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Abstract
Wave energy conversion technology emerges as a promising approach to renewable energy generation, offering a consis-
tent and predictable power source that complements intermittent renewable energy sources such as solar and wind power.
Achieving optimal ocean wave energy absorption requires precise knowledge of the so-called wave excitation force, which is
typically estimated through model-based techniques reliant on accurate system descriptions. However, uncertainties inherent
to hydrodynamic modelling often limit the reliability of these approaches. To address this challenge, this paper presents a
comprehensive evaluation of model-free data-based estimators, for wave excitation torque estimation in Wavestar like wave
energy converters (WECs). The study examines various neural network architectures, including static models (feedforward
networks) and those incorporating temporal dynamics (recurrent neural networks and long short-term memory networks).
The analysis examines the impact of utilising multiple input combinations, ranging from motion variables to configurations
enhanced with surrounding wave height measurements from the device’s vicinity. Input selection is guided by correlation
analysis and spectral coherence evaluation to ensure physical relevance and practical feasibility. Estimators are trained and
tested using experimental data obtained from a comprehensive wave tank campaign emulating diverse sea state conditions.
The results demonstrate that architectures incorporating temporal considerations achieve superior performance, particularly
under wide-banded sea states. A comparative analysis with a model-based estimator, implemented via a Kalman–Bucy Filter
with a harmonic oscillator expansion, highlights the advantages of neural networks, especially under challenging conditions
where model-based approaches face significant limitations. These findings underscore the capability of data-based strategies
to reduce dependence on potentially complex and uncertain analytical models, offering a promising alternative for improving
WEC control systems.
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1 Introduction

Achieving carbon neutrality by 2050 stands as a critical and
ambitious objective established in recent decades (Interna-
tional Energy Agency 2021), further underscored by the
growing emphasis on global energy security in the face
of evolving geopolitical landscapes (Wang et al. 2024).
Attaining this goal necessitates a substantial increase in the
integration of variable renewable energy sources, effectively
dominating the energy generation portfolio. Within this con-
text, ocean wave energy emerges as a promising renewable
source, offering a consistent and predictable baseload sup-
ply that complements intermittent resources. Unlike other
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renewable sources, wave energy exhibits no day-night vari-
ability, demonstrates seasonal complementarity with solar
energy, andoften remains statistically uncorrelatedwithwind
resources (Gunn and Stock-Williams 2012). However, the
economic viability of wave energy remains hindered due to
the currently high Levelised Cost of Energy (LCoE) metrics
(Castro-Santos et al. 2015). Over the past decade, advance-
ments in control system technology have been identified
as essential in achieving commercial feasibility of wave
energy converters (WEC) (Ringwood et al. 2023b). Control
engineering plays a decisive role in optimising WEC per-
formance across diverse conversion mechanisms, enabling
enhanced energy capture and operational bandwidth without
significant capital expenditure. While control methodologies
have matured significantly (Scruggs 2024; Ringwood et al.
2023b), optimal energy extraction fundamentally relies on
accurately estimating the wave excitation force acting on the
device’s submerged surface (see, e.g. Faedo et al. 2022). This
force constitutes the primary energy source and is integral to
both performance optimization and technological constraint
satisfaction (Ringwood et al. 2023b). Despite its importance,
estimation of this force can be significantly challenging, with
prevailing techniques predominantly rooted in model-based
formulations (Peña-Sanchez et al. 2019).

The majority of traditional estimation strategies require a
model of theWEC, alongwith an approximate representation
of theprocess to be estimated, typically formulated in implicit
terms, consistent with the internal model principle (Fran-
cis and Wonham 1976). Examples include harmonic (Hillis
et al. 2020; Papini et al. 2024) and random-walk (Nguyen and
Tona 2017) formulations, where the dynamical model of the
device is extended to incorporate the external variable as part
of its internal state representations. While widely adopted
in practice, this approach often needs high gains to ensure
adequate bandwidth and requires substantial in-situ tuning
(García-Violini et al. 2024). Alternatively, a second category
of techniques, rooted in disturbance-observer-based control
(Chen et al. 2015), avoids the need for an internal model
of wave excitation by leveraging the duality between con-
trollers and observers. Essentially, a ‘controller’ is designed
to track the real-time behaviour of the device, thereby esti-
mating the corresponding input force (see, for instance Faedo
et al. 2021; Mosquera et al. 2024; Fornaro et al. 2024).
This method effectively computes an approximate inverse of
the available dynamical model; consequently, any modelling
inaccuracies, which are ubiquitous in hydrodynamic mod-
elling (see, for example, Celesti et al. 2025), directly impact
the quality of the input estimation. To address the limitations
of model-based approaches for reconstructing the excitation
force inWECs,machine learning (ML) techniques have been
explored as an alternative.

This paper presents a comprehensive evaluation of model-
free data-based estimators for the wave excitation force,

which are based on artificial neural network (NN) and trained
using experimental data from a 1:20 prototype Wavestar
device (Faedo et al. 2023a). While most ML-based methods
to date have been applied for prediction purposes (Masoumi
et al. 2024; Zhang et al. 2024a, b; Mahmoodi et al. 2022), to
the best of the authors’ knowledge, only the work by Bon-
fanti et al. (2020b, a) has employed ML specifically for the
direct estimation of the excitation force. Unlike these studies,
which typically focus on individual NN architectures or rely
on limited input feature sets, the present work systematically
investigates a range ofNN architecture types, including static
configurations, recurrent structures, and those incorporat-
ing temporal considerations. These estimators are organised
into distinct groups according to their input configurations,
which include WEC motion-related variables and strategi-
cally selected surrounding wave height measurements from
the vicinity of the device, in order to analyse the impact of
incorporating auxiliary variables and the influence of choos-
ing relevant inputs. Feature selection process is guided by
correlation analysis and signal availability criteria to ensure
practical relevance. Additionally, a spectral coherence analy-
sis is leveraged to identify frequency-dependent relationships
between inputs and the target variable, ensuring the inclusion
of physically meaningful features while considering practi-
cal sensor availability constraints. This structured evaluation
provides critical insights into the trade-offs between model
complexity, input informativeness, and estimation accuracy
in real-world wave energy applications. Furthermore, the
proposed data-based methodologies are compared against
an estimator based on Kalman–Bucy filter (KBF) with a
harmonic oscillator (HO) expansion. This specific linear1

observer is considered as a benchmark case for comparison,
since it constitutes the standard approach adopted within the
literature of model-based wave excitation estimation with
the scope of control applications Peña-Sanchez et al. (2019);
Bonfanti et al. (2020b); Ringwood et al. (2023a). Note that
within the same KBF framework, different internal models
for the description of the wave excitation process can be
considered, by replacing the harmonic implicit form by e.g.
a random walk representation.

Unlike the previous study, experimental validation of all
estimators is performed through diverse sea states derived
from the testing campaign reported in Faedo et al. (2023a).
The results are systematically analysed to assess robustness
under varying spectral conditions, highlighting the effective-
ness of the proposed approach in handling complexmaritime
environments.

1 Nonlinear model-based observers have also been considered for the
application (see, for instance, Fusco and Ringwood (2012)), yet these
come with specific drawbacks regarding the convergence of estimates
and the computational effort required to provide wave excitation force
values in real-time (see Peña-Sanchez et al. (2019)).
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Fig. 1 1:20 scale prototype for
the Wavestar converter

The remainder of this work is organised as follows.
Section2 describes the experimental setup for data acqui-
sition, including the definition of the operating conditions
and main variables exploited in training and validation.
Section3 details the data-based techniques proposed for
wave excitation estimation, while Sect. 4 provides a com-
prehensive assessment of the performance achieved by each
strategy. Subsequently, Sect. 5 offers an in-depth analysis of
the results. Finally, Sect. 6 encompasses themain conclusions
and future directions arising from this research.

2 Experimental setup for data acquisition

This section provides a brief overview of the experimental
configuration and WEC prototype utilised to generate the
dataset employed in this work for training and validating the
proposed estimation methods. In particular, the experimental
setup is designed for the WEC array campaign presented in
Faedo et al. (2023a), with the corresponding data accessible
in an open-source format in Faedo et al. (2023b).

2.1 Prototype and basin

The chosen baseline WEC system is a 1:20 scale model of
the Wavestar (Hansen and Kramer 2011). A single unit of
this prototype, illustrated in Fig. 1, primarily consists of a
floater that is mechanically connected via a hinge to a fixed
reference point above the water surface (see point A in the
prototype image). The floater’s arm maintains an inclina-

tion of approximately 30° with respect to the still water level
(SWL) in its equilibrium position. Note that this device oper-
ates in a single degree of freedom (DoF), i.e. pitch motion
about the reference point A.

The device is equipped with a direct-drive linear motor
positioned at the upper structural joint of the device (see
Fig. 1), which is used within Faedo et al. (2023a) as a power
take-off (PTO) unit. Although the PTO system inherently
provides translational displacement as an output, an addi-
tional measurement is available (for redundancy) using a
laser position sensor. The total force along the PTO axis
is recorded through a dedicated load cell. To complement
these measurements, a dual-axis accelerometer is mounted
on top of the floater. This sensor, in conjunction with trans-
lational motion data, facilitates the derivation of rotational
motion parameters (i.e. angular displacement and velocity)
about the fixed reference point A. Data acquisition is per-
formed at a sampling frequency of 200 [Hz] for all recorded
variables.

The experimental campaign has been conducted at the
Ocean and Coastal Engineering Laboratory at Aalborg Uni-
versity,Denmark. Thewave tank facility, illustrated schemat-
ically in Fig. 2, consists of a 19.3 m × 14.6 m × 1.5 m
basin, with an active test region measuring 13m × 8m.
The tank features a state-of-the-art, long-stroke, segmented
wavemaker system comprising 30 independently controlled
paddles with active absorption, enabling precise replication
of various sea state conditions. The water depth is set to 0.9
m, and the wavemaker is configured to generate long-crested
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Fig. 2 Schematic representation of the testing setup and basin. Wave
probes are illustrated using small grey dots

waves propagating along the x-axis, with a direction of 0◦
relative to the y-axis, as indicated in Fig. 2.

Free-surface elevation measurements are obtained using
resistive-type wave probes (WPs), with seven probes strate-
gically distributed within the wave tank. The subset of WPs
{1, 2, 3} is arranged in a column-like configuration along the
device’s centreline, with varying spacings to facilitate the
detection of radiated waves reflected from the tank walls.
Additionally, WPs 4 and 5 are positioned along the device’s
centreline to directly capture the radiated waves generated by
the motion of theWEC.WP 6 is located downstream, behind
the device relative to the wave propagation direction, while
WP 7 serves as a reference probe, placed outside the active
device region to provide a control measurement aligned with
the geometric centre of the device.

2.2 Sea conditions

The experimental setup considered within this study encom-
passes five distinct sea states, as outlined in Table 1. The first
three sea states (SS1, SS2andSS3) represent operational con-
ditions from the North sea, scaled according to the prototype
dimensions (see the discussion in Ringwood et al. 2023a).
These are generated using a JONSWAP stochastic model
(Hasselmann et al. 1973), defined by parameters such as peak
period, significant wave height, and the peak-enhancement
factor γ . In contrast, the remaining two conditions, WN1
and WN2, simulate ‘white-noise’ waves, characterised by
a constant spectral density within a pre-defined frequency
range. These have been specifically designed in Faedo et al.
(2023a) for system identification purposes, enabling excita-
tion of the prototype across its entire operational spectrum.
Furthermore, for SS1 and SS3, two separate realisations (#R)
are included to enrich the dataset available for training and
validation.

2.3 Variable definitions

For each wave condition outlined in Table 1, the following
variables are recorded:

θ : Angular position of the device relative to point A.
θ̇ : Angular velocity of the device relative to point A.
θ̈ : Angular acceleration of the device relative to point A.
d: Wave excitation torque induced by the free-surface ele-

vation about point A. Note that this is, effectively, the
variable to be estimated within Sect. 3.

ηi : Free-surface elevation measured by wave probe i , where
i ∈ N7.

The angular position and acceleration have been directly
measured using the device’s sensors in free-motion within
the tank, for each corresponding sea-state condition. The
angular velocity, on the other hand, has been derived from
thesemeasurements using standard sensor fusion techniques.
In contrast, the wave excitation torque has been derived
by mechanically locking the device and recording the total
forces exerted using a dedicated load cell (see Fig. 1). For
further details about the experimental setup, the reader is
referred to Faedo et al. (2023a).

3 Data-based estimation of wave excitation

This section outlines the proposed methodology for estimat-
ing the wave-induced torque d, as described in Sect. 2.3,
employing tailored data-based techniques. The subsequent
paragraphs detail the process of input variable selection, an
overview of the NN architectures utilised, and the design of
the training and testing frameworks based on the experimen-
tal setup and corresponding data presented in Sect. 2.

Note that none of the steps involved within the proposed
data-based estimators, detailed below, depend explicitly on
the scale of the device being considered. That is, the data
measured and used for training and validation of the estima-
tors is derived from standard instrumentation (wave gauges
and motion sensors, as detailed within Sect. 2.1), which are
widely available for any realistic device scale. This is, in fact,
a significant advantage of the proposed data-based estimators
when compared with their model-based counterparts, which
commonly employ models derived from black-box system
identification procedures Papini et al. (2024), being hence
difficult to scale consistently.

3.1 Input feature selection

In data-based estimation approaches, the relevance of input
features is critical to ensuring accurate and robustNNestima-
tor performance. To ensure that the selected inputs provide
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Table 1 Waves used for training
and validation of the proposed
data-based estimators for wave
excitation torque

ID Type Period (s) Height (m) γ #R Length (s)

SS1 Operational 1.412 0.063 3.3 2 300

SS2 Operational 1.836 0.104 3.3 1 300

SS3 Operational 0.988 0.021 1 2 300

WN1 Identification [0.5, 10] 0.03 – 1 300

WN2 Identification [0.5, 10] 0.05 – 1 300

meaningful information for estimating the target signal d,
a comprehensive input feature selection process is con-
ducted from two complementary perspectives: correlation
and frequency-domain analysis based on spectral coherence.

It is worth noting that the presented analysis is carried out
using the entire available dataset detailed in Sect. 2, ensuring
a comprehensive and statistically representative evaluation
of the collected information.

1. Correlation analysis A Spearman correlation analysis is
performed to evaluate the monotonic relationships between
potential input variables and the target signal d. This non-
parametric method provides insights into both linear and
non-linear associations, enabling the identification of vari-
ables with strong predictive potential. Although correlation
does not imply causation, it serves as an initial indicator of
the potential importance of each feature in establishing rela-
tionships with the target signal.

Table 2 presents the Spearman correlation coefficients
calculated between the system variables including, angular
position θ , angular velocity θ̇ , angular acceleration θ̈ , and
surrounding wave height measurements ηi with respect to
the target variable d. It is worth mentioning that a positive
correlation coefficient indicates that two variables tend to
increase or decrease simultaneously, while a negative coef-
ficient suggests an inverse relationship. Notably, θ exhibits
a relatively strong positive correlation with d, with a coef-
ficient of 0.613, underscoring its relevance in capturing the
dynamic behaviour of the WEC. In contrast, θ̇ and θ̈ show
a weaker correlation (0.253 and −0.268), likely due to the
lag introduced by the system dynamics. Among the wave
height measurements, η4, η5 and η7 demonstrate strong neg-
ative correlations, with coefficients of −0.860, −0.856, and
−0.819, respectively.

2. Frequency-domain analysis To complement the
correlation-based evaluation, a spectral coherence analysis
is conducted to quantify the linear relationship between sig-
nals in the frequency domain. Coherency Spectrum (squared
magnitude), denoted as Cxy( f ), measures the normalised
cross-spectral density between two signals x(t) and y(t) at
each frequency f , and is defined as (Stoica et al. 2005):

Cxy( f ) = |Pxy( f )|2
Pxx ( f )Pyy( f )

, (1)

where Pxy( f ) is the cross-spectral density between x(t) and
y(t) and Pxx ( f ) and Pyy( f ) are the power spectral densities
of x(t) and y(t), respectively. The coherence values range
from 0 to 1, with higher values indicating a stronger linear
relationship between the signals at a given frequency.

Figure3 presents the results of the spectral coherence anal-
ysis, with the left plot showing the coherence betweenmotion
variables (θ , θ̇ and θ̈ ) and the target variable d, and the right
side displaying the coherence for wave height measurements
(ηi , i ∈ N7) with respect to d. These plots serve as a graphical
method to assess the linear relationship between the signals
across the frequency spectrum.Ahigher area under the coher-
ence curve (AUC) indicates a stronger linear correlation over
a broader frequency band. The analysis is conducted within
the frequency range of 0.3–2.25 Hz, which corresponds to
the bandwidth of interest for the WEC device. This range is
determined based on the operational dynamics of the system,
as it encompasses the dominant frequency content associated
with the device’s response to wave excitation. For instance,
in SS2, the lower bound of 0.3 Hz (approximately 2 rad/s)
represents the slowest significant oscillatory behaviour of
the device, while the upper bound of 2.25 Hz (14 rad/s) cap-
tures the highest frequency dynamics relevant to the system’s
operation, as reported in Faedo et al. (2023a). To system-
atically evaluate the relevance of each input variable, the
normalized spectral coherence AUC is computed within this
frequency range, ensuring that the analysis focuses on the
most significant dynamics of d for device operation. Table
3 summarises the normalised AUC values for each input
variable, providing a quantitative basis for input selection
Within this frequency range, wave height measurements η4
and η5 exhibit the strongest coherence with d, followed by
the motion variables θ , θ̇ and θ̈ . This coherence analysis
suggests that these signals capture critical information about
the wave excitation dynamics, particularly in the frequency
bands where d exhibits its highest energy.

3.2 Neural network architectures

Five distinct NN architectures are implemented to evalu-
ate their performance in reconstructing the target variable
d. These architectures are described below:
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Table 2 Spearman correlation coefficients of the variables with respect to the target variable d

Variable θ θ̇ θ̈ η1 η2 η3 η4 η5 η6 η7

Spearman coefficient 0.613 0.253 −0.268 0.220 0.150 0.046 −0.860 −0.856 −0.279 −0.819

Fig. 3 Results of the spectral coherence analysis

Table 3 Normalized spectral coherence area values of the input variables with respect to the target variable d

Variable θ θ̇ θ̈ η1 η2 η3 η4 η5 η6 η7

Spectral coherence AUC 0.750 0.756 0.745 0.648 0.682 0.702 0.810 0.800 0.664 0.740

Feedforward neural network (FNN): a classical static NN
designed to model relationships between input and output
variables. This architecture consists of one hidden layer with
8 neurons with hyperbolic tangent (tanh) as a non-linear acti-
vation function. The output layer is fully connected with a
linear activation function for regression tasks. The choice of
the tanh activation function is based on its effectiveness in
regression tasks involving single-layer NNs, as it provides
smooth gradients and bounded outputs, which help stabilise
training and mitigate saturation issues in shallow networks
(Szandała 2020). The mathematical representation of a fully
connected layer is given by:

y = H(W�U + b), (2)

where U is the input vector, W is the weight matrix, b is the
bias term and H denotes the activation function.
FNNbig: an extended version of the FNN with increased
depth to capture more complex patterns. It consists of 8
hidden layers, each with 8 neurons, and uses the same tanh
activation function. The output layer remains fully connected
with a linear activation function.

Time delay neural network (TDNN): a FNN specifically
designed to incorporate temporal information by including
past samples of the input signals. This architecture is simi-
lar to the classical FNN, featuring one hidden layer with 8
neurons and one output layer, but extends its input by con-

sidering up to 7 past samples of each input signal. Although
this modification increases the number of weights per neuron
in the hidden layer, it allows the model to explicitly capture
certain temporary dependencies in the data. In particular, the
number of past samples is determined through a sensitivity
analysis conducted using Bayesian optimization. This analy-
sis systematically evaluates the impact of varying the number
of past samples on the estimation performance, revealing
that the chosen configuration provides a suitable trade-off
between the complexity introduced to the network and the
accuracy achieved.

Recurrent neural network (RNN): this type of NN incor-
porates feedback connections, enabling it to maintain an
internal state per neuron that acts as a form of memory
over time. This characteristic makes RNNs particularly well-
suited for modelling sequential data and capturing temporal
dependencies. In this paper, the RNN architecture consists
of one recurrent layer containing 8 neurons and a linear fully
connected layer as output. The equations governing the RNN
with a single hidden layer are as follows:

hk = H(Wuhuk + Whhhk−1 + bh),

yk = Whyhk + by,
(3)

where uk represents the input at time step k, which corre-
sponds to samples of input signals. The term hk denotes the
hidden state of the neurons in the recurrent layer. The output
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of the RNN, denoted by yk , is computed as a linear transfor-
mation of the hidden state. In these equations,Wuh ,Whh and
Why are weight matrices, and bh and by are bias terms which
are obtained during the training process. Additionally,H rep-
resents a non-linear activation function applied to introduce
non-linearity into the model, in this case, again tanh.

Long short-term memory (LSTM): these networks incor-
porate a sophisticated structure with multiple internal states,
including a memory cell that can retain information over
extended periods. This is achieved through gating mecha-
nisms that regulate the flow of information at short and long
terms. The architecture used in this work consists of one
recurrent layer with 8 LSTM cells, each maintaining two
internal states, followed by a linear fully connected output
layer. The governing equations for an LSTM cell are as fol-
lows:

Input gate: ik = σ(Wiuk + Vihk−1 + bi ). (4)

Forget gate: fk = σ(W f uk + V f hk−1 + b f ). (5)

Output gate: ok = σ(Wouk + Vohk−1 + bo). (6)

Cell state: ck = fk � ck−1

+ik � tanh(Wcuk + Vchk−1 + bc). (7)

Hidden state: hk = ok � tanh(ck). (8)

Cell output: yk = hk, (9)

where uk is the input at time step k, hk−1 and ck−1 are the hid-
den state and cell state at the previous time step,Wi ,W f ,Wc,
andWo are the weight matrices for the input, forget, cell and
output gates, respectively. Vi , V f , Vc and Vo are the recurrent
weight matrices, bi , b f , bc and bo are bias vectors, σ is the
sigmoid activation, and � denotes the standard Hadamard
product (element-wise multiplication).

Although a wide range of neural network configurations
could be explored, the architectures selected are designed
to balance computational complexity with the inherent
dynamics of the WEC system. As described earlier, static
architectures such as FNN, FNNbig and TDNN perform a
direct, time-invariant mapping of inputs to outputs without
incorporating explicit dynamic structures. In these NN, the
temporal dynamics of the system are implicitly captured
through the behaviour of the input variables themselves,
effectively delegating the representation of dynamic effects
to these variables. In contrast, recurrent architectures, like
RNN and LSTM, explicitly model temporal dependencies
through internal states, with each recurrent cell maintain-
ing one and two non-linear dynamic states, respectively.
This distinction highlights the trade-offs between static and
dynamicmodelling approaches, particularly in terms of com-
plexity and their ability to capture temporal dependencies.
The use of a single hidden layer is motivated by its empirical
effectiveness in preliminary tests, which showed that deeper

networks provided only marginal performance gains while
increasing training complexity. This design choice aligns
with previous applications in renewable energy systems,
where shallow architectures have demonstrated sufficient
accuracy and generalisation capability in estimating physical
variables (Bimenyimana et al. 2017; Saavedra et al. 2024).
All architectures considered in this work share this same neu-
ral structure (i.e. one hidden layer with 8 neurons), ensuring
a fair comparison across different network types.

The specific choice of 8neurons ismotivatedbyboth phys-
ical and computational considerations. From a modelling
perspective, the authors of Pasta et al. (2024) consider a 6th-
order dynamical model to approximate the linear behaviour
of the device, suggesting that at least 6 internal states may
be necessary to effectively characterise the system dynamics.
While the current work focuses on the inverse dynamic prob-
lem, in the context of dynamic NNs such as RNNs, where
each neuronmay represent a hidden state as described by (3),
a comparable number of recurrent units would be required
to capture this dimensionality. Nonetheless, additional neu-
rons are included to enhance approximation accuracy and
minimise output error. From a computational standpoint, as
discussed inLivni et al. (2014), selecting a number of neurons
that is a power of two facilitates faster convergence due to
hardware-level optimisations and improved memory access
efficiency. Consequently, 8 neurons are chosen as the closest
power of two greater than 6, ensuring both sufficient repre-
sentational capacity and efficient training. Although different
configurations (e.g. 4, 16, 32 neurons) were experimentally
evaluated, the performance gains obtained with larger neu-
ron counts do not justify the increased computational burden.
This is particularly evident in complex recurrent models such
as LSTM. Therefore, the choice of 8 neurons represents a
balanced and fair configuration across architectures for com-
parative purposes.

3.3 Training and testing scheme

To train and validate the neural estimators, the dataset is
structured as follows. First, the experimental data is grouped
according to operational sea state conditions (SS1, SS2, SS3)
and the identification dataset (WN), which includes the wave
conditions WN1 and WN2 (see Table 1). Each of these four
groups is then split into two subsets: 70% of the data is
used for training the NNmodels, while the remaining 30% is
reserved for validation to assess the models’ generalisation
capabilities. This partitioning ensures a robust evaluation of
performance across all sea state conditions.

In order to systematically evaluate the impact of input con-
figurations on estimation performance, four distinct groups
of NN architectures are defined based on their input features.
The first group (GroupNN1) is trained using angular position
θ and angular velocity θ̇ as inputs. This selection ismotivated
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by the observation that θ exhibits both a relatively strong
positive Spearman correlation and high spectral coherence
with respect to d. Additionally, θ̇ is included to capture the
dynamic motion of theWEC device, thereby providing com-
plementary frequency-domain information that enhances the
characterisation of motion represented by θ . Notably, this
input configuration aligns directly with the variable used by
the benchmark KBF, which relies solely on θ̇ , ensuring a fair
comparative evaluation. However, as discussed in Sect. 2.3,
velocity is not directly measured by the WEC’s instrumenta-
tion but is instead derived fromavailablemeasurements using
standard sensor fusion techniques. In response to this limita-
tion, an alternative input configuration is explored, utilising
variables directly measured by the WEC’s instrumentation:
position θ and acceleration θ̈ . This second group of neural
networks is referred to as Group NN2.

Further developing on input configurations, the third
group (Group NN3) extends Group NN2 by incorporating
surrounding wave height measurements (η4, η5 and η7). As
demonstrated in Sect. 3.1, these signals exhibit strong nega-
tive correlations with d and high spectral coherence within
the dominant frequency range of d. By incorporating spa-
tial information about the wave, Group NN3 addresses the
potential limitations of WEC motion variables. Finally, a
fourth group (Group NN4) is introduced, which comprises
θ , θ̇ and θ̈ as inputs. This configuration explores the fea-
sibility of relying exclusively on variables related to the
WEC’s motion, avoiding the need for additional instrumen-
tation while maintaining a comprehensive representation of
the system dynamics.

The training process for staticNNs utilises theLevenberg–
Marquardt algorithm, which is particularly effective in con-
verging to a solution in few iterations, even in the presence of
multiple local minima (Marquardt 1963). This optimization
method combines the strengths of gradient descent and the
Gauss-Newton approach, providing improved computational
stability and performance. For recurrent architectures such
as RNN and LSTM, the training process incorporates Back-
propagation Through Time (BPTT) (Werbos 1990), which is
essential for effectively capturing temporal dependencies in
sequential data. The objective of the optimization is to min-
imise theMean Square Error (MSE), which serves as the cost
function, by iteratively adjusting the synaptic weights of the
networks.

To ensure the proper functioning of the RNN and LSTM
models, special attention is given to the temporal dynamics
of the system. Since these architectures inherently rely on
temporal patterns, the dataset is subjected to a preprocessing
step involving downsampling from 200 to 50Hz. This adjust-
ment not only provides a broader perspective on the changes
in system behaviour with fewer samples but also satisfies the
Nyquist–Shannon sampling theorem with significant mar-
gin, as the frequency band of interest lies below 2.25 Hz.

Additionally, a low-pass fourth-order Butterworth digital fil-
ter is applied to the θ̈ signal to mitigate high-frequency noise
components. This preprocessing step ensures that the essen-
tial dynamics of the system are preserved while minimising
the impact of potential noise sources. Furthermore, the input
variables for all four groups of NN are normalized using the
min-max scaling method, ensuring all features are rescaled
to a comparable range between 0 and 1. This preprocess-
ing mitigates numerical issues such as gradient explosions
or vanishing gradients during training and ensures that all
input features are on a consistent scale, further enhancing
the stability and efficiency of the learning process.

4 Results

This section presents the results of the NN-based wave exci-
tation force estimators described in Sect. 3. The performance
analysis focuses on comparing static architectures with those
incorporating temporal dynamics, across the four NN groups
and under varying sea state conditions. For comparative pur-
poses, a KBF with HO extension, experimentally tuned in
Papini et al. (2024), is utilised as a benchmark. Comprehen-
sive details regarding its theoretical formulation, parameter
tuning, and validation are extensively documented in the ref-
erencedwork.Note that, as per Papini et al. (2024), the tuning
of the KBF has been done taking into account all opera-
tional sea-states considered (see Sect. 2.2). This creates a
level playing field for comparison with the proposed data-
based observers, which are also tuned taking into account
all the considered operating conditions, and not just tuned
individually for each tank test.

The performance metrics for the NN-based estimators
are summarised in Tables 4, 5, 6, and 7, corresponding to
Groups NN1, NN2, NN3, and NN4, respectively. Each table
also includes the results of the KBF benchmark for com-
parative evaluation. These tables present the performance
across different sea states (SS1, SS2, SS3), the identification
dataset (WN), and the averaged whole figure. The evaluation
metrics comprise the MSE, Mean Absolute Error (MAE),
and Coefficient of Determination (R2), providing a compre-
hensive assessment of each model’s capability in estimating
wave-induced torque. Specifically, MSE and MAE quantify
estimation errors, while R2 evaluates the proportion of vari-
ance in the target variable explained by the model.

In Table 4 (Group NN1), static neural networks (FNN
and FNNbig) exhibit significant limitations, with consistently
higher MSE and MAE values compared to the KBF across
most sea states. For instance, in SS2, the FNN achieves
an MSE of 3.740, nearly double the KBF’s 1.830. How-
ever, architectures incorporating temporal considerations
(TDNN, RNN, and LSTM) demonstrate marked improve-
ments. Notably, the TDNN achieves the lowest MSE (0.088
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Table 4 Comparison of performance metrics for Group NN1 (θ and θ̇

as inputs)

Metric Model Dataset

SS1 SS2 SS3 WN Complete

MSE KBF 0.451 1.830 0.249 1.474 1.001

FNN 1.560 3.740 0.437 2.250 1.997

FNNbig 1.556 3.722 0.434 2.245 1.989

TDNN 0.088 0.200 0.098 0.129 0.129

RNN 0.114 0.221 0.131 0.171 0.159

LSTM 0.270 0.569 0.315 0.384 0.385

MAE KBF 0.516 0.841 0.396 0.965 0.679

FNN 1.009 1.557 0.523 1.198 1.072

FNNbig 1.006 1.554 0.522 1.194 1.069

TDNN 0.226 0.346 0.245 0.280 0.274

RNN 0.267 0.363 0.284 0.320 0.308

LSTM 0.409 0.598 0.409 0.478 0.474

R2 KBF 0.909 0.886 0.472 0.564 0.708

FNN 0.685 0.765 0.074 0.334 0.465

FNNbig 0.686 0.766 0.080 0.336 0.467

TDNN 0.982 0.987 0.793 0.962 0.931

RNN 0.977 0.986 0.723 0.949 0.909

LSTM 0.946 0.964 0.332 0.886 0.782

Bold values highlight the minimum value for each column

Table 5 Comparison of performance metrics for Group NN2 (θ and θ̈

as inputs)

Metric Model Dataset

SS1 SS2 SS3 WN Complete

MSE KBF 0.451 1.830 0.249 1.474 1.001

FNN 0.643 1.000 0.341 0.802 0.697

FNNbig 0.643 1.013 0.339 0.802 0.699

TDNN 0.097 0.215 0.065 0.103 0.120

RNN 0.136 0.731 0.073 0.118 0.264

LSTM 0.148 0.349 0.103 0.140 0.185

MAE KBF 0.516 0.841 0.396 0.965 0.679

FNN 0.645 0.789 0.486 0.702 0.656

FNNbig 0.645 0.796 0.485 0.702 0.657

TDNN 0.238 0.357 0.205 0.245 0.261

RNN 0.269 0.391 0.220 0.241 0.280

LSTM 0.301 0.446 0.258 0.292 0.324

R2 KBF 0.909 0.886 0.472 0.564 0.708

FNN 0.870 0.937 0.277 0.763 0.712

FNNbig 0.870 0.936 0.282 0.763 0.713

TDNN 0.980 0.986 0.863 0.970 0.950

RNN 0.973 0.954 0.844 0.965 0.934

LSTM 0.970 0.978 0.781 0.959 0.922

Bold values highlight the minimum value for each column

Table 6 Comparison of performance metrics for Group NN3 (θ , θ̈ , η4,
η5 and η7 as inputs)

Metric Model Dataset

SS1 SS2 SS3 WN Complete

MSE KBF 0.451 1.830 0.249 1.474 1.001

FNN 0.325 0.919 0.200 0.453 0.474

FNNbig 0.323 0.911 0.195 0.457 0.471

TDNN 0.089 0.154 0.088 0.097 0.107

RNN 0.102 0.149 0.061 0.076 0.097

LSTM 0.135 0.275 0.105 0.129 0.161

MAE KBF 0.516 0.841 0.396 0.965 0.679

FNN 0.447 0.733 0.367 0.529 0.519

FNNbig 0.445 0.725 0.362 0.531 0.515

TDNN 0.226 0.295 0.241 0.238 0.250

RNN 0.243 0.295 0.197 0.213 0.237

LSTM 0.283 0.403 0.261 0.281 0.294

R2 KBF 0.909 0.886 0.472 0.564 0.708

FNN 0.934 0.942 0.575 0.866 0.829

FNNbig 0.935 0.943 0.587 0.865 0.833

TDNN 0.982 0.990 0.814 0.971 0.939

RNN 0.979 0.991 0.871 0.978 0.955

LSTM 0.973 0.983 0.777 0.962 0.924

Bold values highlight the minimum value for each column

Table 7 Comparison of performance metrics for Group NN4 (θ , θ̇ and
θ̈ as inputs)

Metric Model Dataset

SS1 SS2 SS3 WN Complete

MSE KBF 0.451 1.830 0.249 1.474 1.001

FNN 0.379 0.492 0.067 0.232 0.293

FNNbig 0.374 0.502 0.059 0.234 0.292

TDNN 0.096 0.213 0.061 0.086 0.114

RNN 0.104 0.203 0.054 0.078 0.110

LSTM 0.139 0.273 0.086 0.116 0.153

MAE KBF 0.516 0.841 0.396 0.965 0.679

FNN 0.478 0.558 0.200 0.379 0.404

FNNbig 0.475 0.561 0.190 0.378 0.401

TDNN 0.239 0.359 0.196 0.228 0.255

RNN 0.247 0.347 0.181 0.219 0.248

LSTM 0.288 0.408 0.236 0.266 0.299

R2 KBF 0.909 0.886 0.472 0.564 0.708

FNN 0.924 0.969 0.857 0.931 0.920

FNNbig 0.925 0.969 0.875 0.931 0.925

TDNN 0.981 0.987 0.872 0.975 0.953

RNN 0.979 0.987 0.886 0.977 0.957

LSTM 0.972 0.983 0.818 0.966 0.935

Bold values highlight the minimum value for each column
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in SS1, 0.200 in SS2 and 0.129 inWN) and highest R2 (0.982
in SS1, 0.987 in SS2 and 0.962 in WN), outperforming the
KBF by 80.5% MSE reduction in SS1 89.1% in SS2 and
91.2% in WN. SS3 is the most challenging scenario due to
its wide-banded power spectral density, covering virtually
all the operation space for the considered prototype, as pre-
viously reported in Papini et al. (2024). This characteristic
poses significant estimation challenges for the KBF achiev-
ing an R2 of 0.472 in this condition. In contrast, the TDNN
demonstrates a better performance, achieving an R2 of 0.793.

GroupNN2 (Table 5) replaces θ̇ with θ̈ as the second input,
alongside θ . Static networks, despite exhibiting considerable
errors compared to networks with temporal considerations,
achieve performance comparable to theKBF in SS1 and SS2.
Specifically, the static networks attain R2 values of 0.87 and
0.93 in SS1 and SS2, respectively, which are close to the
KBF’s R2 values of 0.909 and 0.886. However, their perfor-
mance in SS3 remains lower, with R2 values of 0.277 and
0.282 for FNN and FNNbig, respectively, highlighting a per-
sistent challenge in capturing the variability of d. Once again,
the TDNN stands out as the top performer, followed closely
by the RNN. This suggests that θ̈ provides similar informa-
tion to velocity θ̇ when combined with θ for recurrent and
with past samples as input architectures, obtaining almost
the same values for SS1 and SS2 while slightly improving
performance for SS3 and WN.

The incorporation of surrounding wave height measure-
ments (η4, η5, and η7) in Group NN3 (see Table 6) results
in a significant improvement in estimation accuracy, partic-
ularly for static NN architectures. These estimators benefit
substantially from the additional inputs, outperforming the
KBF even in challenging conditions such as SS3, with MSE
values of 0.474 and 0.471 in the complete dataset, respec-
tively, compared to the KBF’s 1.001. It is important to note,
however, that the KBF does not leverage wave height infor-
mation, which may partly explain its comparatively lower
performance. Meanwhile, networks incorporating temporal
dynamics maintain their dominance, with TDNN and RNN
achieving the lowest errors overall. However, these models
do not exhibit significantly greater improvements relative
to their performance in previous input groups. Notably, the
RNNachieves the best resultswithin this group,with anMSE
value of 0.097 in the complete dataset, surpassing all other
models.

Despite omitting wave height measurements, Group NN4
(see Table 7) achieves performance metrics comparable to
those of NN3. This suggests that the inclusion of velocity
complements acceleration and position like the surrounding
height measurements. ComparingNN4withNN2, the former
gets a better performance for the static networks with similar
results for recurrent ones. For instance, the RNN achieves an
R2 value of 0.957 in the overall dataset, closely aligning with
the 0.955 observed in Group NN3 and the 0.950 achieved

in Group NN2. Similarly, the TDNN and LSTM maintain
strong performance, achieving R2 values of 0.953 and 0.935,
respectively.

5 Discussion

The findings presented in Sect. 4 highlight the impact of input
feature selection on the performance of NN-based estimators
forwave excitation effects, particularly in staticmodels. Both
the inclusion of surrounding wave height measurements in
Group NN3 models and the use of all three device motion
signals lead to improved estimation accuracy in static mod-
els compared to those relying solely on θ and θ̇ or θ and θ̈ .
This improvement is especially evident in challenging sea
states such as SS3, where the presence of additional signals
reduces theMSE.However,whilewaveheightmeasurements
provide valuable information, their integration introduces
practical challenges. These measurements require additional
instrumentation for the WEC, increasing system complexity
and overall capital costs. Moreover, reliance on external sen-
sors for wave height data may introduce uncertainties due
to sensor placement and calibration errors. From a practi-
cal standpoint, the use of neural networks with temporal
considerations from Group NN2 offers several advantages.
The variables used as inputs in this group are directly mea-
sured by standard WEC instrumentation, eliminating the
need for additional sensors and thereby reducing imple-
mentation costs. Furthermore, this approach avoids the need
for sensor fusion strategies to derive the θ̇ signal. Despite
using only two input variables (θ and θ̈ ), these estimators
achieve performance metrics that are only marginally infe-
rior to those of Group NN3 and Group NN4, suggesting
a better practical effectiveness. Additionally, this approach
simplifies data acquisition and processing pipelines, enhanc-
ing the robustness of the estimation framework. While wave
height measurements or the θ̇ signal remain valuable for cer-
tain applications, their substitution with measurement-based
inputs represents a cost-effective alternative almost without
compromising performance.

Regarding the type of neural network, the static net-
works (FNNandFNNbig) show limited competitiveness,with
performance varying significantly depending on the input
configuration. The TDNN and RNN consistently emerge as
the top-performing architectures across the considered input
groups. The RNN demonstrates superior performance when
additional input signals to WEC motion measurements are
available (Group NN3 and Group NN4). In contrast, the
TDNN stands out in scenarios with fewer inputs (Group
NN1 and Group NN2), particularly within Group NN2, as
discussed above. The LSTM ranks third, offering moderate
improvements over static models, but falling short of simpler
recurrent architectures in this application, likely due to the
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signal’s lack of long-term dependencies, as discussed in the
following paragraph. Overall, the obtained results highlight
the critical role of temporal considerations and, in a second
stage, supplementary input features.

Despite the theoretical advantages of LSTM networks in
capturing long-termdependencies, the results indicate that, in
this problem, these architectures do not outperform simpler
recurrent models such as RNN or even static architectures
incorporating past samples, like TDNN. Using the Aug-
mented Dickey–Fuller (ADF) (Dickey and Fuller 1979) and
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) (Kwiatkowski
et al. 1992) tests results that the signal to be estimated is sta-
tionary over time across all sea states. Consequently, it is
possible to analyse the temporal characteristics of the sig-
nal using the Hurst exponent (H ) via Rescaled Range (R/S)
analysis (Hurst 1951). TheHurst exponent quantifies the per-
sistence or anti-persistence of a time series, with H > 0.5
indicating long-term memory, H < 0.5 suggesting anti-
persistence, and H = 0.5 reflecting random behaviour. In
this case, the calculated Hurst exponents for d across differ-
ent sea states are as follows: H = 0.36 for SS1, H = 0.27
for SS2 and H = 0.48 for SS3 and H = 0.21 for the iden-
tification dataset WN. These values reveal predominantly
anti-persistent behaviour in SS1, SS2 and WN, where trends
tend to reverse over time due to their predominantly sinu-
soidal nature. Notably, SS3 exhibits near-random behaviour
(H ≈ 0.5), indicating a lack of significant temporal structure.
This aligns with its wide-banded spectral characteristics,
which introduce rapid and unpredictable variations in the
signal, implying that d lacks long-term temporal depen-
dencies. Consequently, the sophisticated long-term memory
mechanisms of LSTMs may introduce unnecessary com-
plexity and noise into the estimation process. In contrast,
simpler architectures such as RNNs and TDNNs (even with
fixed short-term input windows) are sufficient to capture the
oscillatory and anti-persistent temporal dependencies of the
signal d, with reduced computational overhead. This is fur-
ther supported by prior studies demonstrating that RNNs can
outperformLSTMs in tasks dominated by short-term dynam-
ics (Zhao et al. 2020; Saavedra et al. 2024; Abdulkarim and
Engelbrecht 2019).

Finally, the superior performance of NNs compared to
the linear model-based estimator can be attributed to fun-
damental differences in their underlying principles. While
the KBF relies on a linear model of the system dynamics
(Papini et al. 2024), NNs inherently capture non-linear inter-
actions through data-basedmappings, enabling them to adapt
to unmodelled hydrodynamic effects. To provide a visual
validation of the proposed NN estimators, Fig. 4 presents
representative temporal signals of wave-induced torque for
each sea state. The figure compares three signals: the real
measured torque (d), the KBF estimation (d̂K BF ), and the
proposed TDNN (Group NN2) estimation (d̂T DNN ). This

Fig. 4 Temporal wave-induced torque estimation across different sea
states. Comparison between ground truth (black), KBF estimation
(blue), and TDNN (Group NN2) estimation (orange) (colour figure
online)

graph focuses on the TDNN model, as it achieves the best
trade-off between estimation performance, network com-
plexity, and input measurement requirements compared to
other models. For the estimations presented here, the signals
fromall operating three sea states are concatenated,with each
plot (Fig. 4a–c) showing a 10-s snippet corresponding to≈ 5
typical periods in the longer case (i.e., SS2). These plots offer
a qualitative assessment of the estimation performance across
different maritime conditions.

The temporal signals in Fig. 4 corroborate the previ-
ously reported performancemetrics, revealing distinct model
behaviours across sea states. In SS1 and SS2, where con-
ditions align more closely with the assumptions adopted
when modelling the device dynamics within the KBF, both
the KBF and TDNN demonstrate reliable accuracy. The
TDNN, however, demonstrates the most accurate estimation
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by closely tracking the ground truth with minimal deviation.
Conversely, in SS3, the KBF exhibits significant limita-
tions, likely due to unmodelled non-linear hydrodynamic
effects that are more predominant in this case (see Fig. 4c).
In contrast, the RNN demonstrates an enhanced capability
in capturing complex wave-induced torque dynamics under
these wide-banded and turbulent conditions.

Although the results demonstrate that the TDNN out-
performs the KBF used as a benchmark in this work, it is
important to note that the KBF represents a specific imple-
mentation within the broader class of linear model-based
approaches. Alternative formulations, such as non-linear
extensions or other observers, could yield different outcomes.
Despite this, the findings underscore the potential of data-
based techniques to effectively handle non-linearities and
uncertainties inherent in wave-induced torque estimation,
offering a promising complement to traditional methodolo-
gies. Notably, while data-based estimators performwell with
the current dataset, their accuracy depends heavily on the
informativeness of the training data, which must adequately
represent the range of possible wave conditions. In contrast
to model-based approaches, data-based methods require less
prior knowledge of system dynamics but rely extensively on
large, high-quality datasets for training. Conversely, model-
based estimators depend significantly on accurate system
modelling, which can limit their adaptability to new sce-
narios, often necessitating complex recalibration or even a
complete redesign of the underlying model. On the other
hand, data-based estimators can be updated by retraining
offline with new data collected under the corresponding
conditions. This ensures their continued relevance and effec-
tiveness whilemaintaining a straightforward implementation
process, without introducing additional computational com-
plexity.Regarding the computational footprint, it is important
to note that all significant computational effort is relegated
to the offline training phase. Once the model is trained,
the inference process using the estimator is computation-
ally lightweight particularly for NN architectures without
recurrent connections. This characteristicmakes it feasible to
deploy these trained neural models on resource-constrained
platforms such asmicrocontrollers (Ray 2022; Estrebou et al.
2022) or Programmable Logic Controllers (PLCs) (Lai and
Ma 2023), which are commonly used in industrial applica-
tions.

6 Conclusions and future work

The findings reveal that NN architectures incorporating
temporal considerations achieve superior estimation perfor-
mance compared to static NN estimators. The inclusion of
surrounding wave height data or all three device motion-
related variables enables these estimators to achieve the most

favourable performance metrics, with the RNN demonstrat-
ing particularly accurate results. However, an alternative
approach based on the TDNN architecture, which relies
solely on signals directly measured by standardWEC instru-
mentation (position and acceleration), achieves comparable
performance. This provides a practical trade-off for scenar-
ios where additional wave sensors are unavailable, while also
outperforming the benchmark linear model-based estimator
used in thiswork.Overall, these results demonstrate the capa-
bility of data-based strategies to achieve accurate estimations
by efficiently extracting valuable information from input sig-
nals, thereby reducing reliance on complex analyticalmodels
and offering a promising alternative to traditional model-
based methods.

Future workwill encompass two primary directions. First,
the proposed approachwill be experimentally validated using
a real WEC prototype in a wave tank environment follow-
ing the in-situ (online) validation proposed in Papini et al.
(2024), ensuring its robustness and reliability under realistic
operating conditions. Second, the integration of the estima-
tor into the control loop will be explored to enhance system
performance, enabling more adaptive and efficient energy
capture strategies. In addition, future works could explore
the use of more advanced architectures, such as attention-
based models or convolutional-recurrent hybrids, to assess
whether further performance gains can be achieved. Addi-
tionally, given the quasi-periodic nature of ocean waves, the
proposed estimation framework could be extended to predic-
tion tasks, enabling predictive or adaptive control strategies.
These advancements have the potential to further optimise
energy capture and contribute to the viability of wave energy
technology.
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