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Abstract

Adsorption of multicomponent mixtures on solid substrates is essential to numerous
technological processes and provides key insights into surface phenomena. Despite ad-
vancements in theoretical modeling, many approaches still assume that each adsorbate
occupies a single site, thereby neglecting important effects arising from molecules that
span multiple adsorption sites. In this work, we broaden the theoretical description of
such systems by considering the adsorption of j distinct polyatomic species on triangular
lattices. Our approach is based on (i) exact thermodynamic results for polyatomic gases on
one-dimensional lattices, extended here to account for substrates with higher coordination
numbers, and (ii) the “0D cavity” functional theory originally developed by Lafuente and
Cuesta, which reduces to the well-known Guggenheim–DiMarzio model in the limit of
rigid rods. As a case study, we explore the behavior of a three-component system consisting
of dimers, linear trimers, and triangular trimers adsorbing onto a triangular lattice. This
model captures the interplay between structural simplicity, multisite occupancy, config-
urational diversity, and competition for space, key factors in many practical scenarios
involving size-asymmetric molecules. We characterize the system using total and partial
isotherms, energy of adsorption, and configurational entropy of the adsorbed phase. To
ensure the reliability of our theoretical predictions, we perform Monte Carlo simulations,
which show excellent agreement with the analytical approaches. Our findings demonstrate
that even complex adsorption systems can be efficiently described using this generalized
framework, offering new insights into multicomponent surface adsorption.

Keywords: multisite-occupancy adsorption; lattice gas models; statistical thermodynamics;
multicomponent gases

1. Introduction
Adsorption phenomena involving multicomponent mixtures on solid surfaces remain a

central topic, not only due to their relevance in technological applications but also because of
the fundamental insights they offer into surface interactions and structure formation [1–4].
While substantial progress has been made in the study of mixture adsorption, several impor-
tant aspects remain unresolved. Experimental investigations of single-component adsorption
are relatively straightforward and well-established, yet precise measurement techniques for
gas mixtures often involve significant complexity and time investment [3–6].

From a theoretical perspective, a large proportion of existing models assume that each
adsorbate species occupies a single adsorption site, thereby neglecting the possibility of
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multisite occupation in the adsorbed layer [5–23]. However, such simplifications can lead
to inconsistencies when comparing theoretical predictions with experimental data. Crucial
phenomena such as surface orientational phase transitions [24,25] or the displacement
of one species by the other [26–33] cannot be adequately captured without including
multisite occupancy effects. (This phenomenon, known as adsorption preference reversal
(APR), is observed in systems such as methane–ethane mixtures [26,27]. APR involves a
counterintuitive inversion in selectivity with pressure: ethane dominates adsorption at low
pressure, whereas methane becomes predominant at higher pressures. Similar behavior has
been reported for hydrocarbon mixtures in silicalite [28–31], carbon nanotube bundles [32],
and MOFs [33]. APR arises due to the difference in molecular size and, consequently, site
occupancy.)

The lattice gas model [34] provides a valuable framework to address these limitations
by accommodating extended adsorbates, such as linear molecules that cover multiple sites
upon adsorption, often referred to as k-mers. Building on this foundation, a variety of
methods have been employed to analyze systems with extended particle sizes. One of the
earliest approaches is the Flory–Huggins (FH) approximation, independently formulated
by Flory [35] and Huggins [36], which generalized the Bragg–Williams theory originally
used for binary mixtures on two-dimensional lattices [34]. Designed to account for chain-
like molecules, the FH model has undergone numerous refinements aimed at enhancing its
accuracy, with comprehensive discussions provided in works such as [34,37]. Guggenheim
proposed an alternative route for evaluating the partition function in these systems [38],
which was later refined by DiMarzio through the inclusion of corrections for rigid rod-like
molecules [39]. This extended treatment is now known as the Guggenheim–DiMarzio
(GD) approximation.

In the 2000s, new theoretical formulations have emerged to better describe adsorption
with multisite occupancy. The first, termed the Extension Ansatz (EA) approximation, uses
analytically derived expressions for the thermodynamic properties of k-mers adsorbed on
one-dimensional lattices and extends these results to more complex geometries [40,41]. A
second approach, the Fractional Statistical Theory of Adsorption (FSTA) [42], is inspired
by Haldane’s generalized exclusion statistics [43,44]. The third, the Occupation Balance
(OB) method, employs a fugacity expansion to approximate adsorption thermodynam-
ics [41,45]. Finally, the Semi-Empirical (SE) scheme combines exact 1D solutions with the
GD framework to provide practical yet accurate predictions [46,47].

More recently, the Multiple Exclusion (ME) statistics framework was introduced to
describe classical systems in which particles access spatially correlated states [48–50]. ME
statistics accounts for situations in which multiple particles simultaneously exclude access
to a common state, an intrinsic feature of non-monomeric particles on a lattice.

Despite the advances outlined above, most studies have concentrated on single-species
adsorption, leaving the adsorption of k-mer mixtures relatively underexplored. Addressing
this gap, our group has recently contributed a series of theoretical studies focused on
polyatomic binary mixtures [51–53]. The first of these works [51] presents an exact statistical
thermodynamic treatment for mixtures composed of s-mers and k-mers adsorbed on one-
dimensional homogeneous substrates. This formalism, developed specifically for zeolite-
like systems, was the first to rigorously model the adsorption of polyatomic mixtures
and provided a clear theoretical explanation for the APR phenomenon. The analysis
demonstrated that size asymmetry between adsorbed species plays a decisive role in
driving APR and highlighted the risk of misinterpreting experimental data when the
polyatomic nature of adsorbates is ignored.

A subsequent work [52] extended the analysis to two-dimensional lattices, using
a generalized lattice gas approach informed by the classical GD approximation [38,39].
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This framework enabled the exact solution in one dimension and yielded accurate ap-
proximations for higher dimensions, preserving the key effects of multisite occupation.
In a third contribution [53], multicomponent adsorption of polyatomics was reframed
within the language of fractional statistics, applying Haldane’s formulation [43,44] to
model monomer–dimer mixtures and offering quantitative insight into methane–ethane
adsorption in nanoporous materials such as zeolites.

In 2002, Lafuente and Cuesta reformulated Rosenfeld’s Fundamental Measure Theory
(FMT) for application to lattice systems, starting from an exact density functional derived
for one-dimensional mixtures of hard rods [54,55]. This novel formulation, known as Lattice
Fundamental Measure Theory (LFMT), proved effective in generating highly accurate phase
diagrams for mixtures of hard-core particles [54–56]. Furthermore, the framework allows
for the use of dimensional crossover techniques. This advantage was illustrated through
the derivation of density functionals for lattice gases with nearest-neighbor exclusion,
applicable across various lattice geometries such as square, triangular, and both face-
and body-centered cubic lattices, by projecting from a functional defined for hypercubic
particles in (d + 1) dimensions [57]. The generality observed in these results led to a broader
strategy for formulating FMTs suitable for arbitrary lattice structures, particle shapes, and
spatial dimensionalities [58,59].

The results presented in Refs. [51–53] are restricted to two-component systems. In this
work, we extend the theoretical framework of multicomponent adsorption by analyzing
the case of j distinct species adsorbing on triangular lattices. To this end, we employ the
EA approximation as our core methodological approach [41,47]. This method begins with
the exact calculation of the partition function for a multicomponent gas of polyatomic
species adsorbed on a one-dimensional lattice [40,51]. Building on this foundation, we
incorporate established theoretical arguments [34,35,37,40,60,61] to generalize the config-
urational entropy to systems with higher lattice connectivity. The key correction factor
introduced in this generalization quantifies the number of possible configurations per site
for placing a k-mer at zero coverage and explicitly depends on both the lattice topology
and the geometry of the adsorbing species.

In addition to the EA approximation, our results will also be discussed in the context of
Lafuente and Cuesta’s theory [54–59]. As discussed in Ref. [62], for the case of straight rigid
rods, the theory by Lafuente and Cuesta in the “0D cavities” approximation coincides with
Guggenheim–DiMarzio (GD) theory [38,39]. This combined approach (referred to in this
paper as GD-LC) will be applied to compute adsorption isotherms and the configurational
entropy of the adsorbed phase.

With the general theoretical framework in place, we focus on a specific case study:
the adsorption of a ternary mixture consisting of dimers, linear trimers, and triangular
trimers on triangular lattices (see molecular structures in Figure 1). Three main motivations
drive this choice. First, (i) the dimer represents the simplest polyatomic adsorbate and
captures the essential features of multisite occupancy; (ii) the trimer is the simplest species
exhibiting multiple adsorption configurations on triangular lattices; and (iii) the difference
in molecular size between dimers and trimers leads to competitive displacement effects, a
hallmark of multicomponent adsorption phenomena.

Second, recent work by our group [63–65] introduced triangular lattice models to study
the stability and distortion of sI clathrate hydrate structures formed by methane and carbon
dioxide. In these models, methane is represented as triangular trimers and carbon dioxide
as linear trimers, revealing lattice deformation mechanisms and free energy landscapes.
Although prior investigations focused on single-component systems, practical scenarios
often involve coadsorption. One of the key open questions is how carbon dioxide displaces
methane during clathrate formation, a process of both theoretical and practical relevance.
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k2 =3 (linear trimer)

k3 =3 (triangle)

L1

L2

k1 =2 (dimer)

c=6

Figure 1. Schematic diagram showing the different adsorbate configurations studied in this work:
dimer (k1 = 2, blue symbols); linear trimer (k2 = 3, red symbols); and triangular trimer (k3 = 3, black
symbols). Spheres and open circles represent ki-mer’s units and empty sites, respectively.

Third, and equally important, triangular lattices are common in both natural and
engineered materials. Therefore, adsorption studies on such geometries have significant
theoretical and experimental implications, particularly for understanding surface phase
transitions and for the structural characterization of solid surfaces [66–71].

Our approach combines analytical modeling with Monte Carlo (MC) simulations to
test the theoretical predictions. This combined methodology enhances the robustness of
our conclusions by allowing direct comparison between analytical results and computa-
tional data.

The present study represents a natural progression from our earlier work [51–53],
which focused on simple multicomponent systems, including binary mixtures and linear
molecules. As a precursor, the adsorption behavior of pure gases composed of dimers,
linear trimers, and triangular trimers was analyzed in Ref. [72]. The problem becomes
substantially more complex, and scientifically richer, when these three species are allowed
to interact and adsorb concurrently.

The remainder of this paper is structured as follows: The model and the Monte
Carlo simulation methodology are detailed in Section 2. In Section 3, we present and
discuss the results. Section 4 summarizes our main conclusions. Appendix A presents the
thermodynamic framework for multicomponent lattice gases with hard-core interactions.
Finally, details of the Ideal Adsorbed Solution Theory (IAST) are given in Appendix B.

2. Model and Monte Carlo Simulation Scheme
A monolayer adsorption scenario is examined, involving a j-component mixture,

where the system contains N1 molecules of type 1, N2 of type 2, . . . , and Nj of type j. Each
molecule of species i is a linear ki-mer, meaning it is composed of ki identical segments,
each occupying one lattice site; thus, a ki-mer covers exactly ki consecutive lattice sites
upon adsorption. Interactions are limited strictly to steric hindrance: no overlap between
ki-mers is permitted, ensuring that no site is shared by multiple adsorbed units.

Systems governed exclusively by steric constraints hold particular significance in
statistical mechanics because their potential energy, U, remains constant by definition.
As a result, the Helmholtz free energy, F = U − TS, becomes entirely dependent on the
entropy, S, meaning that any phase behavior arises solely from entropic effects. In a seminal
contribution, Onsager [73] demonstrated that systems composed of extremely elongated
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rods with purely excluded volume interactions can undergo entropy-driven transitions
to nematic phases exhibiting long-range orientational order. The problem proposed by
Onsager is a clear example of an entropy-driven phase transition. Other examples of
entropy-driven systems can be found in Refs. [74–76]. In closer connection to the present
study, recent investigations on antifreeze proteins [77] and guest exchange in clathrate
hydrates [65] have shown that complex adsorption and displacement phenomena can
emerge purely from steric and entropic mechanisms. These systems exhibit competition and
selectivity without the need for explicit energetic interactions. This perspective reinforces
the relevance of entropic models based solely on geometric constraints and multisite
occupancy, such as the one we use here.

In order to model the adsorption process of the mixture, a general Monte Carlo
(MC) scheme in the grand canonical ensemble was implemented [78,79]. The surface
was represented by a triangular lattice of M = L × L adsorption sites, and a ternary
(three-component) mixture was selected as the subject of study. The mixture consists
of dimers (species 1, k1 = 2), linear trimers (species 2, k2 = 3), and triangular-shaped
trimers (species 3, k3 = 3). These species are adsorbed along three lattice directions and
six possible orientations (connectivity c = 6). Figure 1 provides a schematic representation
of species 1 through 3. Blue spheres denote dimers, red spheres represent linear trimers,
and black spheres correspond to triangular trimers. Unoccupied lattice sites are indicated
by empty circles. The molar composition X of the ternary mixture satisfies the relation
XTotal = X1 + X2 + X3= 1.

As mentioned at the beginning of this section, the only interaction between different
adsorbed particles is hard-core exclusion. In addition, since the lattice is assumed homo-
geneous, E(M, N1, N2, N3) (Equation (A5)) can be arbitrarily chosen equal to zero without
losing generality (i.e., the interaction energy between every ki-mer and the substrate is set
to be zero, ϵi = 0 for i = 1, 2, 3).

Then, given a lattice of M equivalent adsorption sites in contact with a ternary gas
mixture at temperature T and pressure P, the state of the system may change through the
adsorption or desorption of a ki-uple (ki-mer) of any of the three species. An elementary
MC simulation step (MCS) proceeds as follows:

1. Initialization:

• Set temperature T, pressure P, and molar compositions X1, X2, and X3. Accord-
ingly,

µi = µ0
i + ln XiP [i = 1 (dimer), i = 2 (linear trimer) and i = 3 (triangular trimer)]. (1)

2. Random species selection:

• Randomly select one of the three species.

3. Random ki-uple selection:

• Randomly select a set of ki sites on the lattice forming a ki-uple, according to the
geometry of the species selected in step 2.

– If the ki-uple is empty, attempt to adsorb a ki-mer of the type selected in step
2 with probability Wads.

– If the ki-uple is fully occupied by a ki-mer of the type selected in step 2,
attempt to desorb it with probability Wdes.

– If the ki-uple is partially occupied, or fully occupied, by elements belonging
to different adsorbed particles, the attempt is rejected.

• The probabilities Wads and Wdes are calculated according to the Metropolis crite-
rion [78,79]:
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Wads = min
[

1, P exp
(
− ∆E

kBT

)]
, (2)

and

Wdes = min
[

1,
1
P

exp
(
− ∆E

kBT

)]
, (3)

where ∆E is the difference between the energies of the final (new) and initial
(old) states.

4. Repeat the simulation step:

• Repeat steps 2–3 a total of M times to complete one MCS.

In our MC simulations, the equilibrium state can be well reproduced after discarding
the first m′ = 106 MCS. Then, averages are taken over m = 106 MCS successive configura-
tions. The initial configuration of the system is an empty triangular lattice, and the final
configuration obtained for a given pressure is used as the initial configuration for the next
(higher) pressure.

Partial and total adsorption isotherms are obtained as simple averages

θi =
ki⟨Ni⟩

M
, (4)

and

θ =
i=j

∑
i=1

θi, (5)

where ⟨. . . ⟩ means the average over the MC simulation runs.
The use of MC techniques for computing thermal averages of thermodynamic quanti-

ties is a well-established and powerful approach [78,79]. Observables such as total energy,
energy fluctuations, and correlation functions can be reliably estimated by averaging over
a sufficiently large set of sampled configurations. In contrast, quantities like the free
energy and entropy are more elusive, as they are not directly accessible through simple
ensemble averages. To overcome this challenge, several indirect approaches have been
introduced [79], with thermodynamic integration being among the most effective and
commonly applied methods [45,80–82].

Within the grand canonical framework, thermodynamic integration involves evalu-
ating the chemical potential µ as a function of surface coverage, tracing a reversible path
from a known reference state to the target state of interest. This procedure also requires
prior knowledge of the Helmholtz free energy F0 associated with the reference condition.
Accordingly, for a system consisting of a single component with N particles distributed
over M lattice positions, the free energy can be determined from the following expression:

µ =

(
∂F
∂N

)
M,T

, (6)

and

F(M, N, T) = F0(M, N0, T) +
∫ N

N0

µdN. (7)

Using F = E − TS, the configurational entropy S can be written as

S(M, N, T) = S0(M, N0, T) +
E(M, N, T)− E(M, N0, T)

T
− 1

T

∫ N

N0

µdN. (8)
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In the case of a j-component mixture containing N1 molecules of component 1, N2

molecules of component 2, . . . , Nj molecules of component j, Equation (7) must be rewritten
in terms of the chemical potentials of each adsorbed species µi,

µi =

(
∂F
∂Ni

)
Nj ,T,M

. (9)

Integrating the last equation, we obtain

F(M, N1, N2, . . . , Nj, T) = F0(M, N10, N20, . . . , Nj0, T) +
j

∑
i=1

(∫ Ni

Ni0

µidNi

)
. (10)

Accordingly, it follows that

S(M, N1, N2, . . . , Nj, T) = S0(M, N10, N20, . . . , Nj0, T)

+
E(M, N1, N2, . . . , Nj, T)− E(M, N10, N20, . . . , Nj0, T)

T

− 1
T

[
j

∑
i=1

(∫ Ni

Ni0

µidNi

)]
. (11)

In our case E(M, N1, N2, . . . , Nj, T) = 0 and the determination of the entropy in the
reference state, S0(M, N10, N20, . . . , Nj0, T), is trivial [S0(M, N10, N20, . . . , Nj0, T) = 0 for
N10 = N20 = · · · = Nj0 = 0]. Then,

S(M, N1, N2, . . . , Nj, T) = − 1
T

[
j

∑
i=1

(∫ Ni

0
µidNi

)]
. (12)

After writing the last equation in terms of intensive variables, the configurational
entropy per site (s = S/M) results in

s(θ, T)
kB

= − 1
kBT

[
j

∑
i=1

(∫ θi

0

µi
ki

dθi

)]
, (13)

where θi = ki N/M and θ = ∑i θi.
The µi versus θi curves are determined by applying the adsorption–desorption method-

ology outlined earlier in this section. The integration involved in Equation (13) is performed
using the trapezoidal approximation, a standard numerical technique [83]. Since all chem-
ical potentials are expressed in units of kBT, all results will be independent of the tem-
perature. Therefore, throughout the remainder of this work, we will refer to s(θ) as the
configurational entropy per lattice site, omitting the explicit temperature reference (for
simplicity we will drop the “T”).

The simulation scheme developed in this section was tested on one-dimensional lat-
tices, where the model presented in Appendix A yields exact results. Indistinguishable
outcomes were obtained from both theoretical calculations and Monte Carlo (MC) sim-
ulations. This agreement validates the MC simulation framework, demonstrating that
the kinetic rules outlined in steps (1–4) (Equations (1)–(3)) produce equilibrium states
that are in direct correspondence with predictions from statistical mechanics. However,
these results cannot be directly related to real-time dynamics. To accurately simulate the
time evolution of real physical processes, it is necessary to employ the Kinetic Monte
Carlo method [79]. In this context, future work will focus on developing an n-fold way
Monte Carlo algorithm [84], enabling the investigation of the key kinetic properties of these
multicomponent systems under conditions of multiple site occupancy.
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3. Results
In this section, the adsorption isotherm (i.e., surface coverage as a function of pressure)

and the configurational entropy per site of the adsorbed layer, as predicted by the EA and
GD-LC theoretical models, are compared with the results obtained from MC simulations,
following the procedure outlined in Section 2.

Within the framework of the EA theoretical approach, it is important to emphasize that
the use of the approximate configurational factor Ωc(M, N1, N2, . . . , Nj) (Equation (A4))
enables a direct evaluation of the Helmholtz free energy. As a consequence, the partial and
total thermodynamic functions of the ternary mixture, corresponding to different gas-phase
compositions, can be consistently derived via Equation (A17).

On the other hand, the numerical evaluation of the entropy per site, s/kB, using
Equation (13), is straightforward and computationally efficient, since the coverage de-
pendence on µ/kBT is computed according to the MC simulation protocol described in
Section 2. In this approach, the partial chemical potentials are integrated as a function of
the partial coverage of each species.

The simulations were carried out on triangular lattices of size L × L, with L = 360.
To minimize boundary effects, periodic boundary conditions were applied. Under these
conditions, finite-size effects—which could influence adsorption isotherms in smaller sys-
tems—were found to be negligible. These findings are consistent with the results reported
in a previous study by our research group [72], where a type-cluster approximation [85–88]
was combined with MC simulations to analyze the configurational entropy per site of
dimers and trimers on triangular lattices. It was observed that surface coverage values
remain practically unchanged for L > 90.

This section is organized into two main parts. In the first part (Section 3.1), a com-
prehensive comparison is made between the adsorption isotherms and configurational
entropy per site obtained from the EA theoretical model (Appendix A), the GD-LC theory,
the Ideal Adsorbed Solution Theory (IAST) [5,6], and the MC simulations (Section 2). Two
representative cases are examined for (dimers–linear trimers–triangular trimers) ternary
mixtures: an equimolar composition (X1 = X2 = X3 = 1/3) and a diluted case for dimers
(X1 = 0.10) with equal fractions of linear and triangular trimers (X2 = X3 = 0.45). This
section also includes the study of the behavior of the partial configurational entropy per site,
with particular emphasis on the role of this quantity in the displacement of larger species
(trimers) due to the presence of smaller ones, specifically, dimers. The studied cases provide
insights into the evolution of the partial entropy of each species and allow for a better
understanding of their individual and collective contributions to the displacement process.

In the second part (Section 3.2), the total entropy of the mixture is examined as a
function of different molar fractions of dimers (k = 2). This analysis sheds light on how
the total entropy landscape varies with composition, offering a broader perspective on the
thermodynamic response of the system.

In all three parts of this study, the adsorbed species are treated as ideal, meaning that
no lateral interactions between adsorbates are considered. The only interaction accounted
for is excluded volume, which arises from the differences in size and shape among the
species adsorbed on the lattice.

3.1. Adsorption Isotherms and Total Configurational Entropy per Site

We begin by analyzing a ternary mixture system by comparing results from the MC
simulations described in Section 2 with predictions from EA approximation, the GD-LC
theoretical model, and the well-established Ideal Adsorbed Solution Theory (IAST) for
ideal mixtures [5,6].
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Figure 2a,b display the total and partial adsorption isotherms for two different molar
composition sets: (a) X1 = X2 = X3 = 1/3 and (b) X1 = 0.10, X2 = X3 = 0.45. Solid
lines correspond to theoretical predictions obtained from Equation (A18) (EA approximation);
green dashed lines represent IAST results; and sphere-shaped markers indicate data from MC
simulations. Curves for dimers are shown in blue, linear trimers in red, and triangular trimers
in black.

-8 0 8 16
0.0

0.2

0.4

0.6

0.8

1.0

ln P

 Total coverage, EA
 Total coverage, GD-LC
 Dimer partial coverage, EA 
 Dimer partial coverage, GD-LC
 Linear trimer partial cov., EA 
 Linear trimer partial cov., GD-LC
 Triangle partial coverage, EA 
 Triangle partial coverage, GD-LC
 Total coverage, MC
 Dimer partial coverage, MC
 Linear trimer partial coverage, MC
 Triangle partial coverage, MC
 Total coverage, IAST

q

X1=X2=X3=1/3

(a)

-8 0 8 16
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0.4

0.6

0.8

1.0
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q

X1= 0.1; X2=X3=0.45

(b)

Figure 2. Comparison of partial and total adsorption isotherms obtained from the EA approximation,
GD-LC theoretical model, MC simulations, and IAST calculations for ideal ternary mixtures with
two different sets of molar compositions Xi. (a) X1 = X2 = X3 = 1/3; (b) X1 = 0.10, X2 = X3 = 0.45.
The symbols used are explained in the inset of part (a).

The GD-LC results, depicted as dashed lines, are obtained by applying the Guggen-
heim–DiMarzio (GD) scheme [38,39] to the ternary mixture under study. As mentioned
in Section 1, the GD and LC approaches (within the “0D” cavity framework) coincide in
the case of straight rigid rod adsorbates. Under these conditions, the expressions derived
for the partial isotherms resemble Equations (A18), with a single modification: the term
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(ki − 1) ln
[
1 − ∑

j
l=1

(
kl−1

kl

)
θl

]
is replaced by (ki − 1) ln

[
c
2 − ∑

j
l=1

(
kl−1

kl

)
θl

]
, where c = 6

for triangular lattices [52].
In addition, for triangular trimers, a correction factor is introduced to account for their

nonlinear geometry. This factor is obtained by following reasoning similar to that used
in Equation (A4). Namely, while a linear trimer has c/2 accessible states per site at zero
coverage (corresponding to the three directions of the triangular lattice), a triangular trimer
has only two accessible states per site (with the triangle pointing either upwards or down-
wards). It then follows directly that the correction factor to be introduced into the partial
isotherm of the triangular trimer is ln(c/2)− ln 2. As we will show in Figures 2 and 3, this
theoretical scheme yields excellent agreement with MC results.

-10 -5 0 5 10 15
0.0

0.2

0.4

0.6

0.8

1.0
X1=X2=X3=1/3

(a)

s/kB » 0.44
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s/kB

ln P

 s/kB, MC
 s/kB, EA
 s/kB, GD-LC
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0.2

0.4

0.6

0.8

1.0
X1= 0.1; X2=X3=0.45

(b)

s/kB

ln P

 s/kB, MC
 s/kB, EA
 s/kB, GD-LC

Figure 3. Configurational entropy per site as a function of pressure (in ln scale) from the EA
approximation (solid lines), GD-LC theoretical model (dashed lines), and MC simulations (spheres)
for the same cases studied in Figure 2. Symbols are defined in the inset.
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For both molar composition sets Xi, the theoretical models exhibit excellent qualitative
agreement with the Monte Carlo (MC) simulations for both total and partial adsorption
isotherms. In particular, the GD-LC model exhibits outstanding quantitative agreement
with MC results. Only very slight deviations are observed in the partial isotherms of
the triangular trimer species, while no such discrepancies appear for the dimer or linear
trimer species.

Additionally, the total adsorption isotherms calculated using IAST show closer agree-
ment with those of the theoretical model than with those of MC simulations. This behavior
likely stems from the fact that IAST is constructed on ideal pure-component isotherms
based on the configurational factors developed in Equation (A4). For further details on the
IAST approach, see Appendix B.

Moreover, for both cases studied (equimolar and asymmetric mixtures), a clear dis-
placement of larger species (trimers) by smaller ones (dimers) is observed. As ln P increases,
species with ki = 2 dominate the adsorption process on the triangular lattice. In the high-
pressure limit (large ln P), the total coverage θ is almost entirely due to dimer adsorption,
with both linear and triangular trimers being nearly absent. This displacement effect is
accurately captured by both the EA and GD-LC theoretical approaches.

Figure 3 shows the total configurational entropy per site for the same systems analyzed
in Figure 2. Solid lines represent theoretical predictions, while spheres correspond to MC
results. In the theoretical model, the configurational entropy per site is calculated using
Equation (A14), with θi determined from Equation (A15). In the GD-LC and MC approaches,
the total entropy of the mixture is obtained as the sum of the partial entropies of each
species, given by

s(θ1, θ2, . . . , θj, T)
kB

=
j

∑
i=1

si(θi, T)
kB

, (14)

where j = 3 in this case, and each si(θi ,T)
kB

is computed by integrating the partial chemical
potential µi as a function of the partial coverage θi for species i.

Figure 3a,b show excellent qualitative agreement between the theoretical models
and MC simulations across both molar composition sets Xi. Notably, the GD-LC theory
demonstrates superior performance, with its curves being nearly indistinguishable from
the simulation results across the entire pressure range. In particular, the GD-LC model
provides highly accurate entropy predictions in the high-pressure regime.

In contrast, the EA approximation exhibits a clear quantitative discrepancy when
compared to the MC simulation data. The primary source of this discrepancy lies in the
overestimation of accessible states for linear trimer species. As the occupancy of linear
sites increases, the EA theoretical model tends to overcount configurations, particularly
for larger species. This overcounting results from the breakdown of the approximations
in Ωc(M, N1, N2, . . . , Nj), which fail to fully capture the geometric constraints that emerge
with increasing molecular size.

Despite the limitations discussed above, the theoretical predictions are considered
highly satisfactory, especially given the significant complexity of modeling a ternary system
composed of species with different sizes and multiple site occupancies.

The high-pressure regime is especially noteworthy, as the configurational entropy
reaches a saturation value that becomes constant in both cases studied. Within the EA
theoretical framework, this saturation value approaches s/kB ≈ 0.5500 for both compo-
sitions. In contrast, the GD-LC theory predicts a saturation entropy of s/kB ≈ 0.4390,
which is remarkably close to the value obtained from MC simulations, s/kB ≈ 0.4428.
This latter result is especially significant, as it closely matches the value reported by other
authors for a triangular lattice fully occupied by dimers, s/kB = 0.428594537 . . . [89]. This
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close agreement provides further evidence that, in the high-pressure regime, the lattice is
effectively saturated by dimers.

For a lattice saturated with linear trimers, the configurational entropy per site was
reported as s/kB = 0.201(4) [72], based on Monte Carlo simulations combined with
thermodynamic integration method. On the other hand, the exact entropy value for a
lattice fully occupied by triangular trimers was calculated by Verberkmoes and Nienhuis
as s/kB = 1

3 ln
(

3
4

√
3
)

≈ 0.08720802396 [90,91]. These findings not only reinforce the
conclusion that the fully packed state corresponds predominantly to dimer occupation
but also demonstrate that maximizing entropy at high surface coverage, or equivalently,
minimizing the free energy, favors configurations where dimers are the dominant species,
as opposed to those primarily composed of linear or triangular trimers.

The displacement of larger species (trimers) by smaller ones (dimers) has also been
observed in studies of three-domain antifreeze proteins adsorbed on surfaces, where the
molecules can bind via one, two, or all three domains—referred to as S1, S2, and S3 states,
respectively [77]. The displacement of molecules in S2 and S3 by those in S1 is known as
the APR phenomenon, previously reported in Refs. [26,27]. It is important to note that the
partial coverage of the larger species tends toward zero but does not vanish entirely. In
fact, a small residual adsorption of trimer species remains, on the order of θ ≈ 1 × 10−3.
This minor contribution accounts for the observed discrepancy between our MC saturation
entropy and the value reported in the literature, resulting in a deviation of ∆s = 0.0142.

To further investigate the behavior of the total configurational entropy of the mixture,
it is useful to compare Figures 2 and 3. As can be observed from the figures, the partial
adsorption isotherms of the larger species (ki = 3), namely, linear and triangular trimers,
exhibit a maximum in coverage that coincides with the peak of the mixing entropy within
the same ln P interval. In this region, the coverage of the smallest species (dimers, ki = 2)
begins to increase with ln P, indicating the onset of a displacement process. Beyond the
entropy maximum, the smaller species progressively displace the larger ones, gaining
occupancy on the lattice.

This maximum in the mixing entropy corresponds to a relative minimum in the
Helmholtz free energy, establishing a favorable thermodynamic condition under constant
volume M and temperature T. From this point onward, the adsorption of the smaller
species proceeds in a spontaneous, natural, and thermodynamically viable manner.

In Figure 4, the behavior of the partial configurational entropies as a function of ln P
is shown, along with the total configurational entropy of an equimolar ternary mixture
(X1 = X2 = X3 = 1/3). This figure illustrates how the overall entropy curve of the mixture
emerges from the combined contributions of each species across the entire pressure range.
The curves were computed using the EA (solid lines) and GD-LC (dashed lines) theoretical
models. Both models exhibit qualitatively similar behavior (in terms of curve shapes,
locations of the maxima, and relative differences); however, quantitative discrepancies are
observed, with the GD-LC model being the more accurate one, as discussed in Figure 3.
The description that follows applies to both models.

At low pressures, the partial entropies of all three species increase with ln P, reflecting
the progressive occupation of lattice sites. As pressure continues to rise and the total
entropy approaches its maximum, inflection points emerge in the entropy curves of the
linear trimers and triangular species. In contrast, the dimers, the smallest species, exhibit a
slightly higher local maximum within this region, surpassing the individual contributions
of the larger components.
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 s1 /kB, EA;  s1/kB, GD-LC
 s2 /kB, EA;  s2/kB, GD-LC
 s3 /kB, EA;  s3/kB, GD-LC

s/kB

ln P
Figure 4. Total and partial configurational entropy per site as a function of ln P for the equimolar
mixture studied in Figures 2a and 3a: X1 = X2 = X3 = 1/3. The symbols used are explained in
the inset.

This behavior indicates that dimers contribute most significantly to the total entropy
maximum, as they access a greater number of configurations within this ln P range. A
comparison between Figures 2 and 4 further reveals that beyond the entropy maximum,
the dimers progressively displace the larger species.

A striking feature is observed in the dimer entropy at high total coverage. Although
dimers dominate the lattice at elevated pressures, the limited available space severely re-
stricts their configurational degrees of freedom, leading to a sharp decline in the number of
accessible states. As a result, beyond the global maximum of the total entropy, their partial
entropy decreases and eventually becomes negative as pressure increases. In contrast, the
larger species, present in trace amounts, retain configurational freedom by occupying the
voids left by the saturated dimers, and their partial entropies increase until reaching a
constant positive value.

This behavior can be interpreted as follows: Although present in small quantities, the
larger species generate positive entropy by exploiting the voids left by the saturation of
dimers. Thus, the total entropy of the ternary mixture remains positive. A similar behavior
has been observed in the problem of random mixing of polymer solutions. When the Flory’s
approximation is applied [34,37,40], the entropy of the pure polymer becomes negative
while the entropy of the mixture is larger than 0 [34,37,40].

It is worth noting that, within the lattice gas framework, the adsorption of k-mers on
homogeneous surfaces is formally analogous to polymer–solvent binary mixtures: linear
k-mers correspond to linear polymer chains, while empty lattice sites play the role of
monomeric solvent molecules. Accordingly, just as the entropy of a pure polymer becomes
negative at low solvent concentrations (i.e., in poor solvents) [34,37], a similar scenario
arises in the adsorption of k-mers at high surface coverage (i.e., low concentration of empty
sites) [40]. In the ternary mixture under study, as discussed above, the entropy associated
with dimers becomes negative when the concentrations of the other components in the
mixture are very low.

3.2. Configurational Entropy per Site for Different Molar Compositions

In this section, we examine the behavior of the total configurational entropy per
site for varying dimer compositions X1, based on the theoretical framework presented in
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Appendix A. (The analysis presented in this section is primarily based on the qualitative
behavior of the configurational total entropy of the adsorbed phase as a function of pressure.
For this reason, the study is conducted using curves derived from the EA model. Similar
results and conclusions could also be obtained from the GD-LC theory.) Our objective is
to characterize the overall behavior of the mixing entropy in ternary systems. Figure 5
displays the evolution of the total entropy as a function of ln P for dimer compositions
ranging from highly dilute systems (X1 = 1/100, i.e., 1 %) to highly concentrated ones
(X1 = 3/5, i.e., 60 %).

Each curve in Figure 5 exhibits a characteristic trend: the entropy increases with pres-
sure, reaches a maximum, and subsequently decreases smoothly, eventually approaching a
saturation plateau at high pressures. As discussed in Section 3.1, this saturation regime
corresponds to a nearly fully occupied lattice, predominantly filled by dimers, with a small
residual fraction of trimers. Despite their low coverage, these remaining trimers contribute
positively to the entropy due to their configurational freedom. The cumulative effect of the
larger species allows the total entropy to remain positive even under conditions of high
pressure and coverage. It is worth noting, as previously reported in the literature [53], that
the total mixing entropy remains positive in fully occupied lattices, reflecting the residual
configurational complexity inherent in densely packed systems.

-8 0 8 16
0.0

0.2

0.4

0.6

0.8

1.0

ln P

 X1= 0.01 (1 %) 
 X1= 0.02 (2 %) 
 X1= 0.04 (4 %)  
 X1= 0.07 (7 %) 
 X1= 0.10  (10 %) 
 X1= 0.20 (20 %) 
 X1= 1/3 (33.33 %) 
 X1= 0.40 (40 %) 
 X1= 0.60 (60 %) 

s/kB

s/kB » 0.55

Figure 5. Total configurational entropy per site as a function of ln P for different molar compositions
as indicated in the inset. The results correspond to the EA theoretical model developed in Appendix A.

As shown in Figure 5, for the most dilute compositions (X1 = 1% to X1 = 4%), the
total configurational entropy exhibits two distinct maxima across the ln P range. The first
maximum occurs at low values of ln P, corresponding to a regime in which the partial
coverage of the larger species, namely linear trimers and triangular clusters, increase rapidly,
while the dimers accumulate more gradually. The second maximum, discussed in previous
paragraphs, emerges at higher pressures and is associated with the gradual replacement of
the larger species by dimers. This two-peak structure arises because, at such low dimer
concentrations, higher pressures are required to initiate the displacement process.

In the high-pressure regime shown in Figure 5, it is further observed that variations
in the saturation values of the total configurational entropy occur only in systems with
very low dimer molar fractions. For compositions with X1 ≥ 1/10, the saturation entropy
converges to a nearly constant value of approximately s/kB ≈ 0.55. This trend is consistent
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with theoretical expectations: at lower dimer concentrations, the residual fraction of larger
species, such as trimers and triangular clusters, remains higher, leading to an increase
in configurational entropy due to their greater spatial and conformational flexibility on
the lattice.

To complete the analysis, it is particularly insightful to examine the maximum values of
the mixing entropy. As shown in previous figures, each entropy maximum corresponds to a
specific pair of values: ln P and the dimer composition X1. This information is summarized
in Figure 6a, which presents a phase diagram involving three variables: the configurational
entropy per site s/kB (plotted along the z-axis), the composition of the smallest species X1

(on the x-axis), and the logarithm of the pressure ln P (on the y-axis) at which the entropy
maximum occurs. The maximal values of the configurational entropy are represented by red
spheres connected by lines. As illustrative examples, Figure 6a includes the configurational
entropy s/kB as a function of ln P for two fixed compositions: X1 = 1/3 (black solid line)
and X1 = 1/10 (magenta solid line). The remaining entropy profiles are omitted for clarity.
This representation enables clear identification of the different phases that arise in the
system. Specifically, (i) a dimer-rich adsorbed phase at high values of ln P, (ii) a ternary
mixture phase—comprising dimers, linear trimers, and triangular trimers—at intermediate
pressures, and (iii) a nearly empty lattice at low values of ln P.

To better visualize the phase transitions, Figure 6b shows the projection of the entropy
maxima onto the X1–ln P plane (i.e., the xy-plane), represented by blue spherical markers
connected by solid lines. Three distinct regions can be distinguished in this projection.
Around the curve of maximum entropy, the system behaves as a ternary mixture, while
deviations from this region drive the system either toward a dimer-rich state or toward an
almost empty lattice, depending on the trajectory in ln P or X1. As previously illustrated in
Figure 5, the mixing entropy tends toward a finite constant as ln P increases, corresponding
to a nearly saturated lattice of dimers. Conversely, at low ln P, the entropy per site w
approaches zero, indicating a dilute, nearly empty system.

Figure 6. Cont.
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Figure 6. (a) The maximum values of the configurational entropy per site (red spheres connected by
lines) are shown as a function of the dimer composition X1 (in the gas phase) and the corresponding
pressure (in ln units) at which these maxima are observed. Black and magenta solid lines correspond to
the configurational entropy per site as a function of ln P for X1 = 1/3 and X1 = 1/10, respectively. The
black and magenta solid lines represent the configurational entropy per site as a function of ln P for fixed
compositions X1 = 1/3 and X1 = 1/10, respectively. These two examples are included for illustration
purposes; the remaining entropy profiles are omitted for clarity. (b) Blue spheres connected by lines
represent the projection of the entropy maxima from part (a) onto the (X1–ln P) plane. This projection
serves as the basis for constructing an entropic phase diagram that delineates the regions dominated by
dimers and those characteristic of a ternary mixture (see discussion in the text).

Finally, it is worth noting that ln P exhibits a nonlinear dependence on the dimer
composition X1: it decreases steeply at low concentrations (X1 ≤ 1/10) and more gradually
at intermediate to high concentrations (1/4 ≤ X1 ≤ 1). This suggests that, for dilute
mixtures, significantly higher pressures are required to drive the system from the ternary
mixture region into a dimer-rich adsorbed phase. In contrast, at higher concentrations,
relatively small pressure changes suffice to induce this transition.

4. Conclusions
In this study, we developed and analyzed a theoretical framework to describe the

adsorption of ternary mixtures of polyatomic molecules, specifically dimers, linear trimers,
and triangular trimers, on triangular lattices, explicitly accounting for multisite occupancy
and excluded volume effects. Our approach combines analytical statistical thermodynamics
(EA and GD-LC theoretical models) with grand canonical MC simulations, providing a
detailed and consistent description of adsorption phenomena across a wide range of
compositions and surface coverages. Several conclusions can be drawn from this study:

• The generalized lattice gas model effectively captures the competitive adsorption
behavior driven by molecular size and shape, illustrating the essential role of multisite
occupation in realistic surface processes.

• Analytical expressions for thermodynamic quantities, including the Helmholtz free
energy, configurational entropy per site, and both total and partial coverages, were
derived as functions of pressure within the EA and GD-LC approximations. These
theoretical predictions show excellent qualitative agreement with MC simulations.
Moreover, the GD-LC theory also shows remarkable quantitative agreement for both
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adsorption isotherms and configurational entropy, with the corresponding curves
from MC simulations and GD-LC being nearly indistinguishable.

• A detailed entropy analysis reveals an entropy-driven displacement mechanism, where
dimers progressively replace larger species at higher pressures, maximizing the sys-
tem’s entropy prior to lattice saturation. In the high-coverage regime, entropy ap-
proaches a limiting value dominated by dimer adsorption, in line with previous
studies on fully occupied lattices.

• Despite dimers playing a central role in the displacement process, larger molecules
contribute cooperatively. Their ability to occupy residual voids left by smaller species
supports the preservation of positive entropy and reinforces thermodynamic consis-
tency, particularly in the behavior of mixing entropy.

• The maximum entropy is attained for equimolar compositions, and the entropy
landscape enables construction of an“entropic phase diagram” in the composition–
pressure–maximum entropy space. This diagram delineates regions where competitive
displacement is either enhanced or suppressed, offering a predictive tool for control-
ling surface composition and illustrating the richness of configurational possibilities
in such systems.

Overall, this study provides a comprehensive understanding of the role of entropy in
multicomponent adsorption systems with multisite occupancy. The theoretical framework
presented here not only shows excellent agreement with simulation data but also offers
predictive capabilities for more complex scenarios. Future extensions could incorporate
lateral interactions, surface heterogeneity, or more intricate adsorbate shapes and lattice
geometries, thereby expanding the applicability of this approach to technologically relevant
adsorption systems. Furthermore, we aim to move toward the application of more ad-
vanced theoretical tools to address the challenges posed by polyatomic mixtures. Promising
avenues include the recently developed Multiple Exclusion statistics framework [48–50],
as well as extensions of Lattice Fundamental Measure Theory that explicitly account for
triangular trimers and go beyond the conventional “0D” approximation [54–59,62].
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Appendix A. Thermodynamic Functions of Multicomponent Lattice
Gases with Hard-Core Interactions

Consider a one-dimensional lattice composed of M sites, each separated by a constant
distance a, under periodic boundary conditions. We assume M → ∞. As mentioned at
the beginning of Section 2, a j-component mixture is considered. The system consists of
N1 particles of species 1, N2 of species 2, and so on, up to Nj of species j. Each particle of
type i is modeled as a linear chain, or ki-mer, comprising ki identical units, where each unit
occupies a single site on the lattice. As a result, one ki-mer spans ki adjacent lattice sites
when adsorbed. The only interaction considered is hard-core exclusion, meaning that no
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two ki-mers may overlap or occupy the same site. Under these assumptions, the canonical
partition function Q(M, N1, N2, . . . , Nj, T) is expressed as follows:

Q(M, N1, N2, . . . , Nj, T) = Ω(M, N1, N2, . . . , Nj) exp
[
−

E(M, N1, N2, . . . , Nj)

kBT

]
, (A1)

where Ω(M, N1, N2, . . . , Nj) represents the total number of spatial arrangements consistent
with the imposed constraints, E(N1, N2, . . . , Nj) denotes the total energy of interaction
between the adsorbate molecules and the substrate, T is the absolute temperature, and kB

is Boltzmann’s constant.
The term Ω(M, N1, N2, . . . , Nj) can be derived as the total number of permutations of

the N1 indistinguishable k1-mers, N2 indistinguishable k2-mers, . . . , and Nj indistinguish-
able k j-mers out of ne entities, where ne is given by

ne = N1 + N2 + · · ·+ Nj + N0

=
j

∑
i=1

Ni + M −
j

∑
i=1

ki Ni = M −
j

∑
i=1

(ki − 1)Ni, (A2)

with N0 denoting the number of vacant sites. Accordingly,

Ω(M, N1, N2, . . . , Nj) =

(
ne

N

)
=

[
M − ∑

j
i=1(ki − 1)Ni

]
!

N1!N2! . . . Nj!
[

M − ∑
j
i=1 ki Ni

]
!
. (A3)

Let us now generalize this to a lattice of higher dimensionality characterized by a
coordination number c (e.g., c = 3 for a honeycomb structure, c = 4 for a square lattice,
and c = 6 for a triangular one). In this case, the configurational contribution, denoted as
Ωc(M, N1, N2, . . . , Nj), is approximated by considering a random, uncorrelated distribution
of adsorbed species. Following methodologies proposed in prior studies [34,35,37,40,60,61],
this multidimensional configurational factor is related to the one-dimensional result via

Ωc(M, N1, N2, . . . , Nj) ≈ [K1(c, k1)]
N1 [K2(c, k2)]

N2 . . .
[
Kj(c, k j)

]Nj Ωc=2(M, N1, N2, . . . , Nj) (A4)

where Ki(c, ki) corresponds to the number of configurations available per lattice site to a
ki-mer at zero surface coverage. The approximation presented in Equation (A4) is known as
the Extension Ansatz (EA) approximation [47]. This quantity generally depends on both the
connectivity of the lattice and the geometric characteristics of the adsorbed molecule. For
straight, rigid ki-mers (linear particles with ki monomeric units), the available orientations
reduce to Ki(c, ki) = c/2 (this expression is only valid for ki ≥ 2; for monomer adsorption
Ki(c, ki = 1) = 1.

On the other hand, E(M, N1, N2, . . . , Nj) can be written as

E(M, N1, N2, . . . , Nj) =
j

∑
i=1

ϵi Ni, (A5)

where ϵi denotes the binding energy between a ki-mer and the surface.
The Helmholtz free energy F(M, N1, N2, . . . , Nj, T) is related to Q(M, N1, N2, . . . , Nj, T)

through

βF(M, N1, N2, . . . , Nj, T) = − ln Q(M, N1, N2, . . . , Nj, T)

= − ln Ωc(M, N1, N2, . . . , Nj) + β
j

∑
i=1

ϵi Ni, (A6)
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where β = (kBT)−1. From Equations (A3), (A4), and (A6),

βF(M, N1, N2, . . . , Nj, T) = −
j

∑
i=1

Ni ln[Ki(c, ki)]− ln

[
M −

j

∑
i=1

(ki − 1)Ni

]
!

+
j

∑
i=1

[ln(Ni)!] + ln

[
M −

j

∑
i=1

ki Ni

]
! + β

j

∑
i=1

ϵi Ni. (A7)

Using the Stirling approximation

βF(M, N1, N2, . . . , Nj, T) = −
j

∑
i=1

Ni ln[Ki(c, ki)]

−
[

M −
j

∑
i=1

(ki − 1)Ni

]
ln

[
M −

j

∑
i=1

(ki − 1)Ni

]

+
j

∑
i=1

[Ni ln(Ni)] +

[
M −

j

∑
i=1

ki Ni

]
ln

[
M −

j

∑
i=1

ki Ni

]

+β
j

∑
i=1

ϵi Ni. (A8)

The configurational entropy S, and the chemical potential corresponding to the i-
species µi,ads, can be calculated as [34]

S(M, N1, N2, . . . , Nj, T) = −
(

∂F
∂T

)
M,N′

j s
, (A9)

and

µi,ads =

(
∂F
∂Ni

)
T,M,N′

j s (j ̸=i)
(i = 1, 2, . . . , j). (A10)

From Equations (A8)–(A10) it follows that

S(M, N1, N2, . . . , Nj, T)
kB

= +
j

∑
i=1

Ni ln[Ki(c, ki)]

+

[
M −

j

∑
i=1

(ki − 1)Ni

]
ln

[
M −

j

∑
i=1

(ki − 1)Ni

]

−
j

∑
i=1

[Ni ln(Ni)]−
[

M −
j

∑
i=1

ki Ni

]
ln

[
M −

j

∑
i=1

ki Ni

]
, (A11)

and

β(µi,ads − ϵi) = − ln[Ki(c, ki)] + (ki − 1) ln

[
M −

j

∑
l=1

(kl − 1)Nl

]

+ ln(Ni)− ki ln

[
M −

j

∑
l=1

kl Nl

]
(i = 1, 2, . . . , j). (A12)
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Then, by defining the partial coverage of the species i, θi = ki Ni/M, the free energy
per site f = F/M, and the configurational entropy per site s = S/M, Equations (A8), (A11)
and (A12) can be rewritten in terms of the intensive variables θ1, θ2, . . . , θj, and T,

β f (θ1, θ2, . . . , θj, T) = −
j

∑
i=1

θi
ki

ln[Ki(c, ki)]

−
[

1 −
j

∑
i=1

(
ki − 1

ki

)
θi

]
ln

[
1 −

j

∑
i=1

(
ki − 1

ki

)
θi

]

+
j

∑
i=1

[
θi
ki

ln
(

θi
ki

)]
+

(
1 −

j

∑
i=1

θi

)
ln

(
1 −

j

∑
i=1

θi

)

+β
j

∑
i=1

ϵi
θi
ki

, (A13)

s(θ1, θ2, . . . , θj, T)
kB

= +
j

∑
i=1

θi
ki

ln[Ki(c, ki)]

+

[
1 −

j

∑
i=1

(
ki − 1

ki

)
θi

]
ln

[
1 −

j

∑
i=1

(
ki − 1

ki

)
θi

]

−
j

∑
i=1

[
θi
ki

ln
(

θi
ki

)]
−
(

1 −
j

∑
i=1

θi

)
ln

(
1 −

j

∑
i=1

θi

)
, (A14)

and

β(µi,ads − ϵi) = − ln[Ki(c, ki)] + (ki − 1) ln

[
1 −

j

∑
l=1

(
kl − 1

kl

)
θl

]

+ ln
(

θi
ki

)
− ki ln

[
1 −

j

∑
l=1

θl

]
(i = 1, 2, . . . , j). (A15)

At equilibrium, the chemical potential of the adsorbed and gas phase are equal. Then,

µi,ads = µi,gas (i = 1, 2, . . . , j), (A16)

where µi,gas corresponds to ki-mers in the gas phase.
The chemical potential of each kind of molecule in an ideal gas mixture, at temperature

T and pressure P, is

βµi,gas = βµ0
i + ln XiP (i = 1, 2, . . . , j), (A17)

where µ0
i and Xi are the standard chemical potential and the mole fraction of ki-mers,

respectively. In addition, ∑
j
i=1 Xi = 1.

From Equations (A15)–(A17), the partial adsorption isotherms can be obtained,

− ln[Ki(c, ki)] + (ki − 1) ln

[
1 −

j

∑
l=1

(
kl − 1

kl

)
θl

]
+ ln

(
θi
ki

)

− ki ln

[
1 −

j

∑
l=1

θl

]
+ β

(
ϵi − µ0

i

)
− ln Xi − ln P = 0 (i = 1, 2, . . . , j). (A18)
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Appendix B. Ideal Adsorbed Solution Theory (IAST)
IAST is based on the assumption that the adsorbed phase can be treated as an ideal

solution of the adsorbed components. The fundamental equation of IAST theory is the
analog of Raoult’s law for the vapor–liquid equilibrium:

Pyi = P0
i (π)xi, (A19)

where P is the total pressure and P0
i (π) is the sorption pressure of each pure component

i, which generates the same spreading pressure π as the mixture. yi and xi are the molar
fractions of component i in the fluid phase and the adsorbed phase, respectively. Thus,

xi =
θi

∑j θj
, (A20)

where the sum extends over the number of components in the mixture. For the ternary
mixture analyzed in the main text, we have

x1(2)[3] =
θ1(2)[3]

θ1 + θ2 + θ3
, [1 (dimer), 2 (linear trimer) and 3 (triangular trimer)]. (A21)

The spreading pressure is defined by the Gibbs adsorption isotherm [92]:

π

kBT
=
∫ P0

i (π)

0

θi(P)
P

dP, (A22)

where θi(P) is the isotherm of each pure component. Thus, the total isotherm obtained can
be written as follows:

θ = ∑
j

θj =
1

∑i xi/θi(P0
i )

. (A23)

Finally, by using Equation (A23) together with the pure-component isotherms de-
rived from Equation (A15) (and compiled in Table A1), it is possible to compute the total
adsorption isotherm of the mixture using IAST theory.

Table A1. Adsorption isotherms for pure species described by Equation (A15).

i Species ki Ki(c, ki) Adsorption Isotherm Equation

1 dimer 2 3 βµ1 = − ln 3 + ln
(

1 − 1
2 θ
)
+ θ

2 − 2 ln(1 − θ)

2 linear trimer 3 3 βµ2 = − ln 3 + ln
(
1 − 2

3 θ
)
+ θ

3 − 3 ln(1 − θ)

3 triangular trimer 3 2 βµ3 = − ln 2 + ln
(
1 − 2

3 θ
)
+ θ

3 − 3 ln(1 − θ)
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