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Abstract Turbidity currents traversing canyon-fan systems flow over bed slopes
that decrease in the downstream direction. This slope decrease eventually causes
turbidity currents to decelerate and enter a net-depositional mode. When the slope
decrease is relatively rapid in the downstream direction, the turbidity current un-
dergoes a concomitantly rapid and substantial transition. Similar conditions are
found when turbidity currents debouch to fan systems with loss of lateral confine-
ment. In this work a simplified approach to perform direct numerical simulation
(DNS) of continuous turbidity currents undergoing slope breaks and loss of lat-
eral confinement is presented and applied to study turbulence modulation in the
flow. The presence of settling sediment particles breaks the top-bottom symmetry
of the flow, with a tendency to self-stratify. This self-stratification damps turbu-
lence, particularly near the bottom wall, affecting substantially the flow’s ability
to transport sediment in suspension. This work reports results on two different
situations: turbidity currents driven by fine and coarser sediment flowing through
a decreasing slope. In the case of fine sediment, after the reduction in the slope of
the channel, the flow remains turbulent with only a modest influence on turbulence
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statistics. In the case of coarse sediments, after the change in slope, turbulence is
totally suppressed.

Keywords Turbidity currents · Turbulence modulation · Sediment transport ·
Direct numerical simulation

1 Introduction

Turbidity currents are flows driven by sediment in suspension (Allen, 1985; Garćıa,
1992). In these types of flows gravity acts to pull the sediment in suspension
downslope, and the sediment drags the fluid along with it, so driving the current.
Suspended sediment particles tend to settle down creating a vertical profile with
concentration declining in the upward direction thus self-stratifying the flow. These
density gradients are capable of damping turbulence (Turner, 1973; Stacey and
Bowen, 1988a,b; Armenio and Sarkar, 2002) consequently reducing the ability of
turbidity currents to transport sediment in suspension. If the level of turbulence
is high enough to overcome sediment depositional fluxes, turbidity currents can
be sustained over long periods of time transporting large amounts of sediment for
long distances (Pirmez and Imran, 2003).

Turbidity currents are known to be one of the main mechanisms for sediment
transport into deep ocean and for the emplacement of large scale sedimentary
deposits (turbidities) (Talling et al, 2007). Many if not most of the turbidities ob-
served in outcrops and in seismic data are associated with decelerating turbidity
currents (Amy et al, 2005). When these flows traverse canyon-fan systems they
flow over bed slopes that decrease in the downstream direction, either gradually
(upward-concave profile) or suddenly/cyclically (e.g. stepped profile). This de-
crease in bed slope reduces the streamwise component of the driving force (owing
to the suspended sediment) eventually causing the turbidity current to decelerate
and enter a net-depositional mode (Cantero et al, 2012). When the slope decrease
in the downstream direction is above a threshold value, the turbidity current may
undergo a rapid and substantial transition. Similar conditions are found when
turbidity currents debouch to fan systems with loss of lateral confinement. The
internal structure of the deposit is completely dictated by the way sediment de-
position occurs.

Lock-exchange gravity and turbidity currents have been successfully studied
with direct numerical simulation (DNS) (see for example Härtel et al, 2000; Necker
et al, 2005; Cantero et al, 2007a,b, 2008b). Recently, Cantero et al (2009a) have
presented a simplified approach for the simulation of continuous turbidity cur-
rents. This simplified model replaces the upper boundary of the turbidity current
(interface in figure 1) with a roof, so preventing ambient water entrainment and
creating a channel flow. This model has been called turbidity current with a roof

(TCR) (Cantero et al, 2009a). The flow within the channel is driven purely by
the presence of sediment in the water and the only driving force in the system is
the excess density of the water-sediment mixture. The channel is assumed to be
adjusted so that the flow and sediment transport entering the channel equal that
exiting the channel (periodic boundary conditions) (see details in Cantero et al,
2009a) providing a configuration without inflows/outflows which simplifies the im-
plementation of the DNS model. Were the sediment to settle out completely, the
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flow would cease. The TCR model thus retains a key element of turbidity currents,
i.e. that they are sediment-driven. On the other hand, it simplifies the problem
by allowing the possibility of a mean flow equilibrium state that varies neither in
time nor in the downstream direction.

The present work extends the work of Cantero et al (2009a) to explore how
the turbulence structure of a turbidity current is modified after the deceleration
of the flow owing to a bed slope break or to the loss of lateral confinement (see
figure 1). The following section presents the conceptualization of the problem with
the TCR paradigm for DNS of continuous turbidity currents.

2 Problem setting

The TCR model for continuous turbidity currents consists of a periodic channel
with zero net pressure gradient such that in the absence of sediment particles the
flow is stagnant. A schematic of the setting is shown in figure 1 (see for example
TCR2 in this figure). The channel forms an angle θ with the horizontal direction
and extends Lz = H, Lx = 2πH and Ly = 2πH/3 in the wall-normal, streamwise
and spanwise directions, respectively.

In a coordinate system attached to the channel bottom wall, the dimensionless
equations that govern the flow are (Cantero et al, 2008a, 2009a)

∂ũ

∂t̃
+ ũ · ∇ũ = −∇p̂+

1

Reτ
∇2

ũ+ C̃g , (1)

∇ · ũ = 0 , (2)

∂c̃

∂t̃
+
(

ũ+ Ṽ
)

· ∇c̃ =
1

Reτ Sc
∇2c̃ , (3)

where ũ = (ũ, ṽ, w̃) = (ũx, ũy, ũz) is the dimensionless fluid velocity, c̃ is the di-
mensionless volumetric concentration of sediment, Ṽ = Ṽ (sin θ, 0,− cos θ) is the
dimensionless settling velocity of the sediment particles with Ṽ its magnitude, and
p̂ is the dimensionless pressure that remains after removing the hydrostatic com-
ponent. In (1) C̃g = (c̃, 0,−Riτ c̃

′′) with c̃′′ = c̃− c̃∗ where c̃∗ is the dimensionless
concentration averaged over planes parallel to the bottom wall:

c̃∗ =
1

Lx Ly

∫ Lx

0

∫ Ly

0

c̃ dx dy . (4)

Equations (1)-(3) apply to dilute non-cohesive sediment suspensions such that
Boussinesq approximation holds and hindered settling can be neglected, and to
suspension of particles sufficiently small such that inertial effects are of second
order compared to settling effects (see section 3 of Cantero et al, 2008a; Ferry
and Balachandar, 2001).

Variables with a tilde on top are dimensionless. The length scale employed
is the channel half-height. The scale for concentration is the average volumetric
concentration of sediment c(v). The velocity scale is the average shear velocity
defined as

u∗,avg =

(

τt + τb
2ρw

)1/2

=
(

g sin θ R c(v)H/2
)1/2

, (5)
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where τt and τb are the mean top and bottom wall shear stress, respectively, ρw
is the density of the water, g is the magnitude of the gravity acceleration, and
R = (ρs − ρw)/ρw with ρs the density of the sediment particles. The time and
pressure scales are thus the derived scales T = h/u∗,avg and ρw u2

∗,avg, respectively.
The four dimensionless numbers in (1) and (3) are the Reynolds number, the

Richardson number, the dimensionless settling velocity of the sediment particles,
and the Schmidt number defined as

Reτ ≡
u∗,avg H/2

ν
=

(

g sin θ R c(v)
)1/2

(H/2)3/2

ν
, (6)

Riτ ≡
g cos θ R c(v)H/2

u2
∗,avg

=
1

tan θ
(7)

Ṽ ≡
V

u∗,avg
=

V
(

g sin θ R c(v)H/2
)1/2

and (8)

Sc ≡
ν

κ
, (9)

respectively, where ν is the kinematic viscosity of the water and κ is the diffusiv-
ity of the sediment particles. As explained in Cantero et al (2009a,b), the com-
plex turbulence-sediment-wall interactions present in the proximity of the bottom
boundary of real flows with rough wall are not central to the analysis of the present
work and are lumped into a diffusivity model for the sediment particles. This dif-
fusion of non-cohesive sediment particles arise from the long range hydrodynamics
interactions between particles (Segre et al, 2001). The four parameters (6)-(9)
define completely the problem in the TCR setting.

The channel walls are assumed to be smooth, and the sediment to be sufficiently
fine so that there is no net deposition. Similar conditions are met when turbidity
currents flow in bypass mode over a bedrock or coarse gravel bed (see for example
Piper and Savoye, 1993; Gerber et al, 2008; Sequeiros et al, 2009). The following
boundary conditions thus apply for the top and bottom walls

ũ = 0 at z̃ = 0 and z̃ = H̃, (10)

Ṽ cos θ c̃+
1

Reτ Sc

∂c̃

∂z̃
= 0 at z̃ = 0 and z̃ = H̃, (11)

while in the directions tangent to the walls periodic boundary conditions are ap-
plied for all variables. Although a no-slip condition is used in the present set of
simulations, since the dominant physics of the problem mainly pertain to the inter-
action of turbulence generated at the bottom boundary with the self-stratification
of the suspended sediment, the major conclusions to be drawn are insensitive to
the precise nature of the top boundary condition. Recent simulations of particle-
turbulence interaction in a turbidity current with free-slip condition on the top
boundary have yielded results in close agreement with those using no-slip bound-
ary condition (Shringarpure et al, 2012) and thus provide support for the relative
insensitivity to the top boundary condition. Observe that the volume integral of
(3) with the boundary conditions prescribed above reduces to dc̃(v)/dt̃ = 0. That
is, as the flow evolves from the initial condition, the sediment particles are only
redistributed within the channel. The total particle load of the flow is maintained
constant and equal to the initial value (c̃(v) = 1 for all times).
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In this work mean variables are obtained by time-averaging the instantaneous
horizontally averaged variables and are denoted by an overbar (·). Perturbations
from the mean are denoted by a prime (·′). For all cases considered the time of
integration employed is over a dimensionless time interval of 50 units after the flow
has achieved a statistically steady state. In comparison, the integral time scale for
channel flow of Reτ = 180 has been reported to be 19.2 ν/u2

∗ (see Quadrio and
Luchini, 2003), that is approximately 0.1 dimensionless time units. The integration
time is thus approximately over 455 integral time scales, and it has been checked
to be long enough for the accurate computation of first and second order statistics.

3 Model for slope break and loss of lateral confinement

Consider a turbidity current flowing through a slope break as shown in figure 1a,
or through a loss of lateral confinement as shown in figure 1b. The general case
considered in this work is a change in flow configuration which is a combination
of these two situations together. Upstream of the change in flow configuration
the turbidity current flows in statistically steady state over an inclined bed that
forms an angle θ1 with respect to the horizontal direction. Some distance after the
change in flow configuration, the turbidity current adjusts to the new regime and
flows again in statistically steady state over an inclined bed that forms an angle
θ2 with respect to the horizontal direction.

This work addresses the characteristics of the flow in the far field of the change
in flow configuration, where the immediate near-field influence of the break and/or
the loss of lateral confinement themselves are not considered. The problem is thus
idealized by considering two separated flows. These flows are modeled separately
employing the TCR paradigm: TCR1 and TCR2 for the flows upstream and down-
stream of the change in flow configuration, respectively. Figure 1 shows schemati-
cally this setting for the cases of change in slope (a) and loss of lateral confinement
(b). Conceptually, this model can be also thought as the time relaxation of the
steady state solution corresponding to the TCR1 setting to a new statistically
steady state that corresponds to the TCR2 settling.

When the flow transitions from the TCR1 setting to the TCR2 setting the only
physical parameters that change are θ, H and c(v) since g, R, ν, V and κ remain
unaltered. With this in mind, the four dimensionless numbers that control the flow
for the TCR2 setting can be recast as

Reτ,2 = Reτ,1

(

sin θ2
sin θ1

)1/2
(

c
(v)
2

c
(v)
1

)1/2
(

H2

H1

)3/2

, (12)

Riτ,2 =
1

tan θ2
, (13)

Ṽ2 = Ṽ1

(

sin θ1
sin θ2

)1/2
(

c
(v)
1

c
(v)
2

)1/2
(

H1

H2

)1/2

, and (14)

Sc2 = Sc1, (15)

which means that once the TCR1 setting and the downstream slope (θ2) are set,

the TCR2 problem has only two degree of freedom to be specified: c
(v)
2 /c

(v)
1 and
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H2/H1. These two degrees of freedom of the coupled system are employed to
enforce conservation of mass.

3.0.1 Mass conservation enforcement

Transition from section 1 to section 2 is likely to involve complex non-stationary
processes, which will not be directly simulated or addressed here. We consider
sections 1 and 2 to be sufficiently upstream and downstream of the change of
flow configuration. We assume that the net flow of both the carrier fluid and the
particles are constant as the current transitions from section 1 to section 2. The
conservation of suspended sediments between sections 1 and 2 is consistent with
the concentration boundary conditions employed. Mass conservation for the mean
flow between TCR1 and TCR2 is enforced by control volume analysis. Employing
the control volume CV of figure 1 conservation of water mass implies

B1
∫

0

H1
∫

0

ρw (1− c1)u1dzdy =

B2
∫

0

H2
∫

0

ρw (1− c2)u2dzdy , (16)

where u1 and u2 are the mean water velocity at sections 1 and 2, respectively,
c1 and c2 are the mean volumetric sediment concentration at sections 1 and 2,
respectively, and B1 and B2 are the width of the channels at sections 1 and 2,
respectively. Equation (16) can be recast as

H1B1ub1

(

1− χ1c
(v)
1

)

= H2B2ub2

(

1− χ2c
(v)
2

)

(17)

where

ub =
1

H B

B
∫

0

H
∫

0

u dzdy (18)

is the mean velocity and

χ =
1

H B ub c(v)

B
∫

0

H
∫

0

u c dzdy (19)

is an O(1) shape factor. Employing the assumption of dilute flow, i.e. c
(v)
1 ≪ 1

and c
(v)
2 ≪ 1 (17) can be simplified to

H1 B1 ub1 = H2 B2 ub2. (20)

Employing the same approach, conservation of sediment mass in CV implies

B1
∫

0

H1
∫

0

ρsc1 (u1 + V sin θ1) dzdy =

B2
∫

0

H2
∫

0

ρsc2 (u2 + V sin θ2) dzdy. (21)

Here the streamwise component of the diffusive flux of sediment has been neglected.
This equation can be recast as

H1B1c
(v)
1 (χ1 ub1 + V sin θ1) = H2B2c

(v)
2 (χ2 ub2 + V sin θ2) , (22)
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and simplified to

H1B1c
(v)
1 χ1 ub1 = H2B2c

(v)
2 χ2 ub2 (23)

by means of the fact that V sin θ1 ≪ ub1 and V sin θ2 ≪ ub2.

A pseudo friction factor can be defined as

γ ≡
ub

u∗,avg
=

ub
(

g sin θ R c(v) H/2
)1/2

, (24)

for each TCR setting. From (20) and (23)

c
(v)
2

c
(v)
1

=
χ1

χ2
, and (25)

H2

H1
=

(

χ2

χ1

)1/3(
γ1
γ2

)2/3(
B1

B2

)2/3(
sin θ1
sin θ2

)1/3

, (26)

which are the values of c
(v)
2 /c

(v)
1 and H2/H1 that enforce mass conservation be-

tween the two TCR settings.

4 Solution strategy

Once the TCR1 setting is fixed the corresponding TCR2 setting that enforces
conservation of mass is completely defined by the following set of parameters

Reτ,2 = Reτ,1
B1

B2

γ1
γ2

, (27)

Riτ,2 =
1

tan θ2
, (28)

Ṽ2 = Ṽ1

(

B2

B1

)1/3(
sin θ1
sin θ2

)1/3(
γ2
γ1

)1/3(
χ2

χ1

)1/3

and (29)

Sc2 = Sc1. (30)

Observe that the values of χ and γ are stationary steady state values and, conse-
quently, χ2 and γ2 are only known once the stationary state solution of TCR2 has
been computed. The TCR2 solution requires thus an iterative process:

– Set γ
(0)
2 = γ1, χ

(0)
2 = χ1

– Loop until convergence, i = 1

– compute Re
(i)
τ,2 = Reτ,1

γ1 B1

γ
(i−1)
2

B2

– compute Ṽ2 = Ṽ1

(

γ
(i−1)
2 χ

(i−1)
2 B2 sin θ1

γ1 χ1 B1 sin θ2

)1/3

– solve TCR
(i)
2

– compute γ
(i)
2 and χ

(i)
2

– convergence if |γ
(i)
2 − γ

(i−1)
2 | ≤ TOLγ and |χ

(i)
2 − χ

(i−1)
2 | ≤ TOLχ

– i=i+1.
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It is worth mentioning that the solution of each TCR
(i)
2 problem demands

O(105) time iterations to reach statistically steady state and another O(105) time
iterations in order to compute converged statistics.

The dimensionless governing equations are solved using a de-aliased pseu-
dospectral code (Canuto et al, 1988). Fourier expansions are employed for the
flow variables in the horizontal directions (x − y), and a Chebyshev expansion
with Gauss-Lobatto quadrature points is employed in the inhomogeneous vertical
direction (z). The grid resolution used is Nx = 96 ×Ny = 96 ×Nz = 97 and the
nonlinear terms are computed in a grid 3Nx/2× 3Ny/2×Nz in order to prevent
aliasing errors. This grid assures that the energy of the high wave number modes
is several orders of magnitude smaller than the energy of the low wave number
modes (see Figure 3 in Cantero et al, 2009a). An operator splitting method is used
to solve the momentum equation along with the incompressibility condition (see
for example Brown et al, 2001). A low-storage mixed third order Runge-Kutta and
Crank-Nicolson scheme is used for the temporal discretization of the advection-
diffusion terms, with a pressure correction applied at the end of each stage. More
details on the implementation of this numerical scheme can be found in Cortese
and Balachandar (1995). Validation of the code can be found in Cantero et al
(2007a, 2008c, 2009a).

5 Application of the model

This section reports results on the application of the model to two different situ-
ations: turbidity currents driven by fine and coarser sediment flowing through a
decreasing slope. Here the distinction between the definitions of fine and coarse
sediments is as follows. In the case of fine sediment after the reduction in the
slope of the channel the flow still remains turbulent, with only a modest influ-
ence on the turbulence statistics. Whereas, in case of coarse sediments, after the
change in slope, turbulence is totally suppressed. The before and after slope break
simulations performed to address these two situations are reported in Table 1.
Intermediate simulations in the transition process during convergence are not re-
ported. In obtaining the results for FLS and CLS in Table 1 the tolerances TOLγ

and TOLχ have been set to 0.05, and 7 and 6 iterations were needed, respectively.
The present analysis focuses on the effect of slope change on the flow and thus the
channel width is kept a constant, i.e. the simplification of B2/B1 = 1 has been
employed. As indicated in section 3, B2/B1 is a fixed parameter in the model.

The analysis is performed for a typical field scale turbidity current of height

H = 20m running on a slope θ1 = 5◦ with a mean volume concentration c
(v)
1 =

0.005 of sand particles (in water: R = 1.65 and ν = 10−6 m2/s). From (5)
u∗,avg,1 = 0.27 m/s for this case. Two different sediment sizes are considered: a fine

sediment with diameter d = 40 µm with settling velocity of V = 1.4 mm/s (Garćıa,
2008), and a coarse sediment with diameter d = 60 µm with settling velocity of
V = 3.1 mm/s (Garćıa, 2008). The corresponding dimensionless settling velocities
are Ṽ = 5.4× 10−3 and Ṽ = 1.2× 10−2 for the fine and coarse sediments, respec-
tively. Owing to computational resource limitation it will not be possible to per-
form DNS at very large Reynolds numbers typical of real turbidity currents. In this
work the simulations are performed for a modest Reynolds number of Reτ,1 = 180.
This value of Reτ,1 corresponds to a value of Reb,1 = ub1H1/2ν ∼ 3000, i.e. in the
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turbulent regime. Extrapolation to large Reynolds number flows can be found in
Cantero et al (2012). In both cases the current is assumed to transition to a lower
slope of θ2 = 2◦.

Table 2 presents the results for the final stationary steady state of the flow after
the change of slope. Both situations, fine- and coarse-sediment driven currents,
show an increase of the current height for the lower slope. The averaged volume
concentration remains practically unchanged after the flow transition owing to the
enforced boundary condition for c̃. The change of 5% reported for case C in Table
2 owes more likely to the approximation of dilute flow employed in writing (20).
The pseudo friction factor γ shows an increase for both cases.

Figure 2 presents the mean concentration wall-normal profiles. Figure 2a shows
the results corresponding to the fine-sediment driven current, while 2b shows the
results corresponding to the coarse-sediment driven current. A clear increase in the
concentration can be seen in the bottom half of the channel for both cases as the
currents transitions to the low slope. The increase is larger for the case of coarse
sediment showing lager concentration gradients and thus stronger stratification of
the flow. For the case of fine sediment the increase of concentration in the bottom
half is minor and there is only a weak change in the concentration gradients.

The effects of stratification are clearly seen in the wall-normal profiles of
streamwise velocity shown in figure 3. Figure 3a shows the results correspond-
ing to the fine-sediment driven current, while 3b shows the results corresponding
to the coarse-sediment driven current. Less turbulent mixing of momentum is ex-
pected for the stronger stratified flows and this is evident in figure 3b, which shows
larger velocity gradients in the bottom half of the channel. The velocity profile cor-
responding to the fine-sediment driven current (3a) flowing over the low slope show
minor changes and weak evidence of stratification effects.

A measure of the level of turbulence in the flow can be obtained from the
turbulent kinetic energy (TKE)

k =
1

2

(

u′2 + v′2 + w′2
)

, (31)

where u′

i = ui − ui is the perturbation from the mean. Figure 4a shows the
results corresponding to the fine-sediment driven current and 4b shows the results
corresponding to the coarse-sediment driven current. The effect of change in slope
in the TKE is negligible for the case of the fine-sediment driven current. For the
case of the coarse-sediment driven current, on the other hand, the effect is strong
and the peak of TKE has dramatically reduced to about 10% of the peak value
observed in the high slope flow regime.

Finally, the ability of the flow turbulence to mix momentum and mass in the
vertical can be measured by the ratio between the corresponding turbulent fluxes
and viscous fluxes

τRe

τvis
=

−u′w′

νdu/dz
and

FRe

Fvis
=

−w′c′

κdc/dz
, (32)

respectively. Figures 5 shows the ratio between the Reynolds stress and viscous
stress, and figure 6 shows the ratio between the concentration turbulent fluxes and
viscous fluxes. Frames (a) correspond to the fine-sediment driven current and they
show a minor decreases in the ability to mix momentum and mass. Frames (b)
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that correspond to the coarse sediment driven current, on the other hand, show
no turbulent mixing in the bottom half of the channel.

The results reported in this work have focused on a set-up where bottom slope
of the channel changes and have considered the situation of uniform channel width
(i.e., B2/B1 = 1). A similar investigation can be considered where the bottom
slope is held fixed, while the channel width is increased. It can be clearly seen
from (27) and (29) that any reduction of lateral confinement (B2/B1 > 1) reduces
Reτ,2 and increases Ṽ2 by a fixed factor, thus augmenting the effect of turbulence
damping by stratification. Thus, abrupt and total suppression of turbulence can
be expected for situations of rapidly increase in the spanwise extent of the current,
if this reduction in lateral confinement is above a certain threshold (Cantero et al,
2009a).

6 Conclusions

This work presents a simplified model for the direct numerical simulation of con-
tinuous turbidity currents with focus on addressing turbulence modulation. The
model extends the turbidity current with a roof model of Cantero et al (2009a) for
the analysis of slope breaks and loss of lateral confinement. The analysis is imple-
mented with two separate simulations for sections upstream and downstream of
the change of flow configurations, and connected by imposing mass conservation
of water and suspended sediment.

Suspended sediment plays a dual role in turbidity currents. On one hand, it
drives the flow through its influence on the streamwise component of the momen-
tum equations. On the other hand, it stratifies the flow by its influence on the
wall-normal component of the momentum equations. The parameter that mea-
sures the relative importance of these two effects in the momentum equations is
the Richardson number, which for the case of turbidity currents is directly related
to the slope (Riτ = 1/ tan θ). Thus, as the bed slope decreases, stratification ef-
fects become stronger. The other important parameter that mediates stratification
effects is the dimensionless settling velocity of the suspended sediment (Ṽ ), which
indirectly measures suspended sediment concentration gradients. Thus sediments
with larger settling velocity induce larger concentration gradients.

The model developed in this work has been employed to analyze turbulence
modulation in turbidity currents owing to changes on the bed slope. The analysis
has been performed for turbidity currents flowing from a slope θ1 = 5◦ to a lower
slope θ2 = 2◦ , and driven by two different sediments sizes. In the first case
the turbidity current is driven by the finer sediment. The flow undergoes minor
modifications and remains fully turbulent after the change in bed slope. In the
second case the turbidity current is driven by the coarser sediment. As opposed
to the first case, the flow suffers major changes. Large concentration gradients
develop and strongly stratify the flow. Turbulence is totally suppressed, suspended
sediment rains out and the flow eventually ceases to exist.

This work focus on flows driven by granular non-cohesive particles, and the
effects on turbulence modulation reported herein are due to stratification effects.
There are other mechanisms of turbulence suppression. For example, Baas and
Best (2002) present turbulence modulation due to rheology effects. In the present
simulations we do not observe definite layers in the flow and the formation of
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Kelvin-Helmholtz instabilities do not develop in the current as reported by Baas
and Best (2002).

Furthermore, real turbidity currents are polydisperse. Their response to slope
changes would be a combination of the two cases analyzed in this work, mediated
by the relative concentration of fine over coarse sediment.
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Garćıa M (1992) Turbidity currents. In: Brekhovskikh L, Turekian K, Emery K,
Tseng C (eds) Encyclopedia of Earth System Science, vol 4, Academic Press,
Inc., New York, pp 399–408
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Table 1 Cases studied in this work. For all cases the domain size is Lx = 2πH × Ly =
2πH/3×Lz = H, and resolution is Nx = 96×Ny = 96×Nz = 97. FHS refers to the simulation
corresponding to fine sediment and high slope, FLS refers to the simulation corresponding to
fine sediment and low slope, CHS refers to the simulation corresponding to coarse sediment
and high slope, and CLS refers to the simulation corresponding to coarse sediment and low
slope. For the cases of low slope simulations the reported values correspond the the final values
after convergence of the algorithm for mass conservation.

Case θ Ṽ Reτ

FHS 5 5× 10−3 180
FLS 2 6.87× 10−3 173
CHS 5 10−2 180
CLS 2 1.41× 10−2 153

Table 2 Results for cases studied in this work. For all cases B2/B1 = 1. F refers to the model
applied to fine sediment, and C refers to the model applied to coarse sediment.

Case χ1 χ2 γ1 γ2 H2/H1 c
(v)
2 /c

(v)
1

F 0.9998 0.9992 15.6 16.3 2.43 1.00
C 0.9990 0.9548 15.9 18.7 2.21 1.05
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Fig. 1 Problem setting. a: Conceptualization of slope break. b: Conceptualization of loss
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Fig. 2 Mean concentration profiles. Frame a: fine sediment, and frame b: coarse sediment.
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Fig. 3 Mean velocity profiles. Frame a: fine sediment, and frame b: coarse sediment.
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Fig. 4 Turbulent kinetic energy profiles. Frame a: fine sediment, and frame b: coarse sediment.
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Fig. 5 Reynolds to viscous stress ratio. Frame a: fine sediment, and frame b: coarse sediment.
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Fig. 6 Turbulent to viscous fluxes ratio. Frame a: fine sediment, and frame b: coarse sediment.


