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In quantum chemistry, the region associated with atoms in molecules (AIMs) is determined using the basin definition
through the action integral of the total Lagrangian density. This can be associated with different Hamiltonians, such
as Schrödinger, Dirac, or the modified Dirac Hamiltonian. The latter two differ only in the associated metric matrix;
while for the Dirac Hamiltonian is the 4x4 identity matrix, for the modified Dirac Hamiltonian is a diagonal matrix
composed by the 2x2 identity matrix and a 2x2 diagonal matrix with elements T̂/2mc2. It was shown by Cioslowski and
Karwowski that when the Dirac Hamiltonian is considered, the total Lagrangian density is zero at every point within
the molecular volume, making impossible to partition the molecular electronic structure into basins. Moreover, the
nonrelativistic total Lagrangian density derived from the Dirac Hamiltonian is also zero at every point, and a heuristic
term must be added to obtain the basin definition in the Quantum Theory of Atoms in Molecules (QTAIM) developed
by Bader. In contrast, the total Lagrangian density associated with the modified Dirac Hamiltonian is nonzero at every
point within the molecular volume, and the basin can be defined in a relativistic framework. Taking the nonrelativistic
limit of this Lagrangian density, the standard nonrelativistic basin definition within the QTAIM approach is recovered.

I. INTRODUCTION

The description of molecules based on their atomic compo-
sition is an essential tool for understanding or predicting their
properties, grounded in the chemist’s intuition and atomic
properties. For example, in certain hydrocarbons, it has been
experimentally demonstrated that molecular properties can be
described as the sum of their constituents.1–4 However, an
extension of the Hohenberg-Kohn theorem to a subdomain
shows that the limit of perfect transferability of the properties
of atoms or atomic groupings can never be attained.5

The Quantum Theory of Atoms in Molecules (QTAIM) is
a powerful tool for studying the nature of chemical bonding
in molecular systems. The QTAIM approach was developed
by Bader in the nonrelativistic regime6–8 for an isolated sys-
tem, making possible to define where an atom ends and the
next begins as subsystems into a molecule, and also allowing
for the description of molecular properties based on atomic
electron densities. The QTAIM approach demonstrates that
the properties of an atom change in direct response to vari-
ations in its charge distribution, and the Schwinger principle
of stationary action9 is used to determine the regions associ-
ated with atoms in molecules (AIMs), called basins.6–8 In the
general case, the action integral is altered by generators of in-
finitesimal unitary transformations acting on both the space-
like and timelike surfaces bounding the space-time volume,
whereas for an isolated system, the physics is totally deter-
mined by their action on just the spacelike surfaces at the two
time endpoints.10,11 Additionally, these regions are bounded
by surfaces of zero flux in the electron density gradient, and
the boundary between two basins is established in such a way
that a bond critical point (BCP) is on the bond path. More-
over, the properties associated with the electron density at
BCP along the bond path can be used to classify the type of in-
teratomic interactions, which are of great importance in chem-
istry. Several reviews about the QTAIM methodology can be
found elsewhere.11–14

It is well known that for studies involving molecules con-
taining heavy atoms, relativistic effects are essential for an
accurate description.15,16 Therefore, it is appropriate to extend
the QTAIM methodology within a relativistic formalism that
allows for the determination of the basin definition, the proper
identification of BCPs, and the characterization of the inter-
atomic interactions within this framework. A recent review of
the field of relativistic QTAIM was published by Anderson.17

Cioslowski and Karwowski presented the first mathemat-
ical generalization of QTAIM in the relativistic regime.18

However, they found that the Hamilton’s principle19 applied
to the total Lagrangian density associated with the four-
component (4c) Dirac Hamiltonian is zero. Moreover, they
discovered that the relativistic definition of AIMs requires the
addition of a heuristic term to derive the standard nonrela-
tivistic basin definition. This condition was used to calculate
relativistic effects on the energetic stability of Pb5 clusters.20

Anderson and Ayers21 derived the expression for the basin
using the total Lagrangian density associated with the zeroth-
order regular approximation (ZORA)22 Hamiltonian with
scalar relativistic (SR) corrections. Furthermore, the nonrel-
ativistic basin definition within the QTAIM approach is ob-
tained when the speed of light tends to infinity. The SR-
ZORA basin expression was used by Wang and co-workers23

to show that scalar relativistic effects are essential for correct-
ing the topological instability observed in the [Sb3Au3Sb3]3−

system. In addition, Anderson et al.24 found that relativistic
effects can change critical-point properties values up to 30%,
compared to the corresponding nonrelativistic values for sys-
tems containing very massive atoms, when scalar relativistic
corrections are considered. Besides, a few years ago, An-
derson and collaborators discovered that when SR-ZORA is
applied to QTAIM, the topology of the electron density ex-
hibits extra BCPs between a hydrogen and a gold atom in 1,4-
benzenedithiol.25

A generalization of the AIM methodology was published
by Anderson and Ayers, under which the principle of station-
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ary action for a region leads to open quantum subsystems.26

They showed that, when a reasonable Lagrangian is selected,
it often leads to the integral of the Laplacian of the electron
density on the region vanishing as a necessary condition for
the zero flux surface. They applied this methodology to the
ZORA Hamiltonian with spin-orbit coupling corrections and
the decoupled large component of the Dirac wave function
and found that it satisfies the atomic Schwinger’s principle of
stationary action,9 just as in the nonrelativistic case.

Reiher et al.27 have analyzed the electron densities and their
Laplacians obtained from the wave functions associated with
the Dirac, ZORA, and Douglas-Kroll-Hess28 (DKH) Hamilto-
nians. They found that scalar relativistic effects are sufficient
to obtain a reasonable description of the electron density to de-
scribe these quantities for three organometallic compounds.29

In contrast, Galland et al.30,31 used the exact two-component
(X2C)32 wave function to study compounds of astatine with
other halogen atoms. They reported that the spin-orbit cou-
pling relativistic effect, included through the density func-
tional theory (DFT), plays a crucial role in analyzing dipole
moment orientation, atomic charges, and the Laplacian of the
electron density at BCPs. It is also noteworthy that other
studies have considered the influence of relativistic effects on
the electron density topology, like the Hg-C bond in certain
organometallic compounds,33,34 together with correlation ef-
fects at DFT level. Other methods, such as the picture-change
error34,35 or techniques that correct the core electron density
modeling when pseudo-potentials, have also been used.36–38

In this work, the definition of a basin in the molecular elec-
tronic structure using the action integral in both nonrelativistic
and relativistic regimes is presented. For the relativistic def-
inition, the Dirac equation39 with two different metric matri-
ces, which consists of a transformation of the small compo-
nent of the 4c wave function, is employed. Furthermore, the
nonrelativistic basin definition is derived from the relativistic
expressions.

In the next section, a formal definition of a basin in the
molecular electronic structure using the action integral and
the total Lagrangian density is presented. Later, and based
on the literature, a brief development of the total Lagrangian
density along with the corresponding basin definition for the
Schrödinger40 and Dirac39 Hamiltonians is presented. Finally,
the total Lagrangian density and the corresponding basin def-
inition from the modified Dirac Hamiltonian41,42 are derived.
Additionally, the nonrelativistic expression from a relativistic
framework is recovered.

II. BASIN

According to atoms in molecules theory, atoms are regions
(Ω̄) within the molecular volume (Ω) that are bounded by
surfaces (S̄) of zero flux in the electron density gradient.43,44

These regions are called basins and can be formally defined
using the Hamilton’s principle.19 The regions within Ω, where
the variation of the action integral (δW ) is equal to zero be-

tween two fixed time points (t1 > t2) define Ω̄,

δW = δ

∫ t2

t1
dt

∫
Ω̄(t)

L d3x = 0 (1)

where L is the total Lagrangian density, which is a function
of the molecular wave function (Ψ) and its conjugate (Ψ†).
For simplicity and without significant loss of generality, the
following arguments are restricted only to one-particle. Ad-
ditionally, L depends on both the spatial derivatives (∇) and
the time derivatives (∂/∂ t) of both Ψ and Ψ†.

L =
ıh̄
2

(
Ψ

† ∂Ψ

∂ t
− ∂Ψ†

∂ t
Ψ

)
+ L̄ (Ψ,∇Ψ,Ψ†,∇Ψ

†)

(2)

The expression for the second term on the right–
hand side of Eq. (2) depends on the Hamiltonian (Ĥ)
considered.18,21,43–45 However, it is well known that the
Hamiltonian and L̄ (Ψ,∇Ψ,Ψ†,∇Ψ†) are related by the
expression,18,45

ĤΨ =

(
∇ ∂

∂ (∇Ψ†)
− ∂

∂Ψ†

)
L̄ (Ψ,∇Ψ,Ψ†,∇Ψ

†)

(3)

where Ψ and Ψ† are generic representations of the wave func-
tion such as Schrödinger (ψ),40 Dirac (Ψ),39,46 and modified
Dirac (ψ̃)41,42 wave functions, depending on the Hamiltonian
considered.

III. SCHRÖDINGER HAMILTONIAN

The dynamics of the electron in the nonrelativistic regime
are described by the Schrödinger equation and its conjugate,40

ıh̄
∂ψ

∂ t
= ĤS

ψ − ıh̄
∂ψ∗

∂ t
= ĤS

ψ
∗ (4)

where h̄ is the reduced Plank’s constant. ĤS is the Schrödinger
Hamiltonian, and ψ is the nonrelativistic or one-component
(1c) wave function. The ĤS is composed by the kinetic (T̂ )
and potential (V̂ ) energy operators19

ĤS = T̂ +V̂ =− h̄2

2m
∇

2 +V̂ (5)

where m is the electron mass and ∇2 is the Laplacian.

A. Basin De�nition

According to Eq. (5), the second term on the right–hand
side of Eq. (2) for the Schrödinger Hamiltonian is given
by,43,44

L̄ S(ψ,∇ψ,ψ∗,∇ψ
∗) = − h̄2

2m
∇ψ

∗ ·∇ψ −V̂ ψ
∗
ψ

(6)
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3

When Eq. (6) is substituted into Eq. (3), the Eq. (5) is re-
covered. On the other hand, given L̄ S and using Eq. (4), the
total Lagrangian density in Eq. (2) for an isolated system is
expressed as,

L S =
1
2
(
ψ

∗(Ĥs
ψ)+(Ĥs

ψ
∗)ψ

)
− h̄2

2m
∇ψ

∗ ·∇ψ −V̂ ψ
∗
ψ

= − h̄2

4m
∇

2(ψ∗
ψ) (7)

Then, by substituting Eq. (7) into Eq. (1) and applying the
divergence theorem, an atom or basin in the nonrelativistic
regime is defined by the region within the molecular volume,
bounded by a surface of zero flux in the electron density gra-
dient (∇ρ = ∇(ψ∗ψ)), which is orthogonal to the normal
vector (n) of S̄43,44

∇ρ ·n = 0 (8)

for any point on S̄.
The zero flux surface condition is universal, since it ap-

plies equally to an isolated atom or to an atom bound in a
molecule, as the atomic values for a given property should
yield the molecular average for that property when summed
over all the atoms in a molecule.8

IV. DIRAC HAMILTONIAN

In the relativistic regime, the electronic structure of atoms
and molecules is described by a four-component (4c) wave
function (Ψ), which is the solution of the Dirac equation39,46

ıh̄
∂Ψ

∂ t
= ĤD

Ψ; Ψ =

[
ΨL

ΨS

]
(9)

The 4c wave function can be written in terms of two-
component (2c) wave functions called large and small com-
ponents represented by ΨL and ΨS respectively, and the cor-
responding Dirac Hamiltonian is given by

ĤD = cα · p̂+βmc2 +V̂ (10)

where c is the speed of light in vacuum, m is the electron mass,
p̂ is the linear momentum vector operator, and V̂ is the poten-
tial energy operator. Finally, α and β are 4x4 matrices

α=

[
02 σ
σ 02

]
; β =

[
12 02
02 −12

]
(11)

which contain the Pauli matrices (σ), the 2x2 identity matrix,
and the null matrix.

A. Basin De�nition

The time independent part of the total Lagrangian density
in Eq. (2) associated to the Dirac Hamiltonian is given by

L̄ D(Ψ,∇Ψ,Ψ†,∇Ψ
†) =

ıh̄c
2

(
Ψ

†α ·∇Ψ−∇Ψ
† ·αΨ

)
−(βmc2 +V̂ )Ψ†

Ψ (12)

and, when Eq. (12) is substituted into Eq. (3), the Dirac
Hamiltonian of Eq. (10) is recovered. For an isolated sys-
tem, the total Lagrangian density given by Eq. (2) is equal to
zero, in agreement with results obtained by Cioslowski and
Karwowski.18

L D =
1
2
(
Ψ

†(ĤD
Ψ)+(ĤD

Ψ)†
Ψ
)
+

ıh̄c
2

(
Ψ

†α ·∇Ψ−∇Ψ
† ·αΨ

)
−(βmc2 +V̂ )Ψ†

Ψ

=
ıh̄
2
∇ · (Ψ†cαΨ−Ψ

†cαΨ) = 0 (13)

The terms in parentheses cancel because they represent the
difference between two relativistic current electron densities
(j = Ψ†cαΨ), which have the same magnitudes but opposite
directions. Thus, Eq. (1) vanishes at every point within the
molecular volume, making impossible to define the regions
associated with each atom that composes the molecule. As the
total Lagrangian density is zero for the Dirac Hamiltonian, the
nonrelativistic limit taken to obtain the nonrelativistic basin
definition is also zero, making impossible to recover the defi-
nition given by Eq. (8) in that framework. The nonrelativistic
Bader definition can be recaptured only by adding a heuristic
term, as pointed out by Cioslowski and Karwowski.18

V. MODIFIED DIRAC HAMILTONIAN

The modified Dirac equation41 is obtained by decoupling
the time independent Dirac equation of the Hamiltonian given
in Eq. (10) and using the 4c wave function defined in Eq. (9).
After the shift of the energy in -2mc2 to align the zero of the
Dirac spectrum with the Schrödinger one,42 the Dirac equa-
tion can be written as

c(σ ·p)ΨS +V̂ Ψ
L = EΨ

L

c(σ ·p)ΨL +(V̂ −2mc2)ΨS = EΨ
S (14)

Defining a pseudo-large component (φ L) as

Ψ
S =

(σ ·p)
2mc

φ
L (15)

and multiplying the second row of Eq. (14) by (σ ·p)/2mc,
and substituting the pseudo-large component in the same
equation, the modified Dirac equation is obtained,

T̂ φ
L +V̂ Ψ

L = EΨ
L

T̂ Ψ
L +

[
1

4m2c2 (σ ·p)V̂ (σ ·p)− T̂
]

φ
L = E

T̂
2mc2 φ

L

(16)

where T̂ is the nonrelativistic kinetic energy operator. Then,
the time independent modified Dirac equation is written as

H̃MD
ψ̃ = EG̃ψ̃ (17)
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4

where the modified wave function (ψ̃) is composed of a large
component and a pseudo-large component

ψ̃ =

[
ΨL

φ L

]
(18)

with a change of metric defined from Eq. (16) as

G̃ =

[
12 02
02 T̂/2mc2

]
(19)

Applying the Dirac’s relation

(σ ·p)V̂ (σ ·p) = (pV̂ ) ·p+ ıσ · ((pV̂ )×p) (20)

it is possible to separate the Dirac Hamiltonian (H̃MD) in the
spin-free (H̃s f ) and spin-dependent (H̃sd) terms as

H̃MD = H̃s f + H̃sd

=

[
V̂ T̂
T̂ (pV̂ )·p

4m2c2 − T̂

]
+

[
02 02

02
ıσ((pV̂ )×p)

4m2c2

]
(21)

which is useful to study scalar and spin-dependet terms sep-
arately, although this will not be done in this work. Since
no approximations have been made in deriving of the modi-
fied Dirac equation from the Dirac equation using the pseudo-
large component, the modified Dirac Hamiltonian given by
Eq. (21) yields the same results as those obtained from the
Dirac Hamiltonian of Eq. (10).41,42 On the other hand, for con-
venience and without any approximation, instead of using the
H̃s f and H̃sd Hamiltonians, it is possible to separate the non-
relativistic kinetic energy and the potential energy operators
in the matrices Λ and Ω defined as

Λ=

[
02 12
12 −12

]
; Ω=

[
V̂ 02

02
(σ·p)V̂ (σ·p)

4m2c2

]
(22)

with which Eq. (17) can be written as

ΛT̂ ψ̃ +Ωψ̃ = EG̃ψ̃ (23)

The modified Dirac equation written in terms of the matri-
ces Λ and Ω will be useful to obtain an expression for the
basin analogous to the nonrelativistic case.

A. Basin De�nition

To derive a relativistic QTAIM, an appropriate Lagrangian
density must be proposed for the modified Dirac Hamiltonian.
The expression of the second term on the right–hand side of
Eq. (2) can be written as,

L̄ MD(ψ̃,∇ψ̃, ψ̃†,∇ψ̃
†) =− h̄2

2m
∇ψ̃

†Λ ·∇ψ̃ − ψ̃
†Ωψ̃

(24)
This can be corroborated when Eq. (24) is substituted in

the right-hand side of the Eq. (3); then the modified Dirac

Hamiltonian is recovered

∇ ∂

∂ (∇ψ̃†)

[
− h̄

2m
∇ψ̃

†Λ ·∇ψ̃ − ψ̃
†Ωψ̃

]
= − h̄2

2m
Λ∇

2
ψ̃

− ∂

∂ψ̃†

[
− h̄

2m
∇ψ̃

†Λ ·∇ψ̃ − ψ̃
†Ωψ̃

]
= Ωψ̃

then, (
∇ ∂

∂ (∇ψ̃†)
− ∂

∂ψ̃†

)
L̄ MD =

− h̄2

2m
Λ∇

2
ψ̃ +Ωψ̃ =ΛT̂ ψ̃ +Ωψ̃ (25)

For the total Lagrangian density, Eq. (2) must be modified
in order to take into account the change of the metric used in
the modified Dirac equation, giving

L MD =
ıh̄
2

(
ψ̃

† ∂G̃ψ̃

∂ t
− ∂G̃ψ̃†

∂ t
ψ̃

)
+ ¯L MD(ψ̃,∇ψ̃, ψ̃†,∇ψ̃

†)

(26)
Then, substituting Eq. (24) in Eq. (26) and taking into ac-

count that the time dependent modified Dirac equations are

ıh̄
∂G̃ψ̃

∂ t
= H̃MD

ψ̃ − ıh̄
∂G̃ψ̃†

∂ t
= (H̃MD

ψ̃)† (27)

the total Lagrangian density of the modified Dirac Hamilto-
nian for an isolated system is

L MD =
1
2
(
ψ̃

†ΛT̂ ψ̃ + ψ̃
†Ωψ̃ +(T̂ ψ̃

†)Λψ̃ +(Ωψ̃)†
ψ̃
)

− h̄2

2m
∇ψ̃

†Λ ·∇ψ̃ − ψ̃
†Ωψ̃ =

− h̄2

4m
∇

2(ψ̃†Λψ̃) (28)

When this expression is substituted into Eq. (1) and the di-
vergence theorem is applied, the region associated with each
basin within the molecular volume is enclosed by the sur-
face S̄, and the gradient of the modified Dirac electron density
(∇ρMD =∇(ψ̃†Λψ̃)) is orthogonal to the normal vector for
any point on S̄

∇ρ
MD ·n= 0 (29)

Eq. (29) represents the relativistic counterpart of Eq. (8).
Furthermore, Eq. (29) indicates that when the small compo-
nent ΨS of the Dirac equation is transformed into the pseudo-
large component φ L (Eq. (15)), the definitions of the basin and
electron density also change. Moreover, it is expected that this
dependence on the metric matrix also alters the nonrelativis-
tic expression derived from the relativistic regime, giving the
correct nonrelativistic basin definition.

B. Nonrelativistic Limit

In the nonrelativistic limit, i.e., setting the speed of light
c → ∞, the pseudo-large component of the modified wave
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function becomes the large component of the 4c Dirac wave
function.41,42 After transformation of the 4c Dirac equation to
a 2c nonrelativistic Schrödinger equation written in terms of
spin-orbitals, the large component corresponds to the nonrela-
tivistic wave function in that limit. Thus, in the nonrelativistic
limit, Eq. (28) becomes

lim
c→∞

L MD = − h̄2

4m
∇

2(ψ†
ψ) (30)

which is the same as Eq. (7) (in a 2c form) when the
Schrödinger Hamiltonian is considered. This result confirms
that the nonrelativistic expression can be obtained without
adding any heuristic term to the total relativistic Lagrangian
density, and it only depends on the metric matrix used in the
Dirac equation, i.e., on the transformation that has been ap-
plied to ΨS.

VI. CONCLUSION

In this work, the total Lagrangian density, along with the
corresponding basin definition, is derived for the modified
Dirac Hamiltonian. Additionally, the nonrelativistic expres-
sion is derived within the relativistic framework by taking the
proper nonrelativistic limit.

As observed in the work by Cioslowski and Karwowski, the
total Lagrangian density associated with the Dirac Hamilto-
nian for an isolated system is zero at every point within the
molecular volume. However, instead of adding a heuristic
term to the total Lagrangian density, a transformation of the
small component of the 4c wave function leads to a change
in the metric matrix associated with the Dirac equation. This
change of metric is sufficient to obtain a total Lagrangian den-
sity that is not necessarily zero at every point of the molecular
volume, thus providing a proper definition of the basin in the
relativistic framework. From the total Lagrangian density as-
sociated with the modified Dirac Hamiltonian, the standard
nonrelativistic basin definition can also be derived taking the
nonrelativistic limit.

The relativistic basin definition could lead to studying the
QTAIM topology of heavy-atom containing molecules at four-
component level instead of approximated two-component
methodologies. However, in order to use the current definition
of the relativistic basin, it is necessary the proper implemen-
tation of certain equations in a computational code, and some
efforts are being made in that direction.
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