major preventive treatments, strategic placement
of fuel treatments, and forecasting of fire ignition. Our results
suggest that fire management strategies in this northern part of
Patagonia should be centred on areas of overall high risk of fire
ignitions (i.e. red areas in Fig. 2d), but should especially consider
critical areas which are usually not detected with one-dimensional
models. First, avoid fire ignitions in areas with high probability of
human ignitions and low natural risk (magenta in Fig. 2d) and
second, monitor areas with high probability of natural caused fires
and low and high human risk. The peri-urban areas of Zapala (the
most populated city in the study area), San Martin de los Andes,
Chos Malal and the Collén Cura valley are clear examples of areas
where fire ignitions should be controlled. Education of the general
public and of decision-makers is one of the most effective solu-
tions for preventing and mitigating human-caused fire ignitions in
those areas (McCaffrey, 2004). Due to limited resources, major
efforts should be concentrated around human populations and
high conservation value areas located within the light blue and red
areas in Fig. 2d. Specifically, controls might be aimed at the N—S
band at longitudes between c. 70°30'W and 71°30'W that shows
high natural risk, the peri-urban areas of San Martin de los Andes

— Junin de los Andes, Loncopué and the eastern area of Lanin
National Park and northeastern portion of Nahuel Huapi National
Park. Pinus plantations in the high natural risk area require specific
silvicultural treatment to reduce fuel (Johnson and Peterson, 2005)
and new conifer forest plantation should not be promoted in these
areas.

To be able to separate fire ignitions of different causes we did
not investigate temporal trends in the occurrence of fire ignitions
as done by others (e.g. Podur et al., 2003; Preisler et al., 2004;
Genton et al., 2006; Hering et al., 2009). Our results can therefore
inform management on general trends in fire risk expected under
average environmental conditions, but such trends may some-
times be overridden by extreme climatic events such as droughts
which are not covered by the environmental variables used here.
Indeed, Veblen et al. (2008) demonstrated that the number of
natural fires has been increasing over the last decades in northern
Patagonia coincident with an increase in summer temperatures
and subtropical influence in this region. Since 1976 there has been
a trend towards higher temperatures and increased drought
throughout Patagonia and recent decades have seen a substantial
increase in the frequency of lightning storms and lightning-ignited
fires (Veblen et al., 2008; Villalba et al., 2012). Development of
long-term ignition databases (e.g. satellite-derived hot-spot data)
will be necessary to understand the temporal aspects (e.g. stabil-
ity, trends, contingencies to extreme events, etc.) of spatial de-
pendencies identified in this study.

5. Conclusions

Management of wildfires requires recommendations based on
sound scientific principles. Fundamental to this is an analysis of the
risk of fire ignitions within the study area that reveals how
anthropogenic and natural factors influence ignition patterns
across space, and a spatial analysis of the fine-scale autocorrelation
structure of the fire ignition patterns. Here, we applied this
research programme to fire ignitions in the western part of Neu-
quén province, Argentina. Our information theoretic approach
revealed that not all hypotheses on the factors that govern the
distribution of natural and human-caused ignitions received the
same support, that natural and human-caused ignitions are gov-
erned by different sets of environmental drivers, and that their
respective high-risk areas differed. These findings have important
consequences for fire management. To contribute to this we
developed a novel “two-dimensional” model of fire ignition prob-
abilities based on separate predictions for natural and human-
caused fires. This allowed the delineation of areas with funda-
mentally different risk types, such as areas of overall high fire risk,
areas of only high natural risk, areas of only high human risk, and
areas of moderate or low risk. These risk types would be glossed
over in traditional “one-dimensional” models. The two-
dimensional model allows fire managers to delineate target areas
for consideration of major preventive treatments, strategic place-
ment of fuel treatments, and forecasting of fire ignition. Unex-
pectedly, we found a strong autocorrelation of up to 35 km in the
ignition patterns not explained by the broader-scale environmental
variables, pointing to spatial autocorrelation in human behaviour
or landscape modifications of burned areas that favour re-
appearance of fires. Part of this autocorrelation was explained by
small-scale (<5 km) attraction of human-caused fire ignitions close
to towns, however, the strength of this effect suggests that future
work should investigate the causes of the observed autocorrelation
in more detail. The techniques presented here can be widely
applied to situations where a spatial point pattern is jointly influ-
enced by extrinsic environmental factors and intrinsic point
interactions.
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